JPH0292843A - Production of raw material for inorganic glass foam - Google Patents

Production of raw material for inorganic glass foam

Info

Publication number
JPH0292843A
JPH0292843A JP24269388A JP24269388A JPH0292843A JP H0292843 A JPH0292843 A JP H0292843A JP 24269388 A JP24269388 A JP 24269388A JP 24269388 A JP24269388 A JP 24269388A JP H0292843 A JPH0292843 A JP H0292843A
Authority
JP
Japan
Prior art keywords
powder
weight
parts
granulation
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24269388A
Other languages
Japanese (ja)
Inventor
Tsuneo Murata
村田 恒男
Kunio Osada
邦男 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24269388A priority Critical patent/JPH0292843A/en
Publication of JPH0292843A publication Critical patent/JPH0292843A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sufficiently carry out homogeneous dispersion of reaction components and stabilize physical properties after thermal foaming by regulating a mixed powder of a natural glassy mineral having a specific particle diameter and foaming agent to a specified temperature and granulating the resultant mixture while reacting the mixture with an alkaline reaction solution. CONSTITUTION:A powder containing (A) 100 pts.wt. natural glassy mineral (e.g., obsidian, having 5-12mu average particle diameter and containing <=5% particles having >20mu average particle diameter) and (B) 0.1-5.0 pts.wt. foaming agent (e.g., carbonatey is previously regulated to <=40 deg.C. A solution consisting of 15-25 pts.wt. alkaline metal hydroxide, such as NaOH or KOH, and 7-15 pts.wt. water is then mixed therewith and the resultant mixture is granulated (to provide preferably about 2mm grain diameter) while being reacted. Thereby, formation of water glassy substances can be suppressed and a sufficient granulation time can be obtained by regulating the powder temperature to <=40 deg.C to simultaneously enhance homogeneous dispersibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は建築材料として好適な無機ガラス発泡体の製造
に適した造粒原料の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a granulated raw material suitable for producing an inorganic glass foam suitable as a building material.

〔従  来  の  技  術〕[Traditional techniques]

従来無機ガラス発泡体はよく知られているところであり
、低密度の発泡体についても各種製造されている。
Conventionally, inorganic glass foams are well known, and various low-density foams are also manufactured.

天然ガラス質鉱物から成る無機ガラス発泡体は一般にそ
の化学成分のため(Aj2zOa含有量大)軟化温度が
高く発泡体を得るには1000℃以上の高温でなければ
熔融せず、低密度で微細気泡径を有する発泡体を得るこ
とは困難であった・ そのため、天然ガラスにアルカリ成分を添加し変成した
後、加熱発泡させる方法(特開昭60−36352号公
報、特開昭60−77145号公報)が知られている。
Inorganic glass foams made of natural glassy minerals generally have a high softening temperature due to their chemical composition (high Aj2zOa content), and cannot be melted unless the foam is obtained at a high temperature of 1000°C or higher, resulting in low density and fine bubbles. It was difficult to obtain a foam with a diameter. Therefore, a method of adding an alkali component to natural glass and denaturing it, followed by heating and foaming (Japanese Unexamined Patent Application Publication No. 60-36352, JP-A No. 60-77145) )It has been known.

従来の発泡体の製造においては、天然ガラスにアルカリ
成分を添加し変成するに際し、溶媒である水を多量に用
い、混合混練しスラリーあるいはペースト状としたのち
100″C以上の温度上乾燥を行い、固化した後、粉砕
したものを発泡体製造原料とし、使用されていた。
In conventional foam manufacturing, when adding an alkaline component to natural glass to modify it, a large amount of water is used as a solvent, the mixture is mixed and kneaded to form a slurry or paste, and then dried at a temperature of 100"C or higher. After solidification, it was crushed and used as a raw material for producing foam.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の方法では、溶媒である水を多量に用い
天然ガラスとアルカリ成分を混合混練しスラリーあるい
はペースト状としたのち乾燥中に反応させるため、反応
を制御することが難しく、乾燥条件、雰囲気の違い、乾
燥されるペースト状あるいはスラリー状の中央部、端部
の違いにより反応に違いがみられた。具体的には、中央
部が長時間水分が残留するため反応が進みすぎ、ゼオラ
イト質の結晶が生成し易く(参考 Llnited 5
tates Patent 3+114+603) 、
結晶を生成したときは加熱発泡後の物性を低下させるた
め(高比重化が生じるため)、結晶の生成部、未生成部
により、得られた原料の加熱発泡後の無機ガラス発泡体
物性にバラツキを生じていた。
However, in the conventional method, natural glass and alkaline components are mixed and kneaded using a large amount of water as a solvent to form a slurry or paste, and then reacted during drying, making it difficult to control the reaction and depending on the drying conditions and atmosphere. Differences in the reaction were observed depending on the difference in the amount of drying, and the difference in the center and edges of the paste or slurry that was dried. Specifically, because moisture remains in the center for a long time, the reaction progresses too much and zeolite crystals are likely to form (Reference: Llnited 5
tates Patent 3+114+603),
When crystals are generated, the physical properties after heating and foaming are reduced (higher specific gravity occurs), so the physical properties of the obtained inorganic glass foam after heating and foaming of the obtained raw material may vary depending on the areas where crystals are formed and the areas where they are not. was occurring.

また従来の製造法では、スラリーあるいはペースト状物
が、乾燥後、固化一体止し、その固化一体止したものを
そのまま加熱発泡させると中央部などに粗大な気泡が生
じ、外観上好ましくなく、乾燥して固化一体止したもの
を細かく粉砕する必要があった。
In addition, in conventional manufacturing methods, slurry or paste-like materials do not completely solidify after drying, and when the solidified product is heated and foamed as it is, coarse air bubbles are formed in the center, which is unfavorable in appearance, and dry It was necessary to finely crush the solidified material.

しかし、このように粉砕するという手間をかけても、得
られた原料を加熱発泡させた後の無機ガラス発泡体の嵩
密度や減圧吸水率などの物性にバラツキが残っており、
気泡も不均一なものであった。
However, even with the effort of pulverizing in this way, there are still variations in physical properties such as bulk density and vacuum water absorption of the inorganic glass foam after heating and foaming the obtained raw material.
The bubbles were also non-uniform.

本発明は、上記問題点について鋭意研究の結果、かかる
問題点を解決する方法を見出し本発明に至った。
As a result of intensive research into the above-mentioned problems, the present invention has found a method for solving the problems and has led to the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は平均粒径が5μないし12μであり、なおかつ
粒径20μを越えるものが5%以下である天然ガラス質
鉱物100重量部に対して少なくとも発泡剤0.1〜5
.0重量部含有してなる粉体を予め40℃以下とし、ア
ルカリ金属水酸化物15〜25重量部、水7〜15重量
部からなる溶液と混合、反応させながら造粒することを
特量とする無機ガラス発泡体用原料の製造法である。
In the present invention, at least 0.1 to 0.05% of a blowing agent is added to 100 parts by weight of natural glassy minerals having an average particle size of 5 μ to 12 μ and 5% or less of particles exceeding 20 μ.
.. A special method is to granulate the powder containing 0 parts by weight at 40° C. or lower in advance, mixing and reacting with a solution consisting of 15 to 25 parts by weight of alkali metal hydroxide and 7 to 15 parts by weight of water. This is a method for producing raw materials for inorganic glass foam.

本発明でいう天然ガラス質鉱物とは、黒曜石、抗火石、
真珠岩、松脂岩、シラス等であるが、一般に広く使用さ
れている板ガラスや瓶ガラスおよび、その粉末が主体の
廃ガラスを用いることも出来る。
The natural glassy minerals referred to in the present invention include obsidian, anti-firestone,
Although pearlite, pinestone, whitebait, etc. can also be used, plate glass and bottle glass, which are generally widely used, and waste glass mainly composed of powder thereof can also be used.

発泡剤としては、炭酸塩、硝酸塩、カーボンや炭化珪素
等で高温で気体を発生する粉末状の物質を用いる。その
他の添加剤、例えば硼素化合物等を適宜加えても本発明
は実施できる。発泡剤の量は天然ガラス譬鉱物100重
量部に対して0.1〜5.0重量部とする。この発泡剤
の量から外れた場合、得られた造粒物の加熱発泡により
得られた無機ガラス発泡体の物性は低下する(高比重化
が生じるため)。
As the blowing agent, a powdery substance such as carbonate, nitrate, carbon, or silicon carbide that generates gas at high temperature is used. The present invention can also be carried out by appropriately adding other additives such as boron compounds. The amount of the blowing agent is 0.1 to 5.0 parts by weight based on 100 parts by weight of natural glass pseudomineral. If the amount of the blowing agent deviates from this range, the physical properties of the inorganic glass foam obtained by heating and foaming the obtained granules will deteriorate (because the specific gravity will increase).

アルカリ金属水酸化物としては、NaOHまたはKOH
が好適である。
As the alkali metal hydroxide, NaOH or KOH
is suitable.

本発明の方法で重要なことは、天然ガラス質鉱物を主と
する粉体とアルカリ金属水酸化物溶液とを混合、反応さ
せながら造粒することにある。混合中にガラス中のSi
O□とアルカリ金属水酸化物とが反応し、一般によく知
られている水ガラス(Sin、・2 Nano)状物質
を生成し、その粘着性により粉体同志が付着しあい造粒
が可能となる。本発明者は、この造粒条件と得られる無
機ガラス発泡体の物性とに相関があることを見出した。
What is important in the method of the present invention is that the powder mainly composed of natural glassy minerals and an alkali metal hydroxide solution are mixed and granulated while being reacted. Si in the glass during mixing
O□ and alkali metal hydroxide react to produce a well-known water glass (Sin, 2 Nano)-like substance, and its stickiness allows powders to adhere to each other, making granulation possible. . The present inventor found that there is a correlation between the granulation conditions and the physical properties of the resulting inorganic glass foam.

即ち、粉体とアルカリ金属水酸化物溶液との混合開始時
から造粒物の粒径が所定のサイズになり造粒を停止する
までの時間(以下、造粒時間という。)は天然ガラス質
鉱物の粒度分布により変化し、天然ガラス譬鉱物の粒度
分布がシャープであれば造粒時間はある程度に長くなり
、粒度分布がブロードであれば造粒時間が短くなること
を見出した。そして、造粒時間がある程度長いときは、
多(の場合5分をこえるときは、造粒される前に天然ガ
ラス買鉱吻とアルカリ金属水酸化物溶液との間に均一分
散化が進み、ゼオライト質結晶の生成を制御されて、そ
の状態で所望の大きさ(多くの場合2皿程度)の造粒物
となることを本発明者は見出した。
In other words, the time from the start of mixing the powder and the alkali metal hydroxide solution until the particle size of the granulated material reaches a predetermined size and granulation is stopped (hereinafter referred to as granulation time) is the natural glassy period. It has been found that the granulation time varies depending on the particle size distribution of the mineral, and if the particle size distribution of the natural glass mineral is sharp, the granulation time will be long to some extent, and if the particle size distribution is broad, the granulation time will be shortened. When the granulation time is long to a certain extent,
If the time exceeds 5 minutes, homogeneous dispersion progresses between the natural glass crystal and the alkali metal hydroxide solution before granulation, and the formation of zeolitic crystals is controlled. The present inventors have found that granules of a desired size (about 2 plates in most cases) can be obtained in this state.

即ち、本発明に用いる天然ガラス質鉱物は平均粒径が5
μないし12μであり、なおかつ粒径20μを越えるも
のが5%以下である。この粒度から外れた場合、例えば
平均粒径が5u未満の時には粉体とアルカリ金属水酸化
物溶液の反応性が非常に高くなるため、粉体とアルカリ
金属水酸化物が接触した瞬間から急激な反応が起こり、
数秒から数十秒の間に粒径10〜20MBの粒となって
しまうので、造粒物の粒径制御は困難になる。また、平
均粒径が12μよりも大きい場合には、粒径の大きいガ
ラス質鉱物の割合が多くなってくるので、粉体とアルカ
リ金属水酸化物の反応が進まず、得られた造粒物を加熱
発泡して得たガラス発泡体の嵩密度が非常に高くなる場
合がある。
That is, the natural glassy mineral used in the present invention has an average particle size of 5
μ to 12 μ, and less than 5% of particles have a particle size exceeding 20 μ. If the particle size deviates from this range, for example, if the average particle size is less than 5u, the reactivity between the powder and the alkali metal hydroxide solution will be very high, and the moment the powder and the alkali metal hydroxide come into contact, a rapid reaction will occur. A reaction occurs,
Since the particles become particles with a particle size of 10 to 20 MB within a few seconds to several tens of seconds, it becomes difficult to control the particle size of the granulated product. In addition, when the average particle size is larger than 12μ, the proportion of glassy minerals with large particle sizes increases, so the reaction between the powder and alkali metal hydroxide does not proceed, and the resulting granules are The bulk density of the glass foam obtained by heating and foaming may be extremely high.

一方、平均粒径が5μ〜12μであっても、粒径20μ
を越えるものが5%よりも多い場合、粉体とアルカリ金
属水酸化物の均一分散に充分な造粒時間が得られないの
で、造粒物を加熱発泡して得られるガラス発泡体の嵩密
度及び減圧吸水率のバラツキは大きくなり、かつ減圧吸
水率の値も大となる。また、粗大気泡の発生により外観
は粗悪なものになる。
On the other hand, even if the average particle size is 5μ to 12μ, the particle size is 20μ
If the amount exceeds 5%, sufficient granulation time will not be obtained for uniform dispersion of the powder and alkali metal hydroxide, so the bulk density of the glass foam obtained by heating and foaming the granules will decrease. The variation in the vacuum water absorption rate becomes large, and the value of the vacuum water absorption rate also becomes large. In addition, the appearance becomes poor due to the generation of coarse bubbles.

これら、本発明における粒度から外れた場合、造粒量を
少なくして造粒させた場合には、天然ガラス質鉱物を主
体とする粉体を予め加温しておくことにより、粉体とア
ルカリ金属水酸化物の反応を促進させ、加熱発泡後のガ
ラス発泡体の物性を向上させることができるが、スケー
ルアップして造粒するとき、即ち造粒装置の直径を大き
くして造粒効率を高くするときには、天然ガラス質鉱物
を主体とする粉体を加温した効果が相殺され、粉体とア
ルカリ金属水酸化物の均一分散性が低下する。このよう
にスケールアップをした場合には一般的に造粒時間が短
くなるため、天然ガラス質鉱物の平均粒径が5μないし
12μであり、なおかつ粒径20μを越えるものが5%
以下であっても、天然ガラス質鉱物を主体とする粉体と
アルカリ金属水酸化物の均一分散性は低下する。そこで
本発明では天然ガラス質鉱物を主体とする粉体温度を4
0℃以下とすることにより、Singとアルカリ金属水
酸化物の反応生成物である水ガラス(SiO□・2Na
zO)状物質の生成を抑制し、充分な造粒時間を得ると
ともに、均一分散性を高くするのである。−方、天然ガ
ラス質鉱物の粒度が同じであっても、アルカリ金属水酸
化物水溶液を加える前に天然ガラス質鉱物を主体とする
粉体の温度を高くすると、例えば50℃とすると、大量
に造粒した場合には、造粒される前−に天然ガラス質鉱
物とアルカリ金属水酸化物とを均一に反応させることが
不可能となり、所望の性質を有する造粒物が得られない
。但し、例えば5!の造粒機で造粒しうる程度の小型ス
ケールでは40℃以上でも目的とする製品を得ることが
できる。
If the particle size deviates from the particle size of the present invention, or if the granulation amount is reduced, the powder and alkali It is possible to accelerate the reaction of metal hydroxide and improve the physical properties of the glass foam after heating and foaming, but when scaling up and granulating, in other words, increasing the diameter of the granulating device to improve the granulating efficiency. When increasing the temperature, the effect of heating the powder mainly composed of natural glassy minerals is canceled out, and the uniform dispersibility of the powder and alkali metal hydroxide decreases. When scaling up in this way, the granulation time is generally shortened, so the average particle size of natural glassy minerals is 5μ to 12μ, and 5% of the particles exceed 20μ.
Even if it is below, the uniform dispersibility of the powder mainly composed of natural glassy minerals and the alkali metal hydroxide will decrease. Therefore, in the present invention, the temperature of powder mainly composed of natural glassy minerals is set to 4.
By keeping the temperature below 0°C, water glass (SiO□・2Na), which is a reaction product of Sing and alkali metal hydroxide, is
This suppresses the formation of zO)-like substances, provides sufficient granulation time, and improves uniform dispersibility. - On the other hand, even if the particle size of the natural glassy minerals is the same, if the temperature of the powder mainly composed of natural glassy minerals is raised to 50°C before adding the alkali metal hydroxide aqueous solution, a large amount of In the case of granulation, it becomes impossible to uniformly react the natural glassy mineral and the alkali metal hydroxide before granulation, making it impossible to obtain granules having desired properties. However, for example, 5! On a small scale that can be granulated using a granulator, the desired product can be obtained even at temperatures above 40°C.

本発明で用いるアルカリ金属水酸化物の水溶液の組成は
、天然ガラス質鉱物100重量部に対し、アルカリ金属
水酸化物15〜25重量部、水7〜15重量部が好まし
い。
The composition of the aqueous solution of alkali metal hydroxide used in the present invention is preferably 15 to 25 parts by weight of alkali metal hydroxide and 7 to 15 parts by weight of water based on 100 parts by weight of natural glassy mineral.

アルカリ金属水酸化物15重量部未満では、加熱発泡中
の発泡倍率が低く、低比重のガラス発泡体を得にくい、
また25重量部をこえると、低比重化するものの未反応
のアルカリ金属水酸化物が残りやすく、得られたガラス
発泡体の耐水性、耐久性が減じ、好ましくない。
If the alkali metal hydroxide is less than 15 parts by weight, the expansion ratio during heat foaming will be low and it will be difficult to obtain a glass foam with a low specific gravity.
Moreover, if it exceeds 25 parts by weight, although the specific gravity is lowered, unreacted alkali metal hydroxide tends to remain, which reduces the water resistance and durability of the obtained glass foam, which is not preferable.

また、水7重量部未満では、アルカリ金属水酸化物を溶
解させる際に高温を要し、特別の装置等が必要であり好
ましくない。水15重量部をこえると造粒物を得にくく
、スラリー状となり好ましくない。
Furthermore, if the amount of water is less than 7 parts by weight, high temperatures are required to dissolve the alkali metal hydroxide, and special equipment is required, which is not preferable. If the amount of water exceeds 15 parts by weight, it is difficult to obtain a granulated product, which is not preferable because it becomes slurry-like.

該天然ガラス質鉱物を主体とする粉体とアルカリ金属水
酸化物の水溶液を混合、反応させながら造粒させる機械
装置としては、種々の混合機、造粒機、例えば、転勤回
転型造粒機、高速回転羽根形混合造粒機等が使用できる
が、造粒物の温度上昇の制御、すなわち反応の制御をよ
り確実に行なうために、ジャケント等の冷却機構を備え
た造粒装置を使用すると、得られる造粒物の安定性は高
くなる。
Mechanical devices for mixing and reacting the powder mainly composed of the natural glassy mineral and the aqueous solution of alkali metal hydroxide to form granules include various mixers and granulators, such as transfer rotary granulators. , a high-speed rotary vane-type mixing granulator, etc. can be used, but in order to more reliably control the temperature rise of the granules, that is, control the reaction, it is recommended to use a granulator equipped with a cooling mechanism such as Jaquent. , the stability of the resulting granules becomes higher.

得られる造粒物粒径は、造粒時間、方法により任意制御
が可能であるが、加熱発泡後のガラス発泡体の気泡を均
一にするために5M以下、特に好ましくは2M程度とす
るのが好ましい。
The particle size of the obtained granules can be arbitrarily controlled by the granulation time and method, but it is preferably 5M or less, particularly preferably about 2M, in order to make the bubbles of the glass foam uniform after heating and foaming. preferable.

また得られた造粒物は、そのまま加熱発泡に用いてもよ
いが、反応をさらにすすめるために60〜200℃の温
度域で乾燥してもよい。
Further, the obtained granules may be used as they are for heating and foaming, but may be dried in a temperature range of 60 to 200° C. to further promote the reaction.

加熱発泡させる温度は含有アルカリ金属水酸化物量によ
り設定できるが、650〜850℃が好ましい。
The temperature for heating and foaming can be set depending on the amount of alkali metal hydroxide contained, but is preferably 650 to 850°C.

造粒終了後、ガラス発泡成形体を得るには、ステンレス
製等の耐熱性型枠中に成形体の密度にあわせて底部に均
一に造粒物を配置し、加熱する方法、あるいは得られた
造粒物同志の粘着性を利用し、相互に付着させ、任意の
形状に予め成形し、加熱発泡させる方法により、任意形
状のガラス発泡成形体を得ることができる。
After granulation, to obtain a glass foam molded product, the granules can be placed uniformly at the bottom of a heat-resistant mold made of stainless steel or the like according to the density of the molded product, and heated. A glass foam molded article having an arbitrary shape can be obtained by making use of the adhesive properties of the granules to make them adhere to each other, pre-forming them into an arbitrary shape, and heating and foaming them.

このように本発明の製造方法によって得られた原料を上
述の通り加熱発泡させると、嵩比重0、17〜0.21
 g/cm’ 、減圧吸水率6Vo1%以下、最大気泡
径4s程度以下の外観上良好な無機ガラス発泡体を精度
良く得ることができる。
When the raw material obtained by the production method of the present invention is heated and foamed as described above, the bulk specific gravity is 0.17 to 0.21.
g/cm', a vacuum water absorption rate of 6Vo1% or less, and a maximum cell diameter of approximately 4s or less, an inorganic glass foam with good appearance can be obtained with high accuracy.

〔実 施 例〕〔Example〕

以下、本発明の製造方法を実施例により、詳細に説明す
る。
Hereinafter, the manufacturing method of the present invention will be explained in detail with reference to Examples.

本発明でいう平均粒径、嵩密度、減圧吸水率は下記の方
法によるものである。
The average particle diameter, bulk density, and vacuum water absorption rate as used in the present invention are determined by the following method.

a) 平均粒径 水を分散媒体として使用した自然および遠心沈陣法で光
透過測定方式で求めたメデイアン径のことである。
a) Average particle size This is the median diameter determined by a light transmission measurement method using natural and centrifugal precipitation methods using water as a dispersion medium.

b) 嵩密度 発泡体を一辺約5c1nの立方体形状に切り出し、その
重量(g)と寸法(縦、横、高さ)を測定し、次式によ
り算出する。
b) Cut the bulk density foam into a cube shape of about 5 c1n on each side, measure its weight (g) and dimensions (length, width, height), and calculate it using the following formula.

C) 減圧吸水率 嵩密度測定と同様に一辺約5 cmの立方体の試料の重
量と寸法を測定後、760値Hgの減圧下で、60分間
脱気した後、同減圧下で60分間浸水し吸水させる。そ
の後試料を取り出し表面付着水を拭き取った後、重量を
測定し、次式により算出する。
C) Vacuum Water Absorption Rate After measuring the weight and dimensions of a cubic sample of approximately 5 cm on a side in the same manner as bulk density measurement, it was degassed for 60 minutes under a vacuum of 760 Hg, and then immersed in water for 60 minutes under the same vacuum. Let it absorb water. Thereafter, the sample is taken out, the water adhering to the surface is wiped off, the weight is measured, and the weight is calculated using the following formula.

試料中の空間容積(am’) −〔縦(cm) X横(am)X高さ(cm))減圧吸
水率(Vo1%) ′  水の密度(g/cmg  X 100実施例1 第1図中、■に示すシャープな粒度分布を持つ黒曜石粉
末A(和田峠産、平均粒径7,2μ、粒径20μを越え
るものは4%)100重量部(3kg) 、CaC0t
 +、 5重量部、王水硼砂3.5重量部からなる粉体
を有効容積5I!、転勤回転型造粒機(日本アイリッヒ
製)で5分間混合したところ、粉体の温度は52℃であ
った。これに水10重足部にNaOH20重量部を溶か
した溶液を混合、反応させなから造粒物粒径が約2凱に
なるまで造粒した。造粒時間は6分30秒であった。造
粒物は200 ’Cで2時間乾燥した。
Space volume in sample (am') - [Length (cm) Obsidian powder A with the sharp particle size distribution shown in middle and ■ (from Wada Pass, average particle size 7.2μ, 4% for particles exceeding 20μ) 100 parts by weight (3kg), CaC0t
+, an effective volume of powder consisting of 5 parts by weight and 3.5 parts by weight of borax aqua regia is 5I! When mixed for 5 minutes using a transfer rotary granulator (manufactured by Nippon Eirich), the temperature of the powder was 52°C. This was mixed with a solution of 20 parts by weight of NaOH in 10 parts by weight of water, and granulated without reacting until the particle size of the granulated product became about 2 kats. Granulation time was 6 minutes and 30 seconds. The granules were dried at 200'C for 2 hours.

この粒をアルミ箔製容器に300g入れ、ガス炉にて7
40℃まで2時間で昇温し、保持10分間加熱した後、
充分に徐冷して取り出し、無機ガラス発泡体を得た。
Put 300g of this grain into an aluminum foil container and heat it in a gas furnace for 7
After raising the temperature to 40°C in 2 hours and holding it for 10 minutes,
It was sufficiently slowly cooled and taken out to obtain an inorganic glass foam.

この発泡体は嵩密度0.19 g/cm3、減圧吸水率
4.7 Vo1%であり気泡サイズは最大で3胴であり
、外観上良好であった。
This foam had a bulk density of 0.19 g/cm3, a vacuum water absorption rate of 4.7 Vo1%, a maximum cell size of 3, and had a good appearance.

比較例1 実施例1に用いた黒曜石粉末A100重量部(30kg
) 、CaC011,5重量部、王水硼砂3.5重量部
からなる粉体を有効容積75βの転勤回転型造粒機(日
本アイリンヒ製)で5分間混合した。この粉体を50℃
に加温した後、752の転勤回転型造粒機により水10
重量部にN a O1t20重量部を溶かした溶液と混
合、反応させなから造粒物粒径が約2mmになるまで造
粒した。
Comparative Example 1 100 parts by weight of obsidian powder A used in Example 1 (30 kg
), 5 parts by weight of CaC011, and 3.5 parts by weight of borax aqua regia were mixed for 5 minutes in a rotating rotary granulator (manufactured by Nippon Airinch) with an effective volume of 75β. This powder was heated at 50°C.
After heating to 10% water using a 752 rotating rotary granulator,
The mixture was mixed with a solution in which 20 parts by weight of NaO was dissolved in 1 part by weight, and granulated without reaction until the particle size of the granulated product became about 2 mm.

造粒時間は3分であった。造粒物は200“Cで2時間
乾燥した。
Granulation time was 3 minutes. The granules were dried at 200"C for 2 hours.

この粒を実施例1と同一条件で加熱発泡させ、無機ガラ
ス発泡体を得た。
The particles were heated and foamed under the same conditions as in Example 1 to obtain an inorganic glass foam.

この発泡体は嵩密度0.22、減圧吸水率は7.9Vo
1%であり、気泡サイズは最大で5柵のものがみられた
This foam has a bulk density of 0.22 and a vacuum water absorption rate of 7.9 Vo.
1%, and bubbles with a maximum size of 5 bars were observed.

実施例2 造粒を開始する時の粉体の温度が36℃である以外は実
施例1と同一の組成、同一の条件で造粒を行なった。造
粒時間は10分30秒であった。造粒物は200℃で2
時間乾燥した。
Example 2 Granulation was carried out using the same composition and under the same conditions as in Example 1, except that the temperature of the powder at the start of granulation was 36°C. The granulation time was 10 minutes and 30 seconds. The granules are heated to 200°C.
Dry for an hour.

この粒を実施例1と同一条件で加熱発泡させて得られた
無機ガラス発泡体の嵩密度、減圧吸水率および最大気泡
径を第2表に示す。
Table 2 shows the bulk density, vacuum water absorption rate, and maximum cell diameter of the inorganic glass foam obtained by heating and foaming these particles under the same conditions as in Example 1.

実施例3 造粒を開始する時の粉体の温度が38℃である以外は比
較例1と同一の組成、同一の条件で造粒を行なった。造
粒時間は6分であった。造粒物は200℃で2時間乾燥
した。
Example 3 Granulation was carried out using the same composition and under the same conditions as Comparative Example 1, except that the temperature of the powder at the start of granulation was 38°C. Granulation time was 6 minutes. The granules were dried at 200°C for 2 hours.

この粒を実施例1と同一条件で加熱発泡させて得られた
無機ガラス発泡体の嵩密度、減圧吸水率および最大気泡
径を第2表に示す。
Table 2 shows the bulk density, vacuum water absorption rate, and maximum cell diameter of the inorganic glass foam obtained by heating and foaming these particles under the same conditions as in Example 1.

実施例4 造粒を開始する時の粉体の温度が18“Cである以外は
比較例1と同一の組成、同一の条件で造粒を行なった。
Example 4 Granulation was carried out using the same composition and under the same conditions as Comparative Example 1, except that the temperature of the powder at the start of granulation was 18"C.

造粒時間は8分であった。造粒物は200℃で2時間乾
燥した。
Granulation time was 8 minutes. The granules were dried at 200°C for 2 hours.

この粒を実施例1と同一条件で加熱発泡させて得られた
無機ガラス発泡体の嵩密度、減圧吸水率および最大気泡
径を第2表に示す。
Table 2 shows the bulk density, vacuum water absorption rate, and maximum cell diameter of the inorganic glass foam obtained by heating and foaming these particles under the same conditions as in Example 1.

実施例5 実施例1で得られた造粒物を乾燥することなく、造粒物
自体の粘着力により6 cm X 6 cra X 3
cmの六面体に成形したものを実施例1と同一条件で加
熱発泡させた。
Example 5 Without drying the granules obtained in Example 1, the size of the granules was 6 cm x 6 cra x 3 due to the adhesive strength of the granules themselves.
The hexahedron shaped into a cm-sized hexahedron was heated and foamed under the same conditions as in Example 1.

得られた無機ガラス発泡体の嵩密度は0.18であり、
減圧吸水率は5.7Vo1%であった。気泡サイズは最
大で3 mmであった。
The bulk density of the obtained inorganic glass foam was 0.18,
The vacuum water absorption rate was 5.7 Vo1%. The maximum bubble size was 3 mm.

実施例6 実施例1に用いた黒曜石粉末A100重量部(3kg)
 、CaC0,1,0重量部からなる粉体を実施例1と
同一の造粒機で5分間混合したところ、粉体の温度は4
7℃であった。これに水12重量部にNap)122.
5重量部を?容かした?容ン夜をン昆合、反応させなか
ら造粒物粒径が約2mmになるまで造粒した。造粒時間
は6分であった。造粒物は200“Cで2時間乾燥した
Example 6 Obsidian powder A 100 parts by weight (3 kg) used in Example 1
When powder consisting of 0.1.0 parts by weight of CaC was mixed for 5 minutes in the same granulator as in Example 1, the temperature of the powder was 4.
The temperature was 7°C. To this, add 12 parts by weight of water (Nap) 122.
5 parts by weight? Did you tolerate it? The mixture was mixed and reacted until the granules had a particle size of about 2 mm. Granulation time was 6 minutes. The granules were dried at 200"C for 2 hours.

この粒を実施例1と同一条件で加熱発泡させ、無機ガラ
ス発泡体を得た。
The particles were heated and foamed under the same conditions as in Example 1 to obtain an inorganic glass foam.

この発泡体は嵩密度0.17、減圧吸水率は6.0Vo
1%であり、気泡サイズは最大で4Mであった。
This foam has a bulk density of 0.17 and a vacuum water absorption rate of 6.0 Vo.
1%, and the maximum bubble size was 4M.

実施例7 実施例1に用いた黒曜石粉末A100重量部(30kg
) 、CaC0,、2,5重量部、王水硼砂2.0重量
部からなる粉体を比較例1と同一の造粒機で5分間混合
したところ、粉体の温度は49℃であった。この粉体を
室温放置により30℃まで冷却した後、水10重量部に
Nap)118重量部を溶かした溶液を混合、反応させ
なから造粒物粒径が約2 +mAになるまで造粒した。
Example 7 100 parts by weight of obsidian powder A used in Example 1 (30 kg
), 2.5 parts by weight of CaCO, and 2.0 parts by weight of borax aqua regia were mixed for 5 minutes in the same granulator as in Comparative Example 1, and the temperature of the powder was 49°C. . After cooling this powder to 30°C by leaving it at room temperature, a solution of 118 parts by weight of Nap) dissolved in 10 parts by weight of water was mixed and granulated without reaction until the particle size of the granulated product became approximately 2 + mA. .

造粒時間は7分であった。造粒物は200 ’Cで2時
間乾燥した。
Granulation time was 7 minutes. The granules were dried at 200'C for 2 hours.

この粒を実施例1と同一条件で加熱発泡させ、無機ガラ
ス発泡体を得た。
The particles were heated and foamed under the same conditions as in Example 1 to obtain an inorganic glass foam.

この発泡体は嵩密度0,19、減圧吸水率は5.0Vo
1%であり、気泡サイズは最大で3胴であった。
This foam has a bulk density of 0.19 and a vacuum water absorption rate of 5.0 Vo.
1%, and the maximum bubble size was 3 bubbles.

比較例2,4 第1表に示す黒曜石粉末B(第1図中、■に示す粒度分
布を用い、第2表に示すとおり、造粒を開始する時の粉
体の温度を変更した以外は実施例1と同一の組成、同一
の条件で造粒を行なった。造粒時間を第2表に示す。造
粒物は、200℃で2時間乾燥した。
Comparative Examples 2 and 4 Obsidian powder B shown in Table 1 (the particle size distribution shown in Granulation was performed with the same composition and under the same conditions as in Example 1. The granulation times are shown in Table 2. The granules were dried at 200° C. for 2 hours.

この粒を実施例1と同一条件で加熱発泡させて得られた
無機ガラス発泡体の嵩密度、減圧吸水率および最大気泡
径を第2表に示す。
Table 2 shows the bulk density, vacuum water absorption rate, and maximum cell diameter of the inorganic glass foam obtained by heating and foaming these particles under the same conditions as in Example 1.

比較例3,5 黒曜石粉末Bを用い、第2表に示すとおり、造粒を開始
する時の粉体の温度を変更した以外は比較例1と同一の
組成、同一の条件で造粒を行なった。造粒時間を第2表
に示す。造粒物は200℃で2時間乾燥した。
Comparative Examples 3 and 5 Obsidian powder B was used and granulation was performed under the same composition and conditions as Comparative Example 1, except that the temperature of the powder at the time of starting granulation was changed, as shown in Table 2. Ta. Granulation times are shown in Table 2. The granules were dried at 200°C for 2 hours.

この粒を実施例1と同一条件で加熱発泡させて得られた
無機ガラス発泡体の嵩密度、減圧吸水率および最大気泡
径を第2表に示す。
Table 2 shows the bulk density, vacuum water absorption rate, and maximum cell diameter of the inorganic glass foam obtained by heating and foaming these particles under the same conditions as in Example 1.

比較例6 第1表に示す黒曜石粉末C(第1図中、■に示す粒度分
布)を用い、第2表に示すとおり、造粒を開始する時の
粉体の温度を変更した以外は実施例1と同一の組成、同
一の条件で造粒を行なった。造粒時間は3分であった。
Comparative Example 6 Obsidian powder C shown in Table 1 (particle size distribution shown by ■ in Figure 1) was used, except that the temperature of the powder at the start of granulation was changed as shown in Table 2. Granulation was carried out using the same composition and under the same conditions as in Example 1. Granulation time was 3 minutes.

造粒物は200℃で2時間乾燥した。The granules were dried at 200°C for 2 hours.

この粒を実施例1と同一条件で加熱発泡させて得られた
glガラス発泡体の嵩密度は0.37と非常に高かった
The bulk density of the GL glass foam obtained by heating and foaming these particles under the same conditions as in Example 1 was as high as 0.37.

比較例7 第1表に示す黒曜石粉末D(第1図中、■に示すブロー
ドな粒度分布)を用い、造粒を開始する時の粉体の温度
を36℃とした以外は実施例1と同一の組成、同一の条
件で造粒を試みたが、造粒開始後30秒で直径10〜2
0nunの粗大な粒となり1.造粒物の粒径の制御は困
難であった。
Comparative Example 7 The same procedure as Example 1 was used except that obsidian powder D shown in Table 1 (broad particle size distribution shown by ■ in Figure 1) was used and the temperature of the powder at the time of starting granulation was 36°C. Granulation was attempted with the same composition and under the same conditions, but within 30 seconds after the start of granulation, the diameter was 10-2.
0nun coarse grains 1. It was difficult to control the particle size of the granules.

比較例8 第1表に示す黒曜石粉末A100重量部、CaC0z 
1.5重量部、三水硼砂3.5重量部からなる混合物と
水35重量部にNap)120重量部を溶かした溶液と
を万能撹拌機により混合した。混合物はペースト状とな
り、バット上に移し、厚さ約2鴫とじ200℃で5時間
乾燥した。
Comparative Example 8 Obsidian powder A100 parts by weight shown in Table 1, CaC0z
A mixture consisting of 1.5 parts by weight of borax trihydrate and 3.5 parts by weight of borax trihydrate was mixed with a solution of 120 parts by weight of Nap) dissolved in 35 parts by weight of water using a universal stirrer. The mixture became a paste, which was transferred onto a vat and dried at 200° C. for 5 hours to a thickness of approximately 2 mm.

得られた固化板状体を細かく粉砕して型枠に入れて実施
例1と同一条件で加熱発泡させたところ、気泡が著しく
不均一であり、気泡サイズは最大6皿まであり外観は粗
悪であった。
When the obtained solidified plate-like material was finely ground, placed in a mold, and heated and foamed under the same conditions as in Example 1, the bubbles were extremely uneven, the bubble size was up to 6 plates, and the appearance was poor. there were.

(発明の効果〕 本発明の方法を用いることにより、天然ガラス質鉱物と
アルカリ金属水酸化物の均一分散が充分に行なわれ、得
られた造粒物の均一性および反応性が高くなり加熱発泡
後の物性を安定化させる。
(Effects of the invention) By using the method of the present invention, natural glassy minerals and alkali metal hydroxides are sufficiently uniformly dispersed, and the resulting granules have high uniformity and reactivity, resulting in heat foaming. Stabilizes subsequent physical properties.

また、ペースト、スラリー状として得た方法に比べ、固
化一体止したものを粉砕することなく、そのままの状態
で加熱発泡させ気泡形状の均一な発泡体を得ることがで
きる。また、本発明に従えば、大量の造粒を行なっても
、得られる造粒物の性能は低下することがなく、得られ
た造粒物を所定の形にして加熱発泡させて得られた無機
ガラス発泡体は、嵩密度や減圧吸水率のバラツキが少な
く、かつ、嵩密度や減圧吸水率の値が小さなものが得ら
れる。
In addition, compared to the method of obtaining a paste or slurry, it is possible to heat and foam a solidified solid product without pulverizing it to obtain a foam with a uniform cell shape. Further, according to the present invention, even if a large amount of granulation is performed, the performance of the obtained granules does not deteriorate, and the obtained granules are heated and foamed into a predetermined shape. The inorganic glass foam can be obtained with little variation in bulk density and vacuum water absorption, and with small values of bulk density and vacuum water absorption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例および比較例に用いた黒曜石粉末の粒度
分布を示すグラフである。なお横軸は対数表示である。 第  1 表 第  2  表 *粉体の温度は造粒を開始する時の温度である。
FIG. 1 is a graph showing the particle size distribution of obsidian powder used in Examples and Comparative Examples. Note that the horizontal axis is in logarithmic representation. Table 1 Table 2 *The temperature of the powder is the temperature at the start of granulation.

Claims (1)

【特許請求の範囲】[Claims] 平均粒径が5μないし12μであり、なおかつ粒径20
μを越えるものが5%以下である天然ガラス質鉱物10
0重量部に対して少なくとも発泡剤0.1〜5.0重量
部含有してなる粉体を予め40℃以下としておき、アル
カリ金属水酸化物15〜25重量部、水7〜15重量部
からなる溶液と混合、反応させながら造粒することを特
徴とする無機ガラス発泡体用原料の製造法。
The average particle size is 5μ to 12μ, and the particle size is 20μ.
10 natural glassy minerals with less than 5% of those exceeding μ
Powder containing at least 0.1 to 5.0 parts by weight of a blowing agent per 0 parts by weight is preheated to 40°C or below, and mixed with 15 to 25 parts by weight of alkali metal hydroxide and 7 to 15 parts by weight of water. A method for producing a raw material for an inorganic glass foam, characterized by granulating it while mixing and reacting with a solution.
JP24269388A 1988-09-28 1988-09-28 Production of raw material for inorganic glass foam Pending JPH0292843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24269388A JPH0292843A (en) 1988-09-28 1988-09-28 Production of raw material for inorganic glass foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24269388A JPH0292843A (en) 1988-09-28 1988-09-28 Production of raw material for inorganic glass foam

Publications (1)

Publication Number Publication Date
JPH0292843A true JPH0292843A (en) 1990-04-03

Family

ID=17092837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24269388A Pending JPH0292843A (en) 1988-09-28 1988-09-28 Production of raw material for inorganic glass foam

Country Status (1)

Country Link
JP (1) JPH0292843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061512A1 (en) * 1999-04-12 2000-10-19 Quarzwerke Gmbh Method for producing homogeneous foamed glass granules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061512A1 (en) * 1999-04-12 2000-10-19 Quarzwerke Gmbh Method for producing homogeneous foamed glass granules

Similar Documents

Publication Publication Date Title
JP2996354B2 (en) Hollow borosilicate microspheres and manufacturing method
US2993871A (en) Foamable silicone-glycol copolymer novolac compositions, method of preparing same and articles produced therefrom
US4332907A (en) Granulated foamed glass and process for the production thereof
JPH0790077A (en) Compressed high-molecular-weight polyamide particle pellet
US4563432A (en) Production of porous sintered ceramic material
US5643347A (en) Process for manufacture of silica granules
JP3413873B2 (en) Synthetic quartz glass powder
US5246654A (en) Intermediate composition and process for manufacturing intermediates for lightweight inorganic particles
JPH0292843A (en) Production of raw material for inorganic glass foam
JPH0292842A (en) Production of granulated substance for inorganic glass form
JPH08157210A (en) Production of lithium oxide particles
JP3013297B2 (en) Method for producing lithium titanate fine sintered particles
RU2608095C1 (en) Batch composition and method of producing foamed glass
EA000171B1 (en) Production of substance containing boric oxide and method therefor
RU2009133384A (en) METHOD FOR PRODUCING GRANULATED PENOSILICATE (PENOSTEK)
RU2167112C1 (en) Method of preparing foam glass
JP3634717B2 (en) Manufacturing method of lightweight foam glass tile
RU2255058C1 (en) Method of preparing blend for fabricating glass foam
JPS60235743A (en) Preparation of foamed inorganic glass
JP3895831B2 (en) Method for producing a foamable ceramic material
JPH0138042B2 (en)
JPH02120255A (en) Production of foamed inorganic glass
RU2225373C1 (en) Method of manufacturing foamed silicate blocks
JPS61132538A (en) Production of foamed glass particle
JP2007331979A (en) Method of manufacturing lithium titanate fine sintered compact particle