JPH0291143A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPH0291143A
JPH0291143A JP24547388A JP24547388A JPH0291143A JP H0291143 A JPH0291143 A JP H0291143A JP 24547388 A JP24547388 A JP 24547388A JP 24547388 A JP24547388 A JP 24547388A JP H0291143 A JPH0291143 A JP H0291143A
Authority
JP
Japan
Prior art keywords
polymer
weight
vinyl chloride
parts
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24547388A
Other languages
Japanese (ja)
Inventor
Shukuyu Nakatsuji
中辻 淑裕
Katayuki Yoshihara
吉原 方之
Hiroaki Maruyama
丸山 裕昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP24547388A priority Critical patent/JPH0291143A/en
Publication of JPH0291143A publication Critical patent/JPH0291143A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat resistance, weatherability, impact resistance, processing (molding) stability and mechanical strengths by compounding a mixture of a chlorinated polymer and an alpha-methylstyrene-acrylonitrile copolymer with a specified polymer mixture. CONSTITUTION:A mixture (A) is obtd. by mixing 80-40 pts.wt. (hereinbelow merely pts.) chlorinated polymer which is a mixture of a vinyl chloride polymer and, if necessary, a chlorinated vinyl chloride polymer with 20-60 pts. alpha- methylstyrene-acrylonitrile copolymer. Another mixture (B) is obtd. by mixing 80-20wt.% (hereinbelow merely %) graft polymer obtd. by grafting vinyl chloride and, if necessary, a mixture of another monomer therewith onto 30-80% ethylene-vinyl acetate copolymer consisting of 80-20% ethylene and 20-80% vinyl acetate with 20-80% impact resistance-reinforcing agent obtd. by emulsion polymn. (e.g., a modified methyl methacrylate-butadiene-styrene resin contg. an acrylate component and an acrylonitrile component). 100 pts. component A is compounded with 8-20 pts. component B.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は耐熱性、耐候性及び耐衝撃性に医れ、しかも加
工安定性、加工成形安定性と機械的強度の良好な熱可塑
性樹脂組成物に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a thermoplastic resin composition that has good heat resistance, weather resistance, and impact resistance, as well as good processing stability, processing molding stability, and mechanical strength. relating to things.

〈従来の技術〉 塩素含有樹脂製品は難燃性、耐薬品性、機械的強度、耐
候性などに優れた性質を有するため、パイプや建材等多
方面の用途1こ多量に使用されている。
<Prior Art> Chlorine-containing resin products have excellent properties such as flame retardancy, chemical resistance, mechanical strength, and weather resistance, and are therefore used in large quantities in a wide variety of applications such as pipes and building materials.

しかし、塩素含有樹脂製品は耐熱性が比較的低(、また
耐衝撃性も必ずしも十分でないため、浸れた難燃性、耐
薬品性、機械的強度、及び耐候性を有するにもかかわら
ず、用途面での制約があった。このような耐熱性や耐衝
撃性を必要とする用途分野として、比較的に過酷な条件
下で使用されるパイプや建材類があり、具体的−こは電
線の地中埋設用パイプ等が例示される。
However, chlorine-containing resin products have relatively low heat resistance (and impact resistance is not always sufficient), so despite having excellent flame retardancy, chemical resistance, mechanical strength, and weather resistance, Application fields that require such heat resistance and impact resistance include pipes and building materials that are used under relatively harsh conditions. Examples include underground pipes.

これまで、塩素含有樹脂製品iζ耐熱性と耐衝撃性を付
与するのに多くの方法が提案されてきたが、いずれの方
法も耐熱性あるいは耐衝撃性の改良が不十分であったり
、耐候性が低下したり、ダイ内流動性が悪く、成形品が
偏肉したり、あるいは動的熱安定性が悪く、加工性が態
いなどそれぞれ何らかの欠点を有しており、必ずしも調
定できるものではない。
Until now, many methods have been proposed for imparting heat resistance and impact resistance to chlorine-containing resin products, but none of these methods have been able to sufficiently improve the heat resistance or impact resistance, or the weather resistance Each of these has some drawbacks, such as poor fluidity in the die, uneven thickness of the molded product, poor dynamic thermal stability, and poor processability, and it is not always possible to adjust them. do not have.

例えば、特開昭57−14687号公報には塩化ビニル
重合体、α−メチルスチレンとアクリロニトリルの共重
合体及びブタジェン系ゴムにモノビニル芳香族化合物と
ビニルシアン化合物又はメタクリレートを反応させたグ
ラフト共重合体のブレンドにより耐熱性と耐衝撃性が改
良される事が示されている。しかしながら、耐衝撃改良
剤として使用しているブタジェン系ゴムにモノビニル芳
香族化合物とビニルシアン化合物又はメタクリレートを
反応させた従来のグラフト共重合体は耐候性が悪く、こ
れを配合した樹脂組成物を成形加工した硬質塩化ビニル
樹脂製品は長期間の屋外amで衝撃強度の低下が大きく
好ましくない。
For example, JP-A-57-14687 discloses a graft copolymer obtained by reacting a vinyl chloride polymer, a copolymer of α-methylstyrene and acrylonitrile, and a butadiene rubber with a monovinyl aromatic compound and a vinyl cyanide compound or methacrylate. Blends have been shown to improve heat and impact resistance. However, conventional graft copolymers made by reacting butadiene rubber with monovinyl aromatic compounds and vinyl cyanide compounds or methacrylates used as impact modifiers have poor weather resistance, and resin compositions containing these copolymers are molded. Processed hard vinyl chloride resin products are undesirable because their impact strength decreases significantly when used outdoors for long periods of time.

又、特開昭56−117519号公報および特開昭58
−88918号公報には塩化ビニル樹脂、塩素化塩化ビ
ニル樹脂にアクリル系ゴムを主成分とする衝堂強化剤を
配合してなる樹脂組成物を使用した耐熱性、耐衝撃性及
び耐候性1こりれな地中線用ケーブル防護管が示されて
いる。しかしながら、アクリル系ゴムを耐衝撃強化剤と
して単独で使用1)だ樹脂組成物は、ダイ内流動性が悪
く、偏肉が生じ成形加工性が不十分で好ましくない。
Also, JP-A-56-117519 and JP-A-58
Publication No. 88918 discloses heat resistance, impact resistance, and weather resistance using a resin composition made of a vinyl chloride resin, a chlorinated vinyl chloride resin, and a hardening agent whose main component is acrylic rubber. A cable protection tube for underground cables is shown. However, the resin composition 1) in which acrylic rubber is used alone as an impact reinforcement agent has poor fluidity in the die, uneven thickness, and insufficient moldability, which is not preferable.

〈発明が解決しようとする課題〉 本発明は、塩素含有樹脂の有する特徴を損なわず、しか
も高度な耐熱性と耐衝撃性を付与された機械的強度のす
ぐれた熱可塑性樹脂組成物を提供することにある。
<Problems to be Solved by the Invention> The present invention provides a thermoplastic resin composition that does not impair the characteristics of chlorine-containing resins, has high heat resistance and impact resistance, and has excellent mechanical strength. There is a particular thing.

く課題を解決するための手段〉 本発明者らは脱意検討した結果、塩素含有重合体に耐熱
性を付与するためにα−メチルスチレン−アクリミニト
リル共重合体fe混合し、さらに耐衝撃性を付与するた
め着こエチレン−酢酸ビニル共重合体の存在下に塩化ビ
ニル又は塩化ビニルを主体とする単量体混合物をグラフ
ト重合させて得たグラフト重合体と乳化重合法で製造さ
れた耐衝撃強化剤を混合して樹脂組成物とし、これを成
形加工することにより難燃性、耐薬品性、剛性、耐候性
など塩素含有樹脂の浸れた性質を保持したまま耐熱性と
耐衝撃性が大幅に向上し、成形品が偏肉を生ずることな
く、しかも、動的熱安定性が良好で成形加工性に浸れる
ことを見い出し、本発明の完成者こ致った。
Means for Solving the Problems> As a result of extensive research, the present inventors mixed α-methylstyrene-acrimitrile copolymer fe in order to impart heat resistance to the chlorine-containing polymer, and also added impact resistance to the chlorine-containing polymer. A graft polymer obtained by graft polymerizing vinyl chloride or a monomer mixture mainly composed of vinyl chloride in the presence of an ethylene-vinyl acetate copolymer and a polymer produced by emulsion polymerization to impart properties. By mixing an impact strengthener to create a resin composition and molding it, it maintains the properties of chlorine-containing resin, such as flame retardancy, chemical resistance, rigidity, and weather resistance, while maintaining heat resistance and impact resistance. The inventors of the present invention have found that the molded product has excellent dynamic thermal stability and excellent moldability without causing uneven thickness.

すなわち本発明は塩素含有重合体80〜40重量部とα
−メチルスチレン−アクリロニトリル共重合体20〜6
0重量部とからなる重合体混合物100重景貴簡対し、
エチレン8cr−20重量%及び酢酸ビニル20〜80
Ti量%のエチレン−酢酸ビニル共重合体の存在下に、
この共重合体の含有量が80〜80Ti量%になるよう
に塩化ビニル又は塩化ビニルを主体とする単量体混合物
をグラフト重合させて得たグラフト重合体と乳化重合法
で製造された耐衝撃強化剤との重合体混合物を8〜20
重量部配置部た熱可塑性樹脂組成物を提供する事にある
That is, in the present invention, 80 to 40 parts by weight of the chlorine-containing polymer and α
-Methylstyrene-acrylonitrile copolymer 20-6
0 parts by weight of a polymer mixture consisting of 100 parts by weight,
Ethylene 8cr-20% by weight and vinyl acetate 20-80%
In the presence of Ti amount% of ethylene-vinyl acetate copolymer,
A graft polymer obtained by graft polymerizing vinyl chloride or a monomer mixture mainly composed of vinyl chloride so that the copolymer has a Ti content of 80 to 80% by weight, and an impact-resistant material manufactured by an emulsion polymerization method. 8 to 20 polymer mixtures with reinforcing agents
An object of the present invention is to provide a thermoplastic resin composition in which parts by weight are arranged in parts.

本発明の熱可塑性樹脂組成物の特徴は、塩化ビニル重合
体もしくは塩化ビニル重合体と塩素化塩化ビニル重合体
の混合物である塩素含有重合体トα−メチルスチレン−
アクリロニトリル共重合体の特定割合の混合物に対し、
特定員のエチレン−酢酸ビニル共重合体への塩化ビニル
又は塩化ビニルを主体とする単量体混合物のグラフト重
合体、もしくは多官能性単量体と塩化ビニル又は塩化ビ
ニルを主体とする単量体混合ジエン−スチレン樹脂また
はアクリル系多成分系樹脂である乳化重合法で製造され
た耐衝撃強化剤の特定割合混合物を配合することにある
The thermoplastic resin composition of the present invention is characterized by a chlorine-containing polymer which is a vinyl chloride polymer or a mixture of a vinyl chloride polymer and a chlorinated vinyl chloride polymer.
For a mixture of acrylonitrile copolymers in a specific proportion,
A graft polymer of vinyl chloride or a monomer mixture mainly composed of vinyl chloride to a specified member ethylene-vinyl acetate copolymer, or a polyfunctional monomer and a monomer mainly composed of vinyl chloride or vinyl chloride The purpose of the present invention is to incorporate a specific ratio mixture of impact strength enhancers produced by emulsion polymerization, which are mixed diene-styrene resins or acrylic multicomponent resins.

塩素含有重合体として塩化ビニル系重合体を単独で用い
ると動的熱安定性がよく加工安定性醗こ有利であり、塩
化ビニル系重合体と塩素化塩化ビニル系重合体の混合物
を用いると耐熱性がより向上する。又、グラフト重合体
lこ架棋グラフト重合体を用いることの利点は耐衝撃性
の発現する加工条件幅がより広くなることにある。
When a vinyl chloride polymer is used alone as a chlorine-containing polymer, it has good dynamic thermal stability and is advantageous in terms of processing stability.When a mixture of a vinyl chloride polymer and a chlorinated vinyl chloride polymer is used, it has good heat resistance. Improves sexual performance. Furthermore, the advantage of using a graft polymer is that the range of processing conditions under which impact resistance can be developed is wider.

さら1と乳化重合法で製造される耐衝撃強化剤曖こ耐候
性改質されたメチルメタクリレート−ブタジェン−スチ
レン樹脂を配合すると成形時のダイ内流動性がよく加工
成形性が良好となるだけでなく成形品の引張強度も向上
し、またアクリル系多成分系樹脂を配合すると耐候性が
より向上する。
By blending Sara 1 with an impact-strengthening agent produced by an emulsion polymerization method and a methyl methacrylate-butadiene-styrene resin that has been modified to improve its weather resistance, the fluidity in the die during molding is good, and the processability is improved. However, the tensile strength of the molded product is improved, and when an acrylic multi-component resin is added, the weather resistance is further improved.

本発明に用いられる塩化ビニル系重合体は塩化ビニル単
独重合体または90it’<fi%以上の塩化ビニル単
量体とこれらと共重合し得る10重量%以下のモノオレ
フィン単量体、とくに限定されないが例えば酢酸ビニル
、塩化ビニリデン等との共重合体であり懸濁重合法、塊
状重合法、乳化重合法等の方法1こて製造することがで
きる。
The vinyl chloride polymer used in the present invention is a vinyl chloride homopolymer or a vinyl chloride monomer of 90 it' For example, it is a copolymer with vinyl acetate, vinylidene chloride, etc., and can be produced by methods such as suspension polymerization, bulk polymerization, and emulsion polymerization.

末完明舒こ使用する塩素化塩化ビニル系重合体は、例え
ば塩化ビニル系重合体を単独、又は塩素化炭化水素溶媒
と共に、水(こ懸濁し、塩素を付加した公知の方法にて
製造できるもので、塩素含有重合体の5重量%〜50重
量%配合するのが好ましい。6重量%より少ないと耐熱
性向上が十分でなく逆醗こ50重量%より多いと加工安
定性が不十分となる。
The chlorinated vinyl chloride polymer to be used can be produced by a known method, for example, by suspending the vinyl chloride polymer alone or with a chlorinated hydrocarbon solvent in water and adding chlorine. It is preferable to mix 5% to 50% by weight of the chlorine-containing polymer.If it is less than 6% by weight, the heat resistance will not be improved sufficiently, and if it is more than 50% by weight, the processing stability will be insufficient. Become.

本発明に使用するα−メチルスチレン−アクリロニトリ
ル共重合体は90〜60重量%のα−メチルスチレンと
10〜40重量%のアクリロニトリルからなる共重合体
が用いられる。
The α-methylstyrene-acrylonitrile copolymer used in the present invention is a copolymer consisting of 90 to 60% by weight of α-methylstyrene and 10 to 40% by weight of acrylonitrile.

本発明に用いられる塩素含有重合体とα−メチルスチレ
ン−アクリロニトリル共重合体との混合比は塩素含有重
合体80〜40重量部とα−メチルスチレン−アクリロ
ニトリル共重合体20〜60重量部である必要がある。
The mixing ratio of the chlorine-containing polymer and the α-methylstyrene-acrylonitrile copolymer used in the present invention is 80 to 40 parts by weight of the chlorine-containing polymer and 20 to 60 parts by weight of the α-methylstyrene-acrylonitrile copolymer. There is a need.

α−メチルスチレン−アクリロニトリル共重合体が20
重量部より少ないと耐熱性の向上が不十分となり、逆螢
こ60重量部より多いと耐衝撃性の向上が不十分となり
好ましくない。
α-methylstyrene-acrylonitrile copolymer is 20
If it is less than 60 parts by weight, the improvement in heat resistance will be insufficient, and if it is more than 60 parts by weight, the improvement in impact resistance will be insufficient, which is not preferable.

本発明のグラフト重合体優こ用いられるエチレン−酢酸
ビニル共重合体中の酢酸ビニルの含有量は2OTx量%
以上で80重量%以下であることが必要である。
The content of vinyl acetate in the ethylene-vinyl acetate copolymer used in the graft polymer of the present invention is 2OTx amount%.
It is necessary that the content is 80% by weight or less.

共重合体中の酢酸ビニルの含有量が20fflffi%
以下では塩素含有重合体との相溶性が悪くて機械的強度
が低下し耐衝撃性が低下する。逆に共重合体中の酢酸ビ
ニルの含有量が807!te1%以上では耐衝撃性が不
十分となる。
The content of vinyl acetate in the copolymer is 20fffffi%
Below, the compatibility with the chlorine-containing polymer is poor, resulting in a decrease in mechanical strength and impact resistance. On the contrary, the content of vinyl acetate in the copolymer is 807! If te is 1% or more, the impact resistance will be insufficient.

エチレン−酢酸ビニル共重合体はグラフト重合体中で8
0重量%以上で80重盪%以下になるように添加される
。80重量%以下では耐衝撃性が不十分であり、80重
量%を越えると耐熱性の低下や、機械的強度の低下が起
こり好ましくない。また本発明のエチレン−酢酸ビニル
共重合体はメルトインデックス(ASTMD−1283
)が0.5〜200F/10分の範囲のものを好ましく
用いることが出来る。
Ethylene-vinyl acetate copolymer has 8
It is added in an amount of 0% by weight or more and 80% by weight or less. If it is less than 80% by weight, the impact resistance will be insufficient, and if it exceeds 80% by weight, the heat resistance and mechanical strength will decrease, which is not preferable. Furthermore, the ethylene-vinyl acetate copolymer of the present invention has a melt index (ASTMD-1283).
) is preferably in the range of 0.5 to 200F/10 minutes.

また本発明の組成物にあっては、エチレン−メタクリル
酸エステル共重合体をエチレン−酢酸ビニル共重合体と
グラフト重合体中でエチレン−酢酸ビニル共重合体の量
を越えない範囲で併用して用いることも可能である。
Furthermore, in the composition of the present invention, an ethylene-methacrylic acid ester copolymer is used in combination with an ethylene-vinyl acetate copolymer in an amount not exceeding the amount of the ethylene-vinyl acetate copolymer in the graft polymer. It is also possible to use

本発明のグラフト重合体に用いられる塩化ビニルを主体
とする単量体には塩化ビニル以外に脂肪酸ビニルエステ
ル、ビニリデンハライド、アクリル酸アルキルエステル
、メタクリル酸アルキルエステル、アクリロニ!・リル
、アルキルビニールエーテル、エチレンおよびその誘導
体、プロピレン等が挙げられるが、その添加量は塩化ビ
ニルと合わせた単量体揄徴の80%以下にとどめる必要
がある。
In addition to vinyl chloride, the vinyl chloride-based monomer used in the graft polymer of the present invention includes fatty acid vinyl ester, vinylidene halide, acrylic acid alkyl ester, methacrylic acid alkyl ester, acryloni! - Examples include lyl, alkyl vinyl ether, ethylene and its derivatives, propylene, etc., but the amount added must be kept at 80% or less of the monomer content combined with vinyl chloride.

又、本発明の架間グラフト重合体に用いられる多官能性
化合物としては、ジアリルフタレート、ジアリルイソフ
タレート、ジアリルテレフタレート等のフタル酸のジア
リルエステル類、ジアリルマレート、ジアリルフマレー
ト、ジアリルイタコネート等のエチレン性不飽和二塩基
酸のジアリルエステル類、ジアリルアジペート、ジアリ
ルアセテート、ジアリルセバケート等の飽和二塩基酸の
ジアリルエステル類、ジアリルエーテル、トリアリルシ
アヌレート、トリアリルイソシアヌレート、トリアリル
トリメリテート及びエチレングリコールジビニルエーテ
ル、n−ブタンジオールジビニルエーテル、オクタデカ
ンジビニルエーテル等のジビニルエーテル類、エチレン
グリコールジメタクリレート、トリエチレングリコール
ジメタクリレート、ジメチレングリコールジアクリレー
ト、トリエチレングリコールジアクリレート等の多価ア
ルコールのジメタクリルエステルあるいはジアクリルエ
ステル類、トリメチロールプロパントリメタクリレート
、トリメチロールプロパントリアクリレート、トリメチ
ロールエタントリメタクリレート、トリメチロールエタ
ントリアクリレート、チトラメチロールメタントリアク
リレート等の多価アルコールのトリメタクリルエステル
あるいはトリアクリルエステル類、ビスメタクリロイル
オキシエチレンフタレート、1,8.5−トリアクリロ
イルヘキサハイドロトリアジン等が挙げられ、上記多官
能性化合物のうち1種もしくは2種以上を併用してもよ
い。
Further, as the polyfunctional compound used in the cross-linked graft polymer of the present invention, diallyl esters of phthalic acid such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl maleate, diallyl fumarate, diallyl itaconate, etc. diallyl esters of ethylenically unsaturated dibasic acids, diallyl esters of saturated dibasic acids such as diallyl adipate, diallyl acetate, diallyl sebacate, diallyl ether, triallyl cyanurate, triallyl isocyanurate, triallyl trimery tate and divinyl ethers such as ethylene glycol divinyl ether, n-butanediol divinyl ether, and octadecane divinyl ether; polyhydric alcohols such as ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, dimethylene glycol diacrylate, and triethylene glycol diacrylate. dimethacrylic esters or diacrylic esters, trimethacrylic esters or diacrylic esters of polyhydric alcohols such as trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, trimethylolethane trimethacrylate, trimethylolethane triacrylate, and titramethylolmethane triacrylate. Examples include acrylic esters, bismethacryloyloxyethylene phthalate, 1,8.5-triacryloylhexahydrotriazine, etc., and one or more of the above polyfunctional compounds may be used in combination.

又、多官能性化合物の添加量は特に限定されるものでは
ないが、塩化ビニル又は塩化ビニルを主体とする単量体
混合物に対して0.01重量%以上10重量%以下がよ
い。
Further, the amount of the polyfunctional compound added is not particularly limited, but it is preferably 0.01% by weight or more and 10% by weight or less based on vinyl chloride or a monomer mixture mainly composed of vinyl chloride.

本発明のグラフト重合体又は架橋グラフト重合体の重合
法としては通常塩化ビニル系グラフト重合体の製造に適
用できるすべての方法が可能であるが、望ましくは懸濁
重合法、塊状重合法あるいは乳化重合法が適当である。
As the polymerization method for the graft polymer or crosslinked graft polymer of the present invention, all methods applicable to the production of vinyl chloride-based graft polymers can be used, but suspension polymerization, bulk polymerization, or emulsion polymerization are preferably used. Legal is appropriate.

懸濁重合および塊状重合をこおいて使用される触媒は特
に限定されるものでなく、通常の塩化ビニルの懸濁重合
に使われる触媒例えばラウロイルパーオキサイド、8,
5.5−トリメチルヘキサノイルパーオキサイド、t−
ブチルパーオキシピバレート、ジイソプロピルパーオキ
シジカーボネート、アセチルシクロへキシルスルフェニ
ルパーオキサイドなどの有機過酸化物およびα、α′−
アゾビスイソブチロニトリル、α。
Catalysts used in suspension polymerization and bulk polymerization are not particularly limited, and include catalysts commonly used in suspension polymerization of vinyl chloride, such as lauroyl peroxide, 8,
5.5-trimethylhexanoyl peroxide, t-
Organic peroxides such as butyl peroxypivalate, diisopropyl peroxydicarbonate, acetyl cyclohexyl sulfenyl peroxide and α, α′-
Azobisisobutyronitrile, α.

α′−アゾビス2,4−ジメチルバレロニトリルなどの
アゾ化合物の−n!tまたは二皿以上の混合物が挙げら
れる。
-n! of azo compounds such as α′-azobis2,4-dimethylvaleronitrile! or a mixture of two or more dishes.

懸濁重合(こおいて使用される懸濁剤は特噸こ限定され
るものでなく通常の塩化ビニルの懸濁重合−ζ使用され
るゼラチン、ポリビニルアルコール、水溶性セルロース
エーテル等が用いられる。
Suspension polymerization (The suspending agent used here is not particularly limited, and gelatin, polyvinyl alcohol, water-soluble cellulose ether, etc. that are commonly used in suspension polymerization of vinyl chloride can be used.

乳化重合−こおいて使用される触媒は特に限定されるも
のでなく、通常塩化ビニルの乳化重合に使用される触媒
、例えば過硫酸カリウム、過硫酸アンモニウム、レドッ
クス系水溶性触媒等が用いられる。
Emulsion polymerization - The catalyst used here is not particularly limited, and catalysts normally used for emulsion polymerization of vinyl chloride, such as potassium persulfate, ammonium persulfate, redox water-soluble catalysts, etc. are used.

乳化重合に使用される乳化剤は特に限定されるものでは
ないが、通常塩化ビニルの乳化重合に使用される乳化剤
、例えばラウリル硫酸ナトリウム、ドデシルベンゼンス
ルホン酸ナトリウム等が用いられる。
The emulsifier used in emulsion polymerization is not particularly limited, but emulsifiers commonly used in emulsion polymerization of vinyl chloride, such as sodium lauryl sulfate and sodium dodecylbenzenesulfonate, are used.

本発明の架橋グラフト重合体は分子内に架橋構造を有す
ることが必要であり、より具体的には、テトラヒドロフ
ランに不溶なゲル分が1重量%以上好ましくは5重量%
以上であることが必要である。ここで、テトラヒドロフ
ランに不溶なゲル分とは、該架橋グラフト重合体を85
0メツシユ金網をフィルターとしてソックスレー抽出器
を用いて熱テトラヒドロフランで22時間抽出し分離さ
れる抽出残渣を意味する。
The crosslinked graft polymer of the present invention needs to have a crosslinked structure in the molecule, and more specifically, the gel content insoluble in tetrahydrofuran is 1% by weight or more, preferably 5% by weight.
It is necessary that it is above. Here, the gel content insoluble in tetrahydrofuran means 85% of the crosslinked graft polymer.
It refers to the extraction residue obtained by extracting with hot tetrahydrofuran for 22 hours using a Soxhlet extractor using a 0-mesh wire mesh as a filter.

本発明1ζおいて用いられる耐衝撃強化剤は乳化重合1
ζより製造されるものであって1種はアクリル酸エステ
ル成分及びアクリロニトリル成分を含有する変性メタク
リレート−ブタジェン−スチレン樹脂であり、従来のい
わゆるMBS樹脂の耐候性を改良した樹脂である。具体
的には例えばブタジェン−スチレン−メチルメタクリレ
ート−アクリロニトリル−アクリル酸エステルからなる
共重合体である。こむでアクリル酸エステルとしては2
−エチルへキシルアクリレート、ブチルアクリレート、
プロピルアクリレート、エチルアクリレート等を適宜用
いることができる。
The impact strength enhancer used in the present invention 1ζ is emulsion polymerized 1
One type of resin produced from ζ is a modified methacrylate-butadiene-styrene resin containing an acrylic acid ester component and an acrylonitrile component, and is a resin with improved weather resistance of conventional so-called MBS resin. Specifically, for example, it is a copolymer of butadiene-styrene-methyl methacrylate-acrylonitrile-acrylic acid ester. Komude acrylic acid ester is 2
-ethylhexyl acrylate, butyl acrylate,
Propyl acrylate, ethyl acrylate, etc. can be used as appropriate.

また、他の1種として用いられるアクリル系多成分系樹
脂はアクリル酸エステルを主体とする共重合ゴムにメタ
クリレート、スチレン、アクリロニトリル等の単量体を
反応させることにより耐候性の改良されたグラフト共重
合体である。
Another type of acrylic multicomponent resin used is a graft compound with improved weather resistance made by reacting a copolymer rubber mainly composed of acrylic acid ester with monomers such as methacrylate, styrene, and acrylonitrile. It is a polymer.

両者とも乳化重合法によって製造される耐衝撃強化剤で
加工機械の混練エネルギーの大きさ等争こかかわらず粒
子状の形態を保持して分散するタイプである。
Both are impact-strengthening agents produced by emulsion polymerization, and are of the type that maintain and disperse particulate forms regardless of the amount of kneading energy used in processing machines.

本発明のグラフト重合体または架橋グラフト重合体と乳
化重合法によって製造される耐衝撃強化剤の混合比は前
者が20〜80重ヱ%、後者が80〜20重量%である
必要がある。前者が20重1%より少ないとグイ内流動
性が悪くなったり耐候性が不十分となり、逆に801!
ffi%より多いと耐衝撃性や機械的強度が不十分とな
り好ましくない。
The mixing ratio of the graft polymer or crosslinked graft polymer of the present invention and the impact strength enhancer produced by the emulsion polymerization method must be 20 to 80% by weight of the former and 80 to 20% by weight of the latter. If the former is less than 20% by weight, the fluidity within the gun will be poor and the weather resistance will be insufficient; on the contrary, 801!
If it exceeds ffi%, the impact resistance and mechanical strength will be insufficient, which is not preferable.

本発明のグラフト重合体または架橋グラフト重合体と乳
化重合法によって製造される耐衝撃強化剤の混合物は塩
素含有重合体とα−メチルスチレン−アクリロニトリル
共重合体とからなる重合体混合物tooNx部督ζ対し
、8重量部以上、20重量部以下の範囲で用いられる。
The mixture of the graft polymer or the crosslinked graft polymer of the present invention and the impact-strengthening agent produced by the emulsion polymerization method is a polymer mixture consisting of a chlorine-containing polymer and an α-methylstyrene-acrylonitrile copolymer. On the other hand, it is used in a range of 8 parts by weight or more and 20 parts by weight or less.

8重量部より少ないと耐衝撃性の改良が不十分であり、
逆醗こ20重量部より多いと、耐熱性と剛性が低下し好
ましくない。
If it is less than 8 parts by weight, the improvement in impact resistance is insufficient;
If the amount is more than 20 parts by weight, heat resistance and rigidity will decrease, which is not preferable.

本発明の組成物の成形加工にあたっては、塩化ビニル系
樹脂の加工に通常用いられている公知の安定剤、滑剤、
紫外線吸収剤、酸化防止剤、顔料等を適宜添加し、必要
に応じて充填剤の使用も可能である。
In molding the composition of the present invention, known stabilizers and lubricants commonly used in processing vinyl chloride resins,
Ultraviolet absorbers, antioxidants, pigments, etc. can be added as appropriate, and fillers can also be used if necessary.

本発明組成物はロール主ル、リボンブレンダ、ヘンシェ
ル蔵キサ−、バンバリーミキサ−等の公知の混合装置を
用いて混合され、さらに押出機、射出成形機、カレンダ
ー成形機等の公知の成形機を用いて所望の成形物に成形
できる。
The composition of the present invention is mixed using a known mixing device such as a roll main, a ribbon blender, a Henschel mixer, or a Banbury mixer. It can be used to form a desired molded product.

が、その際該組成物の動的熱安定性が良いので幅広い成
形条件が可能である。また得られた成形物は機械的強度
が高く、さらに優れた耐熱性、耐衝撃性、耐候性を発揮
するのでパイプ、建材等一般の硬質製品として有用であ
る。
However, since the composition has good dynamic thermal stability, a wide range of molding conditions is possible. In addition, the obtained molded product has high mechanical strength and also exhibits excellent heat resistance, impact resistance, and weather resistance, so it is useful as general hard products such as pipes and building materials.

以下、本発明を実施例螢こより説明するが本発明はこれ
らに限定されない。なお実施例中の物性値は以下の方法
で測定した。実施例中の部数やパーセントはいずれも重
量基準で表わす。
The present invention will be explained below with reference to Examples, but the present invention is not limited thereto. Note that the physical property values in the examples were measured by the following method. All parts and percentages in the examples are expressed on a weight basis.

耐熱性の評価: JIS K7206に準じ、5Krf
の荷重でビカット軟化温度を測定 して評価した。
Heat resistance evaluation: 5Krf according to JIS K7206
The Vicat softening temperature was measured and evaluated under a load of .

耐衝撃性の評価 : JIS K7111 sこ準じシ
ャルピー衝撃強度を測定して評価した。
Evaluation of impact resistance: Charpy impact strength was measured and evaluated in accordance with JIS K7111s.

耐候性の評価: JIS A1415に規定するサンシ
ャインウェザ−オーメーター形 促進暴露試験装置を用い、ブラ ツクパネル温度68℃、スプレ −18分7120分の条件で 100時間暴露後、JIS K7111に準じ、シャル
ピー衝撃強度を 測定して評価した。
Evaluation of weather resistance: Using a Sunshine Weather-O-meter type accelerated exposure test device specified in JIS A1415, after being exposed for 100 hours under the conditions of a black panel temperature of 68°C and spraying for 18 minutes and 7120 minutes, Charpy impact testing was performed according to JIS K7111. The strength was measured and evaluated.

機械的強度の評価:  JIS K7118に準じ20
℃の雰囲気下での引張強度で評価した。
Mechanical strength evaluation: 20 according to JIS K7118
The tensile strength was evaluated in an atmosphere at ℃.

(引張速度は10鰭/m1n) 厚み分布の評価:直径180Mの成形パイプの厚みを1
側間隔で測定し、下記の式 で評価した 動的熱安定性の評価;ブラベンダー社プラスチコーダー
PLV1151Wヲ用イ、ロー ラ・ミキサーW5QH型の主 キサ−ヘッドに樹脂組成物を 充填し、200℃、50rpm で混練したときに分解し始め るまでの時間で評価した。
(The tensile speed is 10 fins/m1n) Evaluation of thickness distribution: The thickness of a formed pipe with a diameter of 180M is
Evaluation of dynamic thermal stability measured by the side spacing and evaluated using the following formula: The resin composition was filled into the main mixer head of a roller mixer W5QH type for Brabender's Plasticcorder PLV1151W, and the resin composition was heated at 200°C. The evaluation was made based on the time until it started to decompose when kneaded at 50 rpm.

〈実施例および比1咬例〉 (1)グラフト重合体への製造 ステンレス製オートクレーブに脱イオン水100部、エ
チレン−酢酸ビニル共重合体(住人化学■製エバテート
■R5011、酢酸ビニル含有141Nff1%、メル
トインデックス60F/10分)50部、ヒドロキレプ
ロピルメチルセルロースCMM、化学■製、メトローズ
■65SH−50)0.2部、α、α′−アゾビスイソ
ブチロニトリル0.08部を仕込み、オートクレーブ内
を80wHfまで脱気した後、塩化ビニル単量体を50
部仕込み、攪拌条件下に60℃に昇温し、重合を開始し
た。
<Example and Comparison 1 example> (1) Production of graft polymer In a stainless steel autoclave, 100 parts of deionized water, ethylene-vinyl acetate copolymer (Evatate R5011 manufactured by Sumitomo Chemical Co., Ltd., containing 141Nff 1% of vinyl acetate, Melt index 60F/10 minutes) 50 parts, Hydroxylepropyl methyl cellulose CMM, manufactured by Kagaku ■, Metrose ■ 65SH-50) 0.2 parts, α,α'-azobisisobutyronitrile 0.08 parts, and autoclaved. After degassing the interior to 80 wHf, remove vinyl chloride monomer to 50 wHf.
The temperature was raised to 60° C. under stirring conditions to start polymerization.

6時間後に重合を停止し、未反応塩化ビニル単量体をパ
ージし、内容物を取出したあと脱水乾燥してグラフト重
合体Aを得た。
After 6 hours, polymerization was stopped, unreacted vinyl chloride monomer was purged, contents were taken out, and then dehydrated and dried to obtain graft polymer A.

このもののエチレン−酢酸ビニル共重合体の含有量は5
7%であり、テトラヒドロフランに不溶なゲル分は09
6であった。
The content of ethylene-vinyl acetate copolymer in this product is 5
7%, and the gel content insoluble in tetrahydrofuran is 0.9%.
It was 6.

(2)グラフト重合体Bの製造 ステンレス製オートクレーブに脱イオン水100部、エ
チレン−酢酸ビニル共重合体(住友化学■エバテートR
5011)50部、ヒドロキシプロピルメチルセルロー
ス(信越化学■製、メトローズ■65SH−50)0.
2部、α、α′−アゾビスイソブチロニトリル0.08
部、ジアリルフタレート0.5部を仕込み、オートクレ
ーブ内を80mHf まで脱気した後、塩化ビニル単量
体を50部仕込み、攪拌条件下沓こ60℃に昇温し、重
合を開始しtこ 。
(2) Production of graft polymer B In a stainless steel autoclave, add 100 parts of deionized water and ethylene-vinyl acetate copolymer (Sumitomo Chemical Evatate R).
5011) 50 parts, hydroxypropyl methylcellulose (manufactured by Shin-Etsu Chemical, Metrose 65SH-50) 0.
2 parts, α, α′-azobisisobutyronitrile 0.08
After charging the autoclave with 0.5 parts of diallylphthalate and degassing the inside of the autoclave to 80 mHf, 50 parts of vinyl chloride monomer was charged, and the temperature was raised to 60°C under stirring conditions to start polymerization.

6時間後昏こ重合を停止し、未反応塩化ビニル単量体を
パージし、内容物を取出したあと脱水乾燥してグラフト
重合体Bを得た。このもののエチレン−酢酸ビニル共重
合体の含有量は5896であり、テトラヒドロフランに
不溶なゲル分は41%であった。
After 6 hours, copolymerization was stopped, unreacted vinyl chloride monomer was purged, and the contents were taken out and dehydrated and dried to obtain graft polymer B. The content of ethylene-vinyl acetate copolymer in this product was 5896, and the gel content insoluble in tetrahydrofuran was 41%.

(3)グラフト重合体Cの製造 エチレン−酢酸ビニル共重合体として酢酸ビニル含有量
10%、メルトインデックス70P/10分のものを用
いる以外はグラフト共重合体Aの製造と全(同一の方法
で製造し、グラフト重合体Cを得た。このもののエチレ
ン−酢酸ビニル共重合体の含有量は57%であり、テト
ラヒドロフランに不溶なゲル分は0%であった。
(3) Production of graft copolymer C All processes were carried out in the same manner as in the production of graft copolymer A, except that an ethylene-vinyl acetate copolymer with a vinyl acetate content of 10% and a melt index of 70P/10 minutes was used. A graft polymer C was obtained.The content of the ethylene-vinyl acetate copolymer was 57%, and the gel content insoluble in tetrahydrofuran was 0%.

(4)  グラフト重合体りの製造 ステンレス製オートクレーブに脱イオン水100部、エ
チレン−酢酸ビニル重合体(住人化学■製エバテート■
R5011)20部、ヒドロキシプロピルメチルセルロ
ース(信越化学■メトローズo658H−50”)0.
8部、α、α′−アゾビスイソブチロニトリル0.1部
を仕込みオートクレーブ内を3Qsu+H1まで脱気し
た後、塩化ビニル単量体を80部仕込み、攪拌条件下Q
こ60℃に昇温し、重合を開始した。
(4) Production of graft polymer In a stainless steel autoclave, add 100 parts of deionized water and ethylene-vinyl acetate polymer (Evatate manufactured by Sumitomo Chemical).
R5011) 20 parts, hydroxypropyl methylcellulose (Shin-Etsu Chemical Metrose O658H-50'') 0.
After charging 8 parts and 0.1 part of α,α'-azobisisobutyronitrile and degassing the inside of the autoclave to 3Qsu+H1, 80 parts of vinyl chloride monomer was charged, and under stirring conditions Q
The temperature was raised to 60°C to start polymerization.

6時間後に重合を停止し、未反応塩化ビニル単量体をパ
ージし、内容物を取出したあと脱水乾燥してグラフト重
合体りを得た。このもののエチレン−酢酸ビニル共重合
体の含有量は28%であり、テトラヒドロフランに不溶
なゲル分は0%であった。
After 6 hours, polymerization was stopped, unreacted vinyl chloride monomer was purged, and the contents were taken out and dehydrated and dried to obtain a graft polymer. The content of ethylene-vinyl acetate copolymer in this product was 28%, and the gel content insoluble in tetrahydrofuran was 0%.

(5)  グラフト重合体Eの製造 ステンレス製オートクレーブに脱イオン水100部、エ
チレン−酢酸ビニル共重合体(住友化学■エバテート[
F]R5011)80部、ヒドロキシプロピルメチルセ
ルロース(信越化学■メトローズl3165SH−50
)0、2 部、α、α′−アゾビスイソブチロニトリル
0105部を仕込みオー゛トクレーブ内を80mH9ま
で脱気した後、塩化ビニル単量体を20部仕込み、攪拌
条件下着こ6o℃に昇温し重合を開始した。
(5) Production of graft polymer E In a stainless steel autoclave, add 100 parts of deionized water and ethylene-vinyl acetate copolymer (Sumitomo Chemical Evatate [
F] R5011) 80 parts, hydroxypropyl methylcellulose (Shin-Etsu Chemical Metrose l3165SH-50
) 0.2 parts, α,α'-azobisisobutyronitrile 0.105 parts and the inside of the autoclave was degassed to 80mH9, then 20 parts of vinyl chloride monomer was charged and the temperature was heated to 6oC under stirring conditions. The temperature was raised to start polymerization.

8時間後に重合を停止し、未反応塩化ビニル単量体をパ
ージし、内容物を取出したあと脱水乾燥してグラフト重
合体Eを得た。このもののエチレン−酢酸ビニル共重合
体の含有量は8996であり、テトラヒドロフランに不
溶なゲル分は0%であった。
After 8 hours, polymerization was stopped, unreacted vinyl chloride monomer was purged, the contents were taken out, and then dehydrated and dried to obtain graft polymer E. The content of ethylene-vinyl acetate copolymer in this product was 8996, and the gel content insoluble in tetrahydrofuran was 0%.

実施例1 平均重合度1100のポリ塩化ビニル(住友化学■製ス
ミリット■5x−11F)55重量部とα−メチルスチ
レン−アクリロニトリル共重合体(単量体重量比70対
80)45重量部とからなる重合体混合物tooii景
部普こ対し、グラフト重量体Aを10重量部、変性メチ
ルメタアクリレート−ブタジェン−スチレン樹脂(呉羽
化学■製HIA−23)5重量部、鉛系安定剤8重量部
、金属セッケン系滑剤1重量部、加工性改良剤1.5重
量部を添加した樹脂組成物をブレンド後、三菱クラウス
KMD−60に異方向二軸押出機を用いて、251”p
mの回転数、温度条件(シリン175℃、アダプター:
 @ 170℃)ダイス:[相]160℃、0158℃
、[有]167℃、0180℃)で混線押出した成形パ
イプを用いて引張強度、耐熱性、耐候性、耐衝撃性、厚
み分布を測定した。
Example 1 From 55 parts by weight of polyvinyl chloride with an average degree of polymerization of 1100 (Sumilit 5x-11F manufactured by Sumitomo Chemical) and 45 parts by weight of α-methylstyrene-acrylonitrile copolymer (monomer weight ratio 70:80). 10 parts by weight of graft weight material A, 5 parts by weight of modified methyl methacrylate-butadiene-styrene resin (HIA-23 manufactured by Kureha Chemical Co., Ltd.), 8 parts by weight of lead-based stabilizer, After blending a resin composition containing 1 part by weight of a metal soap lubricant and 1.5 parts by weight of a processability improver, a Mitsubishi Krauss KMD-60 was used with a twin-screw extruder in different directions to produce 251" p.
m rotation speed, temperature conditions (cylinder 175℃, adapter:
@170℃) Dice: [Phase] 160℃, 0158℃
Tensile strength, heat resistance, weather resistance, impact resistance, and thickness distribution were measured using a formed pipe cross-extruded at 167°C and 0180°C.

又別途、上記樹脂組成物の動的熱安定性醤こついても前
述の方法に従い測定した。また耐衝撃性曇こついては0
〜0 の各シリンダー温度が5℃ずつ高い温度条件で混
線押出した成形パイプについても測定した。結果を表−
11と示した。
Separately, the dynamic thermal stability of the resin composition was also measured according to the method described above. Also, impact resistance and fogging are 0.
Measurements were also carried out on molded pipes that were cross-extruded under conditions in which each cylinder temperature was 5° C. higher from 0 to 0. Display the results -
11.

実施例2 スミリット■5x−11Fを平均重合度1860のスミ
リット■5x−18+こ変更し、変性メチルメタアクリ
レート−ブタジェン−スチレン樹脂をアクリル系多成分
系樹脂(鐘淵化学■カネエースFM)に変更した他は、
実施例1と全く同一の方法で成形し、評価を行なった。
Example 2 Sumilit ■5x-11F was changed to Sumilit ■5x-18+ with an average degree of polymerization of 1860, and the modified methyl methacrylate-butadiene-styrene resin was changed to an acrylic multi-component resin (Kanebuchi Chemical ■Kane Ace FM). Others are
It was molded and evaluated in exactly the same manner as in Example 1.

結果を表−1に示した。The results are shown in Table-1.

実施例8 ス更すット■5X−11F55重量部のうち15重量部
を塩素化塩化ビニル(鐘淵化学■耐熱カネビニール)と
した他は実施例1と全く同一の方法で成形し評価を行な
った。
Example 8 Molding and evaluation were carried out in exactly the same manner as in Example 1, except that 15 parts by weight of the 5X-11F55 weight part was replaced with chlorinated vinyl chloride (Kanebuchi Chemical Heat-resistant Kanevinyl). I did it.

結果を表−11c示した。The results are shown in Table 11c.

実施例4〜8 スミリット■5x−11F、α−メチルスチレン−アク
リロニトリル共重合体、グラフト重合体Aおよび前記)
(IA−28の部数を変更した他は実施例1と全く同一
の方法で成形し評価を行なった。結果を表−1に示した
Examples 4 to 8 Sumilit ■5x-11F, α-methylstyrene-acrylonitrile copolymer, graft polymer A and the above)
(The molding and evaluation were performed in exactly the same manner as in Example 1 except that the number of copies of IA-28 was changed. The results are shown in Table 1.

実施例1〜8の樹脂組成物はいずれも良好な動的熱安定
性を示し、ξれらの樹脂組成物から得た成形体はいずれ
もIりみ分布が狭(偏肉のない均一な成形体でその物性
も引張強度が高く、耐熱性、耐候性、耐衝撃性に優れて
いる。
All of the resin compositions of Examples 1 to 8 exhibited good dynamic thermal stability, and all of the molded products obtained from these resin compositions had a narrow I-stain distribution (uniform molding without uneven thickness). Its physical properties include high tensile strength, heat resistance, weather resistance, and impact resistance.

比較例1〜6 スミリツト■5x−11F、a−メチルスチレン−アク
リロニトリル共重合体(単量体重量比70対80)、グ
ラフト共重合体AおよびHIA−28の部数を変更した
他は、実施例1と全く同一の方法で成形し評価を行なっ
た。結果を表−1に示した。
Comparative Examples 1 to 6 Example 1, except that the numbers of Sumiritz ■5x-11F, a-methylstyrene-acrylonitrile copolymer (monomer weight ratio 70:80), graft copolymer A and HIA-28 were changed. It was molded and evaluated in exactly the same manner as No. 1. The results are shown in Table-1.

比較例7 グラフト共重合体Aの部数を減少し、HIA−28をカ
ネエースFMに変更し、部数を増員した他は実施例1と
全く同一の方法で成形し評価を行なった。結果を表−1
に示した。
Comparative Example 7 Molding and evaluation were carried out in exactly the same manner as in Example 1, except that the number of parts of graft copolymer A was reduced, HIA-28 was changed to Kane Ace FM, and the number of parts was increased. Table 1 shows the results.
It was shown to.

比較例8 スミリット■5x−11F55重量部のうち40重量部
を塩素化塩化ビニルとした他は実施例1と全く同一の方
法で成形し評価を行なった。結果を表−1に示した。
Comparative Example 8 A molded product was molded and evaluated in exactly the same manner as in Example 1, except that 40 parts by weight of the 55 parts by weight of Sumilit ■5x-11F5 was changed to chlorinated vinyl chloride. The results are shown in Table-1.

比較例1はビカット校化温度が低く耐熱性が不十分であ
り、比較例2と比較例8はシャルピ−衝撃強度が低く耐
衝撃性が不十分である。比較例4は剛性、耐熱性が不十
分で、比較例6は耐候性、比較例6は耐衝撃性がそれぞ
れ不十分である。比較例7は、成形品が偏肉しており、
加工成形性が不十分で比較例8は、動的熱安定性が態り
、加工安定性が不十分で好ましくない。
Comparative Example 1 has a low Vicat proofing temperature and insufficient heat resistance, and Comparative Examples 2 and 8 have low Charpy impact strength and insufficient impact resistance. Comparative Example 4 has insufficient rigidity and heat resistance, Comparative Example 6 has insufficient weather resistance, and Comparative Example 6 has insufficient impact resistance. In Comparative Example 7, the molded product had uneven thickness,
Comparative Example 8 has insufficient processability and poor dynamic thermal stability, which is not preferable due to insufficient processability.

実施例9 グラフト重合体Aをグラフト重合体Bに変更した他は実
施例1と全く同じ方法で成形し、評価を行なった。結果
を表−2に示した。実施例9の樹脂組成物は良好な動的
熱安定性を示し、この樹脂組成物から得た成形体は厚み
分布が狭(偏肉のない均一な成形体でその物性も引張強
度が高く、耐熱性、耐候性、耐衝撃性轡と優れている。
Example 9 Molding and evaluation were performed in exactly the same manner as in Example 1, except that graft polymer A was changed to graft polymer B. The results are shown in Table-2. The resin composition of Example 9 showed good dynamic thermal stability, and the molded product obtained from this resin composition had a narrow thickness distribution (uniform molded product with no uneven thickness, and its physical properties were high tensile strength, Excellent heat resistance, weather resistance, and impact resistance.

又、滑剤を少なくして過剰に混練してもシ管ルビー衝撃
強度の低下が少なく、耐衝撃性が高くてその加工依存性
が小さいという実用上きわめて優れた利点を有す゛る。
In addition, even if the lubricant is reduced and kneaded excessively, there is little decrease in the impact strength of the steel ruby, the impact resistance is high, and its dependence on processing is small, which is an extremely excellent practical advantage.

比較例9〜11 グラフト重合体Aの替りに表−2に示したグラフト重合
体を使用したほかは、実施例1と全く同一の方法で成形
し評価を行なった。
Comparative Examples 9 to 11 Molding and evaluation were performed in exactly the same manner as in Example 1, except that the graft polymers shown in Table 2 were used instead of graft polymer A.

結果を表−2に示した。The results are shown in Table-2.

比較例9は引張強度と耐衝撃性が低下し、比較例10は
耐WJ撃性が低下し、又、比較例11は引張強度と耐熱
性が低下し好ましくい。
Comparative Example 9 has a lower tensile strength and impact resistance, Comparative Example 10 has a lower WJ impact resistance, and Comparative Example 11 has a lower tensile strength and heat resistance, which are preferable.

な 〈発明の効果〉 本発明の熱可塑性樹脂組成物は加工安定性加工成形性に
優れ、それから得られる成形物は引張強度で代表される
機械的強度、耐候性、難燃性、及び耐薬品性に優れ、か
つ、耐熱性及び耐衝撃性が改良されている。
<Effects of the Invention> The thermoplastic resin composition of the present invention has excellent processing stability and processability, and the molded products obtained from it have excellent mechanical strength represented by tensile strength, weather resistance, flame retardance, and chemical resistance. It has excellent properties, as well as improved heat resistance and impact resistance.

このような優れた特性を生かして過酷な条件下で使用さ
れるパイプや建材類に用いることができる。より具体的
な用途としては、電線の地中埋設用パイプ等が例示され
る。
Taking advantage of these excellent properties, it can be used in pipes and building materials that are used under harsh conditions. More specific applications include underground pipes for electric wires, etc.

Claims (6)

【特許請求の範囲】[Claims] (1)塩素含有重合体80〜40重量部とα−メチルス
チレン−アクリロニトリル共重合体20〜60重量部と
からなる重合体混合物100重量部に対し、エチレン8
0〜20重量%及び酢酸ビニル20〜80重量%のエチ
レン−酢酸ビニル共重合体の存在下に該エチレン−酢酸
ビニル共重合体の含有量が30〜80重量%になるよう
に塩化ビニルまたは塩化ビニルを主成分とする単量体混
合物をグラフト重合させて得られたグラフト重合体80
〜20重量%と、乳化重合法で製造された耐衝撃強化剤
20〜80重量%の重合体混合物8〜20重量部を配合
することを特徴とする熱可塑性樹脂組成物。
(1) For 100 parts by weight of a polymer mixture consisting of 80 to 40 parts by weight of a chlorine-containing polymer and 20 to 60 parts by weight of α-methylstyrene-acrylonitrile copolymer, 8 parts by weight of ethylene
In the presence of an ethylene-vinyl acetate copolymer containing 0 to 20% by weight and 20 to 80% by weight of vinyl acetate, vinyl chloride or chloride is added so that the content of the ethylene-vinyl acetate copolymer is 30 to 80% by weight. Graft polymer 80 obtained by graft polymerizing a monomer mixture containing vinyl as a main component
20% by weight and 8 to 20 parts by weight of a polymer mixture of 20 to 80% by weight of an impact strength enhancer produced by an emulsion polymerization method.
(2)前記グラフト重合体が塩化ビニルを主成分とし、
多官能性化合物を含有する単量体混合物をエチレン−酢
酸ビニル共重合体にグラフト重合させて得られたもので
ある請求項1記載の熱可塑性樹脂組成物。
(2) the graft polymer mainly contains vinyl chloride;
2. The thermoplastic resin composition according to claim 1, which is obtained by graft polymerizing a monomer mixture containing a polyfunctional compound onto an ethylene-vinyl acetate copolymer.
(3)前記塩素含有重合体が塩化ビニル系重合体である
請求項1記載の熱可塑性樹脂組成物。
(3) The thermoplastic resin composition according to claim 1, wherein the chlorine-containing polymer is a vinyl chloride polymer.
(4)前記塩素含有重合体が、塩素化塩化ビニル系重合
体5〜50重量%と塩化ビニル系重合体95〜50重量
%との重合体混合物である請求項1記載の熱可塑性樹脂
組成物。
(4) The thermoplastic resin composition according to claim 1, wherein the chlorine-containing polymer is a polymer mixture of 5 to 50% by weight of a chlorinated vinyl chloride polymer and 95 to 50% by weight of a vinyl chloride polymer. .
(5)前記乳化重合法で製造された耐衝撃強化剤がアク
リル酸エステル成分及びアクリロニトリル成分を含有す
る変性メチルメタクリレート−ブタジエン−スチレン樹
脂である請求項1記載の熱可塑性樹脂組成物
(5) The thermoplastic resin composition according to claim 1, wherein the impact strength enhancer produced by the emulsion polymerization method is a modified methyl methacrylate-butadiene-styrene resin containing an acrylic ester component and an acrylonitrile component.
(6)前記乳化重合法で製造された耐衝撃強化剤がアク
リル系多成分系樹脂である請求項1記載の熱可塑性樹脂
組成物。
(6) The thermoplastic resin composition according to claim 1, wherein the impact strength enhancer produced by the emulsion polymerization method is an acrylic multicomponent resin.
JP24547388A 1988-09-28 1988-09-28 Thermoplastic resin composition Pending JPH0291143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24547388A JPH0291143A (en) 1988-09-28 1988-09-28 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24547388A JPH0291143A (en) 1988-09-28 1988-09-28 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH0291143A true JPH0291143A (en) 1990-03-30

Family

ID=17134183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24547388A Pending JPH0291143A (en) 1988-09-28 1988-09-28 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH0291143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108823A1 (en) * 2003-06-09 2004-12-16 Lg Chem, Ltd. Thermoplastic resin composition having improved external appearance and excellent weatherability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108823A1 (en) * 2003-06-09 2004-12-16 Lg Chem, Ltd. Thermoplastic resin composition having improved external appearance and excellent weatherability
US7514502B2 (en) 2003-06-09 2009-04-07 Lg Chem, Ltd. Thermoplastic resin composition having improved external appearance and excellent weatherability

Similar Documents

Publication Publication Date Title
BG65313B1 (en) Method for the preparation of thermoplastic polyvinylchloride moulding materials
JPH0312110B2 (en)
JPS60192754A (en) Thermoplastic resin composition
JP2942524B2 (en) Impact resistant acrylic resin composition
JPH0291143A (en) Thermoplastic resin composition
JPH0543760A (en) Rigid vinyl chloride-based resin composition
JPH037704B2 (en)
JP3408275B2 (en) Thermoplastic resin composition
JPH1025321A (en) Crosslinked methacrylate-based resin particle and acrylic resin composition using the same
JPH0291142A (en) Thermoplastic resin composition
US5030690A (en) Halogen-containing thermoplastic resin composition
JP3165317B2 (en) Acrylic rubber compounding agent for vinyl chloride resin
US4581414A (en) Transparent, impact-resistant molding compositions based on polyvinyl chloride
JPS63284245A (en) Thermoplastic resin composition
JPH0292949A (en) Thermoplastic resin composition
JP3507581B2 (en) Vinyl chloride resin composition
JP2000234005A (en) Waterproof sheet resin
JPH0225923B2 (en)
JPH0361697B2 (en)
JPS61266421A (en) Production of vinyl chloride resin excellent in flow and heat stability
JP3226235B2 (en) Method for producing vinyl chloride polymer
JPH0826206B2 (en) Heat resistant thermoplastic resin composition
JPH0428723B2 (en)
JPS5953299B2 (en) Vinyl chloride resin composition
JPH04120109A (en) Vinyl chloride-based copolymer and production thereof