JPH0291563A - Supercritical fluid chromatograph - Google Patents

Supercritical fluid chromatograph

Info

Publication number
JPH0291563A
JPH0291563A JP63245382A JP24538288A JPH0291563A JP H0291563 A JPH0291563 A JP H0291563A JP 63245382 A JP63245382 A JP 63245382A JP 24538288 A JP24538288 A JP 24538288A JP H0291563 A JPH0291563 A JP H0291563A
Authority
JP
Japan
Prior art keywords
column
pressure
pump
fluid
column outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63245382A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakayama
達雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63245382A priority Critical patent/JPH0291563A/en
Publication of JPH0291563A publication Critical patent/JPH0291563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To prevent the generation of the deposition of a sample component near a column outlet arising from the pressure drop of a column by connecting a pressurizing means to the flow passage of the column outlet. CONSTITUTION:Fluid 11 for pressure regulation is joined to a part 9 of the flow passage on the downstream side of the column from a pump 10 for pressurization. While materials such as carbon dioxide, ammonia and nitrogen are usable for the fluid 11 for pressure regulation, the same material as the material of moving phase fluid is preferably used. Both of a pump 2 for the moving phase and the pump 10 for pressurization are pumps of a constant pressure control system and are controlled by a pump control section 13 which takes in the signals of pressure sensors 8, 12. The inside of the flow passage near the column outlet is maintained under a high pressure in this way and the deposition of the sample component near the column outlet is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超臨界流体クロマトグラフ(以下「5FCJと
いう)に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a supercritical fluid chromatograph (hereinafter referred to as "5FCJ").

(従来の技術) 従来のSFCではカラムの下流に流路抵抗を取付はカラ
ム上流側の流体ポンプにより移動相を加圧2送液して、
ポンプ出口よりカラム内までの流路内に超臨界状態を作
り出している。第3図は従来のSFCを示す流路図であ
る。第3図中1は移動相を収納したボンベでありボンベ
中の移動相は移動相用ポンプ2により試料導入口3を通
ってカラム4に送られる。5はカラム恒温槽でありカラ
ム4は恒温に保たれている。図中6は抵抗管であり内径
を数マイクロメータ程度に細(したキャピラリ管が使用
される。7は検出器である。移動相用ポンプ2は抵抗管
6の流路抵抗に抗して移動相を送液するのでポンプ2.
試料導入口3.カラム4、抵抗管6間の移動相が超臨界
状態に保たれる。
(Prior art) In conventional SFC, a flow path resistance is installed downstream of the column, and the mobile phase is pumped under pressure by a fluid pump upstream of the column.
A supercritical state is created in the flow path from the pump outlet to the inside of the column. FIG. 3 is a flow path diagram showing a conventional SFC. In FIG. 3, reference numeral 1 denotes a cylinder containing a mobile phase, and the mobile phase in the cylinder is sent to a column 4 through a sample inlet 3 by a mobile phase pump 2. 5 is a column constant temperature bath, and column 4 is kept at constant temperature. In the figure, 6 is a resistance tube, and a capillary tube with an inner diameter of several micrometers is used. 7 is a detector. The mobile phase pump 2 moves against the flow path resistance of the resistance tube 6. Since the phase is pumped, pump 2.
Sample introduction port 3. The mobile phase between the column 4 and the resistance tube 6 is maintained in a supercritical state.

(発明が解決しようとする課題) SFCに使用するカラムは流路の抵抗として作用する。(Problem to be solved by the invention) The column used in SFC acts as a resistance in the flow path.

従ってカラム内では圧力降下が生じ、カラム入口側に比
べてカラム出口付近ではかなり圧力が低くなっている。
Therefore, a pressure drop occurs within the column, and the pressure is considerably lower near the column outlet than at the column inlet.

SFCでは移動相として通常二酸化炭素が使用されるが
、化学物質の二酸化炭素への溶解度は移動相流体の密度
が大きい程高いので、圧力が低いカラム出口付近では移
動相流体の密度が小さくなって試料成分が溶けきれなく
なり、析出してしまう結果、検出器まで試料成分が運ば
れず検出されない場合がある。また、析出した試料成分
がカラムに蓄積されカラムの詰まりゃ劣化の原因となる
。入口圧を高くすればカラム出口側での圧力が高くなる
けれどもカラム使用圧角範囲を越えて入口圧を上げるこ
とはできない。
Carbon dioxide is usually used as the mobile phase in SFC, but the solubility of a chemical substance in carbon dioxide increases as the density of the mobile phase fluid increases, so the density of the mobile phase fluid decreases near the column outlet where the pressure is low. As a result, the sample components cannot be completely dissolved and precipitate, resulting in the sample components not being carried to the detector and not being detected. Furthermore, if the precipitated sample components accumulate in the column and the column becomes clogged, it may cause deterioration. Although increasing the inlet pressure increases the pressure at the column outlet, it is not possible to increase the inlet pressure beyond the column operating pressure angle range.

本発明はカラムの圧力降下に起因するカラム出口付近で
の試料成分の析出を生じないSFCを得ることを目的と
した。
The object of the present invention is to obtain an SFC that does not cause precipitation of sample components near the column outlet due to column pressure drop.

(課題を解決するための手段) 本発明の超臨界流体クロマトグラフにあってはカラム出
口流路に加圧手段を接続した0本発明において加圧手段
とはポンプあるいはカラム入口側とカラム出口側を接続
する抵抗管を包含する。
(Means for Solving the Problems) In the supercritical fluid chromatograph of the present invention, a pressurizing means is connected to the column outlet flow path.In the present invention, the pressurizing means is a pump, or a column inlet side and a column outlet side. Includes a resistance tube that connects the

(作用) 本発明のSFCにあってはカラム出口流路が強制的に加
圧される。カラム入口圧は移動相ポンプの送液圧力で制
御されるので、出口側加圧によりカラム内の圧力降下は
小さくなる。加圧手段の負荷によりカラム出口側が加圧
分だけ圧力がかさ上げされた状態が生じる。一方移動相
流体の密度は圧力の絶対値に依存するので圧力がかさ上
げされた分だけ移動相流体の密度があがり化学物質の移
動相への溶解度が大きくなる。
(Function) In the SFC of the present invention, the column outlet channel is forcibly pressurized. Since the column inlet pressure is controlled by the liquid feeding pressure of the mobile phase pump, the pressure drop within the column is reduced by pressurizing the outlet side. Due to the load on the pressurizing means, a state occurs in which the pressure on the column outlet side is increased by the amount of pressure applied. On the other hand, since the density of the mobile phase fluid depends on the absolute value of the pressure, the density of the mobile phase fluid increases by the amount that the pressure is increased, and the solubility of the chemical substance in the mobile phase increases.

(実施例) 第1図は本発明の一実施例であるSFCの流路図である
。第1図中のSFC構成部品で第3図に示した従来のS
FCと同様な構成部品には同一の番号を付した。第1図
中9はカラム下流側の流路の一部分であり加圧用ポンプ
10がら圧力調整用流体11が合流される。圧力調整用
流体11は二酸化炭素、アンモニヤ、窒素等の物質が使
用できるが移動相流体と同一の物質を使用することが好
ましい、移動相用ポンプ2と加圧用ポンプ10は共に定
圧制御方式のポンプであり圧力センサ8と12の信号を
とり込むポンプ制御部13により制御される。
(Example) FIG. 1 is a flow path diagram of an SFC that is an example of the present invention. The conventional SFC components shown in Fig. 3 are the SFC components in Fig. 1.
Components similar to those of the FC are given the same numbers. Reference numeral 9 in FIG. 1 is a part of the flow path on the downstream side of the column, into which the pressure adjusting fluid 11 is merged from the pressurizing pump 10. For the pressure adjustment fluid 11, substances such as carbon dioxide, ammonia, and nitrogen can be used, but it is preferable to use the same substance as the mobile phase fluid.Both the mobile phase pump 2 and the pressurization pump 10 are constant pressure control type pumps. It is controlled by a pump control section 13 which receives signals from pressure sensors 8 and 12.

また、1分析中に圧力を変更する分析法である圧カプロ
グラミング法分析中はポンプ制御部13は当該プログラ
ムに従い移動相用ポンプ2を制御すると共に圧力センサ
8と12の信号をとり込み。
Furthermore, during analysis using the pressure programming method, which is an analysis method that changes the pressure during one analysis, the pump control unit 13 controls the mobile phase pump 2 according to the program and also takes in the signals of the pressure sensors 8 and 12.

両者の差が等しくなるように加圧用ポンプ10を制御す
る。あるいはまた、圧カプログラミング法分析の終了直
前まで加圧用ポンプ10を動作させず、移動相ポンプの
送液圧力がプログラムの最終圧力に達したのち分析終了
直前に加圧用ポンプを動作させ出口側を加圧するという
一連のポンプ繰作を行えば、試料成分が最適分離された
のち難溶性成分を追出すことができる。第2図は本発明
の他の実施例であるSFCの流路図である。第2図中の
流路構成部品で第3図に示した従来のSFCと同様な構
成部品には同一の番号を付した。第2図中14は試料導
入口3の上流部とカラム下流部流路の両者を接続する抵
抗管である。この抵抗管14はカラム4の持つ流路抵抗
より小さい抵抗を持つ管が選択される。
The pressurizing pump 10 is controlled so that the difference between the two becomes equal. Alternatively, the pressurizing pump 10 may not be operated until just before the end of the pressure programming method analysis, and after the liquid delivery pressure of the mobile phase pump has reached the final pressure of the program, the pressurizing pump may be operated just before the end of the analysis to close the outlet side. By performing a series of pump operations to apply pressure, the sample components can be optimally separated and then the poorly soluble components can be expelled. FIG. 2 is a flow path diagram of an SFC that is another embodiment of the present invention. Components of the flow path in FIG. 2 that are similar to those of the conventional SFC shown in FIG. 3 are given the same numbers. Reference numeral 14 in FIG. 2 is a resistance tube that connects both the upstream portion of the sample introduction port 3 and the column downstream flow path. As this resistance tube 14, a tube having a resistance smaller than the flow path resistance of the column 4 is selected.

(発明の効果) 本発明のSFCにあってはカラム出口付近の流路内も高
圧に保たれる結果、カラム出口付近での試料成分の析出
が防がれる。このため圧力降下の大きい比較的長いバツ
クドカラムも使用することができる。また加圧用ポンプ
を使用する本発明の一実施態様にあっては圧力プログラ
ミング分析中もカラム内の流速を最適の一定値に保つこ
ともできる。
(Effects of the Invention) In the SFC of the present invention, the inside of the flow path near the column outlet is also maintained at a high pressure, so that precipitation of sample components near the column outlet is prevented. For this reason, relatively long backed columns with large pressure drops can also be used. Furthermore, in an embodiment of the present invention using a pressurizing pump, the flow rate within the column can be maintained at an optimal constant value even during pressure programming analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である超臨界流体クロマトグ
ラフの流路図であり、第2図は本発明の他の実施例であ
る超臨界流体クロマトグラフの流路図であり、第3図は
従来の超臨界流体クロマトグラフを示す流路図である。 図中1は移動相ボンベ、2は移動相用ポンプ。 4はカラム、6は抵抗管、10は加圧用ポンプ。 14は抵抗管である。 特許出願人 株式会社 島津製作所
FIG. 1 is a flow path diagram of a supercritical fluid chromatograph that is an embodiment of the present invention, and FIG. 2 is a flow path diagram of a supercritical fluid chromatograph that is another embodiment of the present invention. FIG. 3 is a flow path diagram showing a conventional supercritical fluid chromatograph. In the figure, 1 is a mobile phase cylinder, and 2 is a mobile phase pump. 4 is a column, 6 is a resistance tube, and 10 is a pressurizing pump. 14 is a resistance tube. Patent applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] カラム出口流路に加圧手段を接続した超臨界流体クロマ
トグラフ。
A supercritical fluid chromatograph with a pressurizing means connected to the column outlet channel.
JP63245382A 1988-09-29 1988-09-29 Supercritical fluid chromatograph Pending JPH0291563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245382A JPH0291563A (en) 1988-09-29 1988-09-29 Supercritical fluid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245382A JPH0291563A (en) 1988-09-29 1988-09-29 Supercritical fluid chromatograph

Publications (1)

Publication Number Publication Date
JPH0291563A true JPH0291563A (en) 1990-03-30

Family

ID=17132829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245382A Pending JPH0291563A (en) 1988-09-29 1988-09-29 Supercritical fluid chromatograph

Country Status (1)

Country Link
JP (1) JPH0291563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243215A (en) * 2009-04-01 2010-10-28 Jasco Corp Supercritical fluid chromatography apparatus and density adjusting method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243215A (en) * 2009-04-01 2010-10-28 Jasco Corp Supercritical fluid chromatography apparatus and density adjusting method of the same

Similar Documents

Publication Publication Date Title
US20210123891A1 (en) Solvent delivery system for liquid chromatography that maintains fluid integrity and pre-forms gradients
US8673144B2 (en) Flow rate control
US4871453A (en) Chromatographic separation method and associated apparatus
US4814089A (en) Chromatographic separation method and associated apparatus
EP0730151A3 (en) Flow regulation in gas chromatograph
EP1350956A2 (en) Pump as a pressure source for supercritical fluid chromatography
JP2006234830A (en) Multi-column chromatography system
JPH0643148A (en) Various solvent delivery system
US10364808B2 (en) Pumping system for chromatography applications
WO2018146826A1 (en) Supercritical fluid device
US10613061B2 (en) Systems, methods and devices addressing sample extraction and injection problems in chromatography
US5777213A (en) Preparative liquid chromatography apparatus
JPH0291563A (en) Supercritical fluid chromatograph
US11143633B2 (en) Systems, methods and devices for decreasing solubility problems in chromatography
JP2008014788A (en) Liquid chromatograph mass spectrometer
JPH05256834A (en) Liquid chromatograph
EP0309380A2 (en) Recycle chromatograph with supercritical fluid
AU770513B2 (en) Device and method for treating a sample by overpressured layer chromatography a stationary phase, under controlled forced flow
JP4403638B2 (en) Liquid chromatograph
EP3532837B1 (en) Gas liquid separator and associated systems and methods
JPS62148855A (en) Supercritical fluid chromatography device
JP2000146933A (en) Liquid chromatography device and its pressurization and liquid transmission method
CN112672799B (en) Two-dimensional fluid separation with push-pull modulation
JPH0416762A (en) Sample introducing apparatus for supercritical liquid chromatography
JPH076962B2 (en) Direct introduction of fluid extract into chromatographic equipment