JPH0291937A - Ashing device and ashing using same - Google Patents

Ashing device and ashing using same

Info

Publication number
JPH0291937A
JPH0291937A JP24520788A JP24520788A JPH0291937A JP H0291937 A JPH0291937 A JP H0291937A JP 24520788 A JP24520788 A JP 24520788A JP 24520788 A JP24520788 A JP 24520788A JP H0291937 A JPH0291937 A JP H0291937A
Authority
JP
Japan
Prior art keywords
gas
plasma
ashing
substrate
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24520788A
Other languages
Japanese (ja)
Other versions
JP2718092B2 (en
Inventor
Keisuke Shinagawa
啓介 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63245207A priority Critical patent/JP2718092B2/en
Publication of JPH0291937A publication Critical patent/JPH0291937A/en
Application granted granted Critical
Publication of JP2718092B2 publication Critical patent/JP2718092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable ashing treatment accompanied by little contamination of heavy metal without greatly lowering the ashing speed in a low temperature range by mixing gas which contains O atoms with an H2 gas plasma, and using reacted gas for ashing treatment. CONSTITUTION:H2 gas which is introduced form the gas introduction port 5 of a plasma generating part 1 is made into plasma in a plasma generating chamber 7 by the alternating electric field of microwaves which are introduced from a wave guide tube 4. H2 gas plasma, when passing through a shower plate 8 and flowing down inside a plasma transportation part 2, mixes and reacts with NO2 gas which is introduced form a gas introduction port 21 and produced OH group. H2 gas plasma which contains OH group reaches the top of a substrate 9, and reacts with a resist film and ashes it. The plasma after ashing is exhausted from a gas exhaust port 10.

Description

【発明の詳細な説明】 〔(既  要〕 半導体装置の製造に用いられるレジスト膜を灰化する装
置及びそれを利用した灰化方法に関し、200℃以下の
低温域における灰化速度の低下を抑えることによって低
温域での灰化処理を迅速に行うことを可能とし、以てレ
ジスト膜の沃化による重金属汚染を防止するとともに生
産性の向上をはかることを目的とし、 プラズマ発生部とプラズマ輸送部と加熱支持体とを有し
、前記加熱支持体に支持、加熱された被処理基板の沃化
処理を行う灰化装置であって、前記プラズマ輸送部にガ
ス導入口を設けて成ることを特徴とする灰化装置を用い
、前記プラズマ発生部でH2ガスプラズマを発生させ、
前記プラズマ輸送部に設けたガス導入口から0原子を含
むガスを導入して被処理基板の灰化処理を行うように構
成する。
[Detailed Description of the Invention] [(Already required)] Regarding an apparatus for ashing a resist film used in the manufacture of semiconductor devices and an ashing method using the same, a reduction in the ashing rate in a low temperature range of 200°C or less is suppressed. This makes it possible to quickly perform ashing treatment at low temperatures, thereby preventing heavy metal contamination due to iodine in the resist film and improving productivity. and a heating support, the ashing apparatus performs an iodizing treatment on a substrate to be processed supported and heated by the heating support, characterized in that the plasma transport section is provided with a gas inlet. Generate H2 gas plasma in the plasma generation section using an ashing device,
The plasma transport unit is configured to incinerate a substrate by introducing a gas containing zero atoms from a gas inlet provided in the plasma transport section.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造に用いられるレジスト膜等の
灰化装置及びそれを使用した沃化方法に関する。
The present invention relates to an ashing device for resist films, etc. used in the manufacture of semiconductor devices, and an iodizing method using the same.

〔従来の技術〕[Conventional technology]

第2図は酸素ガスプラズマを用いた従来の灰化装置とそ
れを用いた灰化方法を説明するための図である。同図に
おいて、1)はプラズマ発生部、12はプラズマ輸送部
、13は加熱支持体、20はガス排気口、19は被処理
基板であって、不要となったレジスト膜等が被着してい
る。また、プラズマ発生部1)は、導波管14、石英窓
16、ガス導入口15、プラズマ生成室17、シャワー
板18より構成されている。
FIG. 2 is a diagram for explaining a conventional ashing device using oxygen gas plasma and an ashing method using the same. In the figure, 1) is a plasma generation part, 12 is a plasma transport part, 13 is a heating support, 20 is a gas exhaust port, and 19 is a substrate to be processed, on which unnecessary resist films, etc. are deposited. There is. Further, the plasma generation section 1) is composed of a waveguide 14, a quartz window 16, a gas inlet 15, a plasma generation chamber 17, and a shower plate 18.

同図において、ガス導入口15から導入された02ガス
は導波管14より導かれたマイクロ(μ)波の交番電界
によってプラズマ生成室17においてプラズマ化される
。発生した02ガスプラズマはシャワー板18を通過し
てプラズマ輸送部12内をダウンフローし、被処理基板
19上へ到達する。そして、02ガスプラズマに含まれ
ている原子状酸素(0)が被処理基板19に被着してい
るレジスト膜と反応して該レジスト膜を灰化せしめる。
In the figure, 02 gas introduced from a gas inlet 15 is turned into plasma in a plasma generation chamber 17 by an alternating electric field of microwave (μ) waves guided from a waveguide 14. The generated 02 gas plasma passes through the shower plate 18, flows down inside the plasma transport section 12, and reaches the substrate 19 to be processed. Then, the atomic oxygen (0) contained in the 02 gas plasma reacts with the resist film adhering to the substrate 19 to be processed, thereby ashing the resist film.

反応後の02ガスプラズマはガス排気口20から排気さ
れる。また、上記沃化処理中、被処理基板19は加熱支
持体13により所定の温度に加熱される。
The 02 gas plasma after the reaction is exhausted from the gas exhaust port 20. Further, during the iodizing treatment, the substrate 19 to be processed is heated to a predetermined temperature by the heating support 13.

第3図の直&?I30は上記灰化方法による灰化速度の
温度依存性を示したものであり、μ波出力を1.5 K
W、灰化装置内の圧力を0.8 Torr、  02流
士をI SLM  とし、被処理基板19上のレジスト
を0FPR−800(東京応化製)としたときの特性を
示している。同図から明らかなように、沃化速度は被処
理基板19の温度に強く依存しており、灰化速度を大き
くするためには被処理基板19の温度を高くする必要が
ある。たとえば、温度180℃のどき約450OA/w
inであった灰化速度は温度220℃で約1500OA
/+1linにまで増加する。
Figure 3 Direct &? I30 shows the temperature dependence of the ashing rate by the above ashing method, and the μ-wave output is set to 1.5 K.
The characteristics are shown when the pressure in the ashing device is 0.8 Torr, the 02 flow rate is ISLM, and the resist on the substrate 19 to be processed is 0FPR-800 (manufactured by Tokyo Ohka). As is clear from the figure, the iodization rate strongly depends on the temperature of the substrate 19 to be processed, and in order to increase the ashing rate, it is necessary to increase the temperature of the substrate 19 to be processed. For example, approximately 450OA/w at a temperature of 180℃
The ashing rate was approximately 1500OA at a temperature of 220℃.
/+1lin.

以上説明した02ダウンフローアツシング(灰化)の他
にオゾンアッシングも知られているが、温度180℃以
下では02ダウンフローアツシングと同様に灰化速度が
低下する。また、02ガスに少量のハロゲンガスを混合
したガスを用いたダウンフローアッシングでは180℃
以下の低温域においても灰化速度の顕著な低下はないが
、被処理基板をオーバーエツチングするためLSI等の
超微細加工には適していない。
In addition to the 02 downflow ashing (ashing) described above, ozone ashing is also known, but at temperatures below 180°C, the ashing rate decreases like the 02 downflow ashing. In addition, in downflow ashing using a mixture of 02 gas and a small amount of halogen gas, the temperature is 180℃.
Although there is no significant decrease in the ashing rate even in the following low temperature range, the substrate to be processed is over-etched, so it is not suitable for ultra-fine processing of LSI and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体製造工程においては、生産性等の観点から灰化処
理時間をできるだけ短縮することが望ましい。そのため
通常は灰化速度を大きくすることのできる200〜25
0℃に半導体ウェーハ等の被処理基板を加熱して灰化処
理を行う場合が多い。しかし半導体ウェーへの温度を2
00℃以上にすると沃化処理されたレジスト膜に含まれ
ている重金属たとえば鉄、ニッケル、アルミニウム、銅
等が半導体ウェーハを汚染して結晶欠陥を誘発したり、
あるいはデバイスのリーク電流を増加させる等の弊害を
ひきおこし、製造歩留りを低下させる等の問題が生ずる
。本発明は200℃以下の低温域における灰化速度の低
下を抑えることによって低温域での灰化処理を迅速に行
うことを可能とし、以てレジスト膜の沃化による重金属
汚染を防止するとともに生産性の向上をはかることを目
的とする。
In the semiconductor manufacturing process, it is desirable to shorten the ashing treatment time as much as possible from the viewpoint of productivity and the like. Therefore, it is usually 200 to 25, which can increase the ashing rate.
Ashing treatment is often performed by heating a substrate to be processed, such as a semiconductor wafer, to 0°C. However, the temperature to the semiconductor wafer is
If the temperature exceeds 00°C, heavy metals such as iron, nickel, aluminum, copper, etc. contained in the iodized resist film may contaminate the semiconductor wafer and induce crystal defects.
Alternatively, problems such as increased leakage current of the device may occur, resulting in lower manufacturing yield. The present invention makes it possible to perform the ashing process quickly in the low temperature range by suppressing the decrease in the ashing rate in the low temperature range of 200°C or less, thereby preventing heavy metal contamination due to iodization of the resist film and improving productivity. The purpose is to improve sexuality.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、プラズマ発生部とプラズマ輸送部と加熱支
持体とを有し、前記加熱支持体に支持、加熱された被処
理基板の灰化処理を行う灰化装置であって、前記プラズ
マ輸送部にガス導入口を設けて成り、前記プラズマ発生
部で発生したプラズマが前記プラズマ輸送部を通過する
際、前記ガス導入口から導入されたガスと混合されて前
記被処理基板に到達するようにしたことを特徴とする灰
化装置を用い、前記プラズマ発生部でH2ガスプラズマ
を発生させ、前記プラズマ輸送部に設けたガス導入口か
ら0原子を含むガスを導入して被処理基板の灰化処理を
行うことを特徴とする灰化方法によって解決される。
The above-mentioned problem is an ashing apparatus that includes a plasma generation section, a plasma transport section, and a heating support, and performs an ashing process on a substrate to be processed that is supported and heated by the heating support, wherein the plasma transport section A gas inlet is provided in the plasma generator, and when the plasma generated in the plasma generation section passes through the plasma transport section, it is mixed with the gas introduced from the gas inlet and reaches the substrate to be processed. Using an ashing apparatus characterized by the above, H2 gas plasma is generated in the plasma generation section, and a gas containing zero atoms is introduced from a gas inlet provided in the plasma transport section to ash the substrate to be processed. This problem is solved by an ashing method characterized by performing the following steps.

〔作 用〕[For production]

本発明によれば、プラズマ発生部において発生したH2
ガスプラズマはプラズマ輸送部を通って被処理基板上へ
到達する途中で、プラズマ輸送部に設けられたガス導入
口から導入された0原子を含むガスと混合、反応して0
1冒基を生ずる。そのため被処理基板上のレジスト膜等
と0■基が還元反応を起ごし、従来の原子状酸素との酸
化反応に比べて低温域における灰化速度の低下を抑える
ことが可能となる。
According to the present invention, H2 generated in the plasma generation section
On the way to the substrate to be processed through the plasma transport section, the gas plasma mixes and reacts with the gas containing zero atoms introduced from the gas inlet provided in the plasma transport section, resulting in zero atoms.
1 produces a radical. Therefore, a reduction reaction occurs between the resist film and the like on the substrate to be processed and the 0■ group, making it possible to suppress a decrease in the ashing rate in a low temperature range compared to the conventional oxidation reaction with atomic oxygen.

〔実施例〕〔Example〕

第1図は本発明の詳細な説明するための灰化装置を示し
ている。同図において、1はプラズマ発生部、2はプラ
ズマ輸送部、3は加熱支持体、10はガス排気口、9は
被処理基板であって、不要となったレジスト膜等が被着
している。また、プラズマ発生部lは、導波管4、ガス
導入口5、石英窓6、プラズマ生成室7、シャワー板8
より構成されており、プラズマ輸送部2の側壁には、ガ
ス導入口21が設けられている。
FIG. 1 shows an ashing device for explaining the invention in detail. In the figure, 1 is a plasma generation part, 2 is a plasma transport part, 3 is a heating support, 10 is a gas exhaust port, and 9 is a substrate to be processed, on which an unnecessary resist film, etc. is adhered. . Further, the plasma generation section l includes a waveguide 4, a gas inlet 5, a quartz window 6, a plasma generation chamber 7, and a shower plate 8.
A gas inlet 21 is provided on the side wall of the plasma transport section 2.

同図において、プラズマ発生部lのガス導入口5から導
入されたH2ガスは導波管4より導かれたμ波の交番電
界によってプラズマ生成室7においてプラズマ化される
。発生した1)2ガスプラズマはシャワー板8を通過し
てプラズマ輸送部2内をダウンフローする際、該プラズ
マ輸送部2の側壁に設けられたガス導入口21から導入
されたNO2ガスと混合、反応して01)基を生ずる。
In the figure, H2 gas introduced from the gas inlet 5 of the plasma generation section 1 is turned into plasma in the plasma generation chamber 7 by the alternating electric field of the μ waves guided from the waveguide 4. When the generated 1)2 gas plasma passes through the shower plate 8 and flows down inside the plasma transport section 2, it mixes with the NO2 gas introduced from the gas inlet 21 provided on the side wall of the plasma transport section 2; Reacts to produce the 01) group.

そして、該01)基を含んだH2ガスプラズマが被処理
基板9上へ到達し、レジスト膜と反応してこれを灰化せ
しめる。反応後のプラズマはガス排気口10から排気さ
れる。また、上記灰化処理中、被処理基板9は加熱支持
体3により所定の温度に加熱される。
Then, the H2 gas plasma containing the 01) group reaches the substrate 9 to be processed, reacts with the resist film, and incinerates it. The plasma after the reaction is exhausted from the gas exhaust port 10. Further, during the ashing process, the substrate 9 to be processed is heated to a predetermined temperature by the heating support 3.

第3図に示した直線40は以上の灰化法によって得られ
た灰化速度の温度依存性を示したものであり、Arガス
で30%に希釈したH2ガス600 SCCMをガス導
入口5から導入し、導波管4から周波数2.45±0.
1 GHz 、電力1.5に−のμ波を導入し、さらに
ガス導入口21からNO2ガス600 SCCMを導入
したときの特性を示している。酸素ダウンフローを用い
た従来の灰化装置及びそれを使用した灰化法によって得
られた直線30で表される特性と比較すれば200℃以
下の低温域における灰化速度が改善されていることが明
らかである。
The straight line 40 shown in FIG. 3 shows the temperature dependence of the ashing rate obtained by the above ashing method. from the waveguide 4 at a frequency of 2.45±0.
The characteristics are shown when − μ-waves are introduced at 1 GHz and power is 1.5, and 600 SCCM of NO2 gas is further introduced from the gas inlet 21. Compared to the characteristics expressed by straight line 30 obtained by a conventional ashing device using oxygen downflow and an ashing method using the same, the ashing rate in the low temperature range of 200°C or less is improved. is clear.

例えば、被処理基板9の温度が200℃のとき、本発明
に係る灰化Vt置を用いた場合の灰化速度は約1)00
0 A/winであり、従来の酸素ダウンフローアッシ
ングの灰化速度約1500OA/sinに比べて劣って
いるが、温度160℃のときには本発明の灰化速度は約
430OA/winであり、従来例の約250OA/m
inに比べて約1.7倍となっている。
For example, when the temperature of the substrate 9 to be processed is 200° C., the ashing rate when using the ashing Vt device according to the present invention is approximately 1)00
0 A/win, which is inferior to the ashing rate of about 1500 OA/sin of conventional oxygen downflow ashing, but when the temperature is 160°C, the ashing rate of the present invention is about 430 OA/win, which is lower than the conventional example. Approximately 250OA/m
This is approximately 1.7 times as large as in.

なお、ガス導入環21から導入するガスはNO2ガスに
限られるものではなく、0原子をその構成成分として含
むものであれば足りる。また、H2ガスをArガスで希
釈したのは、引火爆発等の危険防止のためであり、本発
明の効果の上からは純H2ガスを用いた場合と差異はな
い。
Note that the gas introduced from the gas introduction ring 21 is not limited to NO2 gas, and any gas containing 0 atoms as a constituent is sufficient. Further, the reason why H2 gas is diluted with Ar gas is to prevent dangers such as ignition and explosion, and the effect of the present invention is the same as when pure H2 gas is used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、H2ガスプラズマ
にO原子を含むガスを混合し、反応せしめたガスを用い
ることにより、重金属汚染の少ない200℃以下の低温
域において灰化速度を大きく低下させることなく被処理
基板を灰化処理することが可能となり、半導体デバイス
の生産性の向上、品質の向上を図ることができる。
As explained above, according to the present invention, the ashing rate is greatly reduced in a low temperature range of 200°C or less where heavy metal contamination is less by mixing a gas containing O atoms with H2 gas plasma and using a reacted gas. It becomes possible to perform ashing treatment on the substrate to be processed without causing any damage, and it is possible to improve the productivity and quality of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す模式断面図、第2図は
従来例を示す模式断面図、 第3図は灰化速度の温度特性を示す図、である。 図において、 1)1)はプラズマ発生部、 2.12はプラズマ輸送部、 3.13は加熱支持体、 4.14はマイクロ波導波管、 5.15はガス導入口、 6.16は石英窓、 7.17はプラズマ生成室、 8.18はシャワー牟反、 9.19は被処理基板、 10.20は排気口、 21はガス導入口、 30は従来例に係る沃化速度の温度特性、40は本発明
に係る沃化速度の温度特性、である。 堕を泉イダ1[;イ本る刀紀イ乙*’Lのkm牛ffi
fmコア  2  図 オラたl!目の喫3シ伊]8示ず屑化誠Iの困1べ請目
引25  /  図 蕃扱過度 (’C) カeイ乙戯のう里度キ呼・ヒL乏デ、ご「E輩 3 口
FIG. 1 is a schematic sectional view showing an embodiment of the present invention, FIG. 2 is a schematic sectional view showing a conventional example, and FIG. 3 is a diagram showing temperature characteristics of ashing rate. In the figure, 1) 1) is a plasma generation part, 2.12 is a plasma transport part, 3.13 is a heating support, 4.14 is a microwave waveguide, 5.15 is a gas inlet, and 6.16 is quartz. window, 7.17 is a plasma generation chamber, 8.18 is a shower chamber, 9.19 is a substrate to be processed, 10.20 is an exhaust port, 21 is a gas inlet port, 30 is the temperature of the iodization rate according to the conventional example Characteristic 40 is the temperature characteristic of iodization rate according to the present invention. Fallen wo Izumi Ida 1
fm core 2 diagram! 25 / Excessive treatment of the enemy ('C) E-san 3 mouths

Claims (2)

【特許請求の範囲】[Claims] (1)プラズマ発生部(1)とプラズマ輸送部(2)と
加熱支持体(3)とを有し、前記加熱支持体(3)に支
持、加熱された被処理基板(9)の灰化処理を行う灰化
装置であって、 前記プラズマ輸送部(2)にガス導入口(21)を設け
て成り、前記プラズマ発生部(1)で発生したプラズマ
が前記プラズマ輸送部(2)を通過する際、前記ガス導
入口(21)から導入されたガスと混合されて前記被処
理基板(9)に到達するようにしたことを特徴とする灰
化装置。
(1) Ashing of a substrate to be processed (9), which has a plasma generation section (1), a plasma transport section (2), and a heating support (3), and is supported and heated by the heating support (3). The ashing apparatus performs the treatment, and the plasma transport section (2) is provided with a gas inlet (21), and the plasma generated in the plasma generation section (1) passes through the plasma transport section (2). The ashing apparatus is characterized in that when the ashing process is performed, the ashing device mixes with the gas introduced from the gas inlet (21) and reaches the substrate to be processed (9).
(2)請求項(1)記載の灰化装置における前記プラズ
マ発生部(1)でH_2ガスプラズマを発生させ、前記
プラズマ輸送部(2)に設けたガス導入口(21)から
O原子を含むガスを導入して被処理基板(9)の灰化処
理を行うことを特徴とする灰化方法。
(2) In the ashing apparatus according to claim (1), H_2 gas plasma is generated in the plasma generation section (1), and contains O atoms from the gas introduction port (21) provided in the plasma transport section (2). An ashing method characterized in that a gas is introduced to ash a substrate to be processed (9).
JP63245207A 1988-09-29 1988-09-29 Ashing apparatus and method for manufacturing semiconductor device Expired - Fee Related JP2718092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245207A JP2718092B2 (en) 1988-09-29 1988-09-29 Ashing apparatus and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245207A JP2718092B2 (en) 1988-09-29 1988-09-29 Ashing apparatus and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0291937A true JPH0291937A (en) 1990-03-30
JP2718092B2 JP2718092B2 (en) 1998-02-25

Family

ID=17130219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245207A Expired - Fee Related JP2718092B2 (en) 1988-09-29 1988-09-29 Ashing apparatus and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2718092B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083802A (en) * 2000-09-07 2002-03-22 Yac Co Ltd Dry processing device such as etching device and ashing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587438A (en) * 1978-12-25 1980-07-02 Fujitsu Ltd Manufacture of semiconductor device
JPS63120424A (en) * 1986-11-10 1988-05-24 Semiconductor Energy Lab Co Ltd Optical treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587438A (en) * 1978-12-25 1980-07-02 Fujitsu Ltd Manufacture of semiconductor device
JPS63120424A (en) * 1986-11-10 1988-05-24 Semiconductor Energy Lab Co Ltd Optical treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083802A (en) * 2000-09-07 2002-03-22 Yac Co Ltd Dry processing device such as etching device and ashing device

Also Published As

Publication number Publication date
JP2718092B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
KR100837707B1 (en) Method for producing material of electronic device, method for plaza processing and system for forming nitrous oxide film
US10017853B2 (en) Processing method of silicon nitride film and forming method of silicon nitride film
US20060110934A1 (en) Method and apparatus for forming insulating film
KR101028625B1 (en) Method for nitriding substrate and method for forming insulating film
WO2006106666A1 (en) Method for producing silicon oxide film, control program thereof, recording medium and plasma processing apparatus
JPWO2008026531A1 (en) Plasma oxidation method
TW201203365A (en) Silicon oxide film forming method, and plasma oxidation apparatus
TW200836262A (en) Method for forming insulating film and method for manufacturing semiconductor device
JP2005150637A (en) Treatment method and apparatus
JP2010087187A (en) Silicon oxide film and method of forming the same, computer-readable storage, and plasma cvd apparatus
JP4280603B2 (en) Processing method
JPH07169754A (en) Reduction of etching damage of semiconductor device
JPH0291937A (en) Ashing device and ashing using same
TW201109341A (en) Starting material for use in forming silicone oxide film and method for forming silicone oxide film using same
JPS61221376A (en) Formation of thin metallic film
JP2005135801A5 (en)
JPH0291936A (en) Ashing device and ashing using same
JP2011249405A (en) Plasma cleaning method of dry etching device
JPH07153595A (en) Existent magnetic field inductive coupling plasma treating device
JPH03109728A (en) Manufacture of semiconductor device
JPH01175231A (en) Ashing
JPH0472082A (en) Dry etching method
JP2006012962A (en) Microwave plasma processing apparatus using vacuum ultraviolet light shielding plate with oblique through hole and its processing method
JPH01112733A (en) Ashing of resist
JPS5855568A (en) Reactive ion etching method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees