JPH0225923B2 - - Google Patents

Info

Publication number
JPH0225923B2
JPH0225923B2 JP7673881A JP7673881A JPH0225923B2 JP H0225923 B2 JPH0225923 B2 JP H0225923B2 JP 7673881 A JP7673881 A JP 7673881A JP 7673881 A JP7673881 A JP 7673881A JP H0225923 B2 JPH0225923 B2 JP H0225923B2
Authority
JP
Japan
Prior art keywords
polymerization
pvc
molecular weight
vinyl chloride
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7673881A
Other languages
Japanese (ja)
Other versions
JPS57192411A (en
Inventor
Katsuo Mitani
Takashi Maehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP7673881A priority Critical patent/JPS57192411A/en
Publication of JPS57192411A publication Critical patent/JPS57192411A/en
Publication of JPH0225923B2 publication Critical patent/JPH0225923B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塩化ビニル重合体(以下単にPVCと
も略記する)の製造方法、特に加工性にすぐれる
と共に機械的強度のすぐれたPVCを得る方法に
関するものである。 一般にPVCの成形加工は粉末の半溶融状態の
加工方法を採用するために、粒子形態、状態及び
分子構造に強く依存する。PVC粉末の嵩比重を
増加させることは、貯蔵に必要な容器の体積が減
少できること、ホツパーから加工機械への落下充
填が容易なこと、及び加工機械の内部での樹脂の
くいこみがよくなること等により加工性の向上に
欠かせない条件である。しかし、嵩比重が増加す
るとゲル化速度が遅くなると共に成形品にフイシ
ユアイやブツが発生し易くなる欠点がある。従つ
て、懸濁重合方法で得られるPVCの嵩比重を増
加するために、分散剤の種類、添加量、撹拌速
度、撹拌翼の形状の変化等の工夫がなされている
がこれらの変化には限界がある。また懸濁重合方
法において、PVCの平均重合度をあげる方法と
して重合温度を下げる方法が採用されているが、
重合温度を低下するとPVCの嵩比重が低下する。
PVCの平均重合度が増加すると成形加工品の機
械的強度は向上するはずであるが、ゲル化性が悪
くなるために、成形加工温度を上げる方法や加工
助剤の多量添加の方法を採用したとしても、均一
なゲル化状態を得ることが難しく、機械強度を向
上させることが非常に困難である。さらにまた、
平均重合度の大きいPVCの嵩比重を増加すると、
ますますゲル化性が悪くなる。またPVCの嵩比
重を増加させる方法として、ジヤーナル・オブ・
マクロモレキユラーサイエンス、A11巻、1223〜
1234頁、1977年に塩化ビニル単量体の水性懸濁重
合で圧力低下が起こる前及び起つた後に更に塩化
ビニル単量体を追加して重合する方法が載げられ
ているが、ゲル化性が著しく低下することも述べ
られている。更に米国特許第3945985号及び米国
特許第3956251号にはPVCの懸濁重合で、まず最
初に15〜50℃の温度で重合収率1〜60%のPVC
を重合した後に、重合温度を60〜80℃に昇温し
て、より重合度の低いPVCを重合する重合方法
が提供されている。しかしながら、これらの方法
では高分子量PVCと低分子量PVCが2次粒子又
は3次粒子の状態で混合される可能性が非常に低
い。すなわち、懸濁重合PVC粒子は平均粒径が
約100ミクロンの3次粒子であり、その内部に平
均粒径約0.5〜1.5ミクロンの2次粒子が適当な空
隙をもつて凝集している。2次粒子はPVC分子
鎖が凝集したフイブリルから構成されると言われ
ている。これらの方法では、2次粒子内部で分子
量の異なるPVCが混合されるため、ゲル化特性
は両PVCの中間以下の性質しか示さないばかり
か、嵩比重がほとんど増加しないので、加工性の
改良効果が少ない。また高分子量PVCと低分子
量PVCをブレンドすると3次粒子の状態で混合
されるが嵩比重が増加しない。 従つて、本発明は嵩比重が大きくゲル化特性が
すぐれるだけでなく、加工した成形品の機械的強
度が優れるという特徴を有するPVCの製造方法
を提供するものである。 すなわち、本発明は水性媒体中で、塩化ビニル
単量体又は塩化ビニル単量体と共重合可能な他の
単量体との混合物の第1段の重合を行い、重合度
が600よりも大きい高分子量塩化ビニル重合体を
得て、高分子量塩化ビニル重合体を含む水性媒体
に新たに塩化ビニル単量体又は塩化ビニル単量体
と共重合可能な他の単量体との混合物及び分散剤
を添加し、第1段の重合で得られた高分子量塩化
ビニル重合体より重合度が小さくなるように該単
量体の第2段の重合をすることを特徴とする塩化
ビニル重合体の製造方法である。 本発明において使用出来る塩化ビニル単量体と
共重合し得る他の単量体としては、特に限定され
ず公知のものが使用出来る。一般にはエチレン性
不飽和基を有するもの例えばエチレン、プロピレ
ン等のオレフイン化合物;酢酸ビニル、プロピオ
ン酸ビニル等のビニルエステル類;アクリル酸及
びα−アルキルアクリル酸等の不飽和モノカルボ
ン酸及びそのアルキルエステル類、アミド類即ち
アクリル酸、メタアクリル酸、アクリル酸エチ
ル、メタアクリル酸メチル、アクリル酸アミド、
メタアクリル酸アミド;アクリロニトリル等の不
飽和ニトリル類;マレイン酸、フマール酸等の不
飽和ジカルボン酸類、そのアルキルエステル類、
及びその無水物;ビニルメチルエーテル、ビニル
エチルエーテル等のビニルアルキルエーテル類;
その他種々の公知の共重合性単量体が好適に使用
される。 また本発明において使用される分散剤は、公知
の分散剤でよく例えば部分鹸化ポリビニルアルコ
ール、酢酸ビニル−無水マレイン酸共重合体、ポ
リビニルピロリドン、ゼラチン、デンプン、メチ
ルセルローズ、ヒドロキシプロピルセルローズ等
が好適に使用される。これらの分散剤の添加量は
必ずしも限定的ではなく、分散剤の種類、撹拌効
率、重合温度、共重合可能な他の単量体の種類と
組成、PVCの粒径等によつて異なるが、一般に
は塩化ビニル単量体に対して0.02〜2.0%、好ま
しくは0.05〜1%の範囲で用いられるのが一般的
である。 本発明に於ける第2段の単量体を重合する場合
に添加する分散剤の量は得られるPVCの加工特
性に影響を与え、例えば分散剤の量が少なすぎる
と加工性が低下するので予め添加量を決定するの
がよい。 本発明に於ける単量体の重合には公知のように
重合開始剤が使用されるが、一般に使用される重
合開始剤としては、例えばラウロイルパーオキシ
ド、ターシヤリーブチルパーオキシピバレート、
ベンゾイルパーオキシド、イソプロピルジオキシ
カーボネート、アゾビスイソブチロニトリル、
α,α′−アゾビス−4−メトキシ2,4−ジメチ
ルバレロニトリル等の公知の油溶性重合開始剤が
好適に使用される。 本発明において第1段で重合する単量体の重合
率は50%以上、好ましくは70%以上とするのが好
適である。該重合率が50%より低いと分散剤にと
りかこまれたPVC3次粒子内に2次粒子とフリー
の単量体が共存することがある場合があるため、
次いで第2段の重合に際し、分散剤、単量体、必
要に応じて重合開始剤を添加して単量体を重合す
るときPVCが2次粒子内で混合する可能性があ
り、本発明の効果が十分に発揮されない場合も生
ずる。一方、重合率が50%以上好ましくは70%以
上になるとフリーの単量体がほとんどなくなり、
重合缶の圧力低下がおこり始めるので、この時点
で新たに分散剤と単量体必要に応じて重合開始剤
を添加して第2段の重合を行なえば本発明の効果
を十分に発揮する。 本発明の第1段の重合条件は特に限定されず重
合度が600よりも大きくなる公知の重合条件から
選択して実施すればよい。例えば水性媒体中に必
要な分散剤、単量体、重合開始剤を添加し、50〜
70℃の温度下に単量体を重合することによつて、
重合度600よりも大きいPVCを得ることが出来
る。 本発明に於ける第2段の重合は上記第1段の重
合によつて得られた重合度600よりも大きい高分
子量PVCを含む水性媒体即ち重合系に、新たな
塩化ビニル単量体又は塩化ビニル単量体と共重合
可能な他の単量体との混合物及び分散剤、必要に
応じて重合開始剤を添加し、第1段で得られた高
分子量PVCよりも重合度が小さくなるように上
記単量体を重合することが重要な要件である。例
えば重合度が同じであつても一旦乾燥させた高分
子量PVCを水性媒体中に添加して上記第2段の
重合だけを実施しても成形加工品にフイツシユア
イやブツが発生するので本発明の目的物とは異な
る製品となる。従つて本発明にあつては前記第1
段の重合に引き続き即ち第1段の重合物を乾燥す
ることなく、第2段の重合を実施するのが必要な
要件の1つである。但し第1段の重合体と水性媒
体とを分離し、該重合体を乾燥することなく、再
び必要な水性媒体、重合時の添加剤を加えて重合
系を調製することはさしつかえない。また前記し
たように第1段の重合に引続き実施される第2段
の重合に際しては、新たな単量体と分散剤の添加
を行うことも重要な要件の1つである。なぜなら
ば第2段の重合に先きだつて単量体の添加を実施
しなければ前記したように嵩比重の増加がほとん
どなく、得られるPVCの加工性が改良されない
し、同様に分散剤の添加がなくても得られる
PVCの加工性を改良することが出来ない。 本発明に於ける前記第2段の重合で、第1段の
重合で得られる高分子量PVCの重合度より小さ
い重合度となるように単量体を重合させる手段は
特に限定されず公知の手段、方法をそのまゝ又は
変形して採用することが出来る。一般には第2段
の重合温度を60〜85℃、好ましくは第1段の重合
温度より例えば5〜20℃高くするとか或いは第2
段の重合に際して連鎖移動剤を添加するなどの手
段が好適に採用される。 該連鎖移動剤は公知のものから適宜選択して用
いればよいが、一般には、例えばペンタン、ヘプ
タンなどの飽和炭化水素類;四塩化炭素、トリク
ロルエチレンなどの塩素化炭化水素類;プロピオ
ンアルデヒド、ブチルアルデヒドなどのアルデヒ
ド類;ドデシルメルカプタン、2−メルカプトエ
タノールなどの有機メルカプタン類などが好適に
使用される。特に有機メルカプタン類は連鎖移動
効果が大きいため、低分子量PVCが効率的に重
合される。有機メルカプタン類としては、オクチ
ルメルカプタン、ドデシルメルカプタンなどのア
ルキルメルカプタン類;2−メルカプトエタノー
ル、α−チオグリセロールなどのメルカプトアル
カノール類、エタンジチオール、プロパンジチオ
ールなどのアルキルジチオール類;チオグリコー
ル酸、チオ乳酸などのチオカルボン酸類;チオグ
リコール酸n−ブチルエステル、チオグリコール
酸n−ヘキシルエステルなどのチオグリコール酸
アルキルエステル類が一般に好適に使用される。
また連鎖移動剤の使用量は重合温度や連鎖移動剤
の種類などにより異なるので必ずしも限定的でな
いが、一般には塩化ビニル単量体に対して0.001
〜10重量%、好ましくは0.01〜5重量%の範囲に
あればよい。 本発明において、第1段の重合で得られる高分
子量PVCと第2段の重合で得られる低分子量
PVCの重合度の差は必ずしも限定的でなく必要
とする加工性の改良度合に応じて選べばよいが十
分に加工性の向上を必要とするときは重合度の差
に200以上の差を与えると好ましい。一般に低分
子量ポリマーと高分子量ポリマーは相溶性ブレン
ド体として扱われる。ブレンドポリマーの力学的
性質は、低分子量ポリマーと高分子量ポリマーの
各々の力学的性質の並列モデルで整理される。従
つて、ブレンドポリマーの力学的性質は各成分の
組成比で整理される平均的な値になる。しかしな
がら、本発明によれば、(イ)低分子量PVCと高分
子量PVCが少なくとも2次粒子以上の粒子オー
ダーでの混合割合が多くなり、PVC粒子の嵩比
重が増大すると共にゲル化速度が促進すること、
(ロ)重合過程で高分子量PVCと低分子量PVCの化
学反応、例えばグラフト反応がおこること、(ハ)
PVC粒子の形態が従来の公知の方法では不可能
な特異性が発揮できることが期待されるため、加
工性の向上と共に力学的性質が平均的な値よりも
向上する。即ち、本発明の方法で製造したPVC
の力学的性質は、高分子量PVCと低分子量PVC
の組成比から計算される値よりはるかにすぐれた
性質が発揮される。PVCの重合度が低下すると
ゲル化速度は速くなるが、機械的強度は低下す
る。本発明において高分子量PVCの重合度をP1 W
重合量をW1、低分子量PVCの重合度をP2 W、重合
量をW2とするとき、P1 W−P2 W>400の場合には、
0.02≦W2/W1+W2<0.25となるようにするのが好ま しい。W2/W1+W2≧0.25になると高分子量PVCに 対して機械的強度の低下した低分子量PVCの構
成量が多くなる場合がありそのために得られた
PVCの機械的強度が低下することがある。また
W2/W1+W2<0.02の範囲では加工性の向上と機械 的強度の向上が少ない場合がある。さらにまた、
0<P1 W−P2 W≦400の場合には、0.05≦W2/W1+W2< 0.50の範囲となるようにするのが好ましい。P1 W
P2 Wの値が小さい場合には低分子量PVCの重合量
が多い方が加工性の改良の観点から望ましいが、
W2/W1+W2≧0.50になると機械的強度の向上が十 分には期待出来ない場合がある。またW2/W1+W2 <0.05の場合には加工性の改良が非常に小さい場
合がある。従つて、P1 W−P2 W≧200となるようにす
るのが最も好ましい。また本発明においてP1 W
P2 W>400の高分子量PVCと低分子量PVCを重合
する製造方法を選択すると、低分子量PVCの重
合量が少なくて本発明の効果が発揮され易いので
好適である。 また、本発明において、本発明の効果を最も発
揮する前記第2段の重合で得られる低分子量
PVCの重合度は、前記高分子量PVCの重合度、
重合量等によつて多少異なるので予め決定すれば
よいが、一般には200〜600の範囲から選ぶのが好
適である。 本発明で得られるPVCは前記したように、高
分子量PVCと低分子量PVCとを単にブレンドし
たものと比較すると著しくすぐれた物性の改良が
得られる。この原因は必ずしも明確ではないが、
高分子量PVCと低分子量PVCとが2次粒子以上
の粒子状態で混合されるだけでなく、高分子量
PVCの表面に低分子量PVCが包い、二相構造に
類似した粒子構造をしていることと、高分子量
PVCに1部の低分子量PVCがグラフト重合した
形をとつていることによるものと推定している。 本発明を更に具体的に説明するために以下実施
例及び比較例を挙げて説明するが本発明はこれら
の実施例に限定されるものではない。 尚、実施例及び比較例に於ける略記号P〓Wは重
量平均重合度を示す。 また、実施例及び比較例で表示された測定値は
以下の測定方法によつた。 (1) 重量平均重合度及び嵩比重 JIS K−6721の方法に準じて求めた。 (2) 引張試験 成形加工したシートを175℃で10分間予熱、
10分間40Kg/cm2でブレスした厚み1mmのシート
を2号形試験片に打ち抜いた後、JIS K−7113
の方法に準じて23℃の温度で10mm/minの引張
速度で測定した。 (3) ゲル化時間 ヘンシエルミキサーで安定剤とPVCをコー
ルドブレンドした混合試料をブラベンダープラ
スチコーダーを用いて測定した。 実施例 1 30の撹拌機つきオートクレーブに部分鹸化ポ
リビニルアルコール8gとメチルセルロース3g
を溶解したイオン交換水12Kgにターシヤリブチル
パーオキシピバレート10gを仕込み、オートクレ
ーブを脱気後塩化ビニル単量体8Kgを仕込んで57
℃で5時間重合し、第1表に示す重合度の高分子
量PVCを得た。次いで第1表に示す割合の塩化
ビニル単量体、ドデシルメルカプタン、ターシヤ
リブチルパーオキシピバレート及び部分鹸化ポリ
ビニルアルコールを溶解したイオン交換水2Kgを
窒素圧力下にオートクレープ内に圧入し57℃で4
時間重合し第1表に示す重合度の低分子量PVC
を得た。得られたPVCの特性値(重合度、嵩比
重)を第1表に示した。かくして得られたPVC
は第A表に準じた配合とし、ヘンシエルミキサー
でブレンドした。ゲル化時間はこの混合試料につ
いて測定した。
The present invention relates to a method for producing a vinyl chloride polymer (hereinafter simply referred to as PVC), and in particular to a method for obtaining PVC that has excellent processability and mechanical strength. In general, the molding process of PVC is strongly dependent on the particle morphology, state, and molecular structure because it uses a semi-molten powder processing method. Increasing the bulk specific gravity of PVC powder reduces the volume of the container required for storage, makes it easier to drop and fill from the hopper into the processing machine, and improves the penetration of the resin inside the processing machine. This is an essential condition for improving workability. However, when the bulk specific gravity increases, the gelation rate slows down, and the molded product is more likely to have cracks or cracks. Therefore, in order to increase the bulk specific gravity of PVC obtained by the suspension polymerization method, efforts have been made to change the type of dispersant, the amount added, the stirring speed, the shape of the stirring blade, etc. There is a limit. In addition, in the suspension polymerization method, a method of lowering the polymerization temperature is adopted as a way to increase the average degree of polymerization of PVC.
Lowering the polymerization temperature lowers the bulk specific gravity of PVC.
As the average degree of polymerization of PVC increases, the mechanical strength of the molded product should improve, but gelling properties deteriorate, so methods of increasing the molding temperature and adding large amounts of processing aids were adopted. However, it is difficult to obtain a uniform gelled state, and it is extremely difficult to improve mechanical strength. Furthermore,
When the bulk specific gravity of PVC with a high average degree of polymerization is increased,
The gelling property becomes worse. In addition, as a method to increase the bulk density of PVC,
Macromolecular Science, Volume A11, 1223~
Page 1234, 1977 describes a method in which vinyl chloride monomer is added before and after a pressure drop occurs in aqueous suspension polymerization of vinyl chloride monomer, but the gelling property It is also stated that there is a significant decrease in Further, U.S. Pat. No. 3,945,985 and U.S. Pat. No. 3,956,251 disclose suspension polymerization of PVC, in which PVC is first produced at a temperature of 15 to 50°C with a polymerization yield of 1 to 60%.
A polymerization method has been provided in which after polymerizing PVC, the polymerization temperature is raised to 60 to 80°C to polymerize PVC with a lower degree of polymerization. However, in these methods, there is a very low possibility that high molecular weight PVC and low molecular weight PVC will be mixed in the form of secondary or tertiary particles. That is, the suspension polymerized PVC particles are tertiary particles with an average particle size of about 100 microns, in which secondary particles with an average particle size of about 0.5 to 1.5 microns are aggregated with appropriate voids. The secondary particles are said to be composed of fibrils in which PVC molecular chains aggregate. In these methods, PVC with different molecular weights are mixed inside the secondary particles, so not only do they exhibit gelling properties that are lower than those between the two PVCs, but also the bulk specific gravity hardly increases, so there is no improvement in processability. Less is. Furthermore, when high molecular weight PVC and low molecular weight PVC are blended, they are mixed in the form of tertiary particles, but the bulk specific gravity does not increase. Therefore, the present invention provides a method for producing PVC which not only has a large bulk specific gravity and excellent gelling properties, but also has excellent mechanical strength of processed molded products. That is, the present invention performs the first stage polymerization of vinyl chloride monomer or a mixture of vinyl chloride monomer and other copolymerizable monomer in an aqueous medium, and the polymerization degree is greater than 600. A high molecular weight vinyl chloride polymer is obtained, and a mixture with a vinyl chloride monomer or another monomer copolymerizable with the vinyl chloride monomer and a dispersant are added to an aqueous medium containing the high molecular weight vinyl chloride polymer. production of a vinyl chloride polymer, characterized in that the monomer is subjected to a second stage polymerization such that the degree of polymerization is lower than that of the high molecular weight vinyl chloride polymer obtained in the first stage polymerization. It's a method. Other monomers that can be copolymerized with the vinyl chloride monomer that can be used in the present invention are not particularly limited, and known monomers can be used. In general, those having ethylenically unsaturated groups, such as olefin compounds such as ethylene and propylene; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated monocarboxylic acids and their alkyl esters such as acrylic acid and α-alkyl acrylic acid. acrylic acid, methacrylic acid, ethyl acrylate, methyl methacrylate, acrylic acid amide,
Methacrylamide; unsaturated nitriles such as acrylonitrile; unsaturated dicarboxylic acids such as maleic acid and fumaric acid; alkyl esters thereof;
and its anhydrides; vinyl alkyl ethers such as vinyl methyl ether and vinyl ethyl ether;
Various other known copolymerizable monomers are preferably used. Further, the dispersant used in the present invention may be a known dispersant, for example, partially saponified polyvinyl alcohol, vinyl acetate-maleic anhydride copolymer, polyvinylpyrrolidone, gelatin, starch, methyl cellulose, hydroxypropyl cellulose, etc. are preferably used. used. The amount of these dispersants added is not necessarily limited and varies depending on the type of dispersant, stirring efficiency, polymerization temperature, type and composition of other copolymerizable monomers, particle size of PVC, etc. It is generally used in an amount of 0.02 to 2.0%, preferably 0.05 to 1%, based on the vinyl chloride monomer. The amount of dispersant added when polymerizing the second-stage monomer in the present invention affects the processing characteristics of the resulting PVC; for example, if the amount of dispersant is too small, processability will decrease. It is best to determine the amount to be added in advance. A known polymerization initiator is used in the polymerization of the monomers in the present invention, and commonly used polymerization initiators include, for example, lauroyl peroxide, tert-butyl peroxypivalate,
Benzoyl peroxide, isopropyldioxycarbonate, azobisisobutyronitrile,
Known oil-soluble polymerization initiators such as α,α'-azobis-4-methoxy2,4-dimethylvaleronitrile are preferably used. In the present invention, the polymerization rate of the monomer polymerized in the first stage is preferably 50% or more, preferably 70% or more. If the polymerization rate is lower than 50%, secondary particles and free monomers may coexist within the PVC tertiary particles surrounded by the dispersant.
Then, in the second stage of polymerization, when the dispersant, monomer, and if necessary a polymerization initiator are added and the monomer is polymerized, there is a possibility that PVC will be mixed in the secondary particles. There may also be cases where the effect is not fully demonstrated. On the other hand, when the polymerization rate is 50% or more, preferably 70% or more, there is almost no free monomer.
Since the pressure in the polymerization reactor begins to decrease, at this point, a dispersant, a monomer, and, if necessary, a polymerization initiator are newly added and the second stage polymerization is performed to fully exhibit the effects of the present invention. The polymerization conditions for the first stage of the present invention are not particularly limited, and may be selected from known polymerization conditions that result in a degree of polymerization greater than 600. For example, add the necessary dispersant, monomer, and polymerization initiator to an aqueous medium, and
By polymerizing the monomers at a temperature of 70℃,
PVC with a degree of polymerization greater than 600 can be obtained. In the second stage polymerization in the present invention, new vinyl chloride monomer or chloride is added to the aqueous medium, ie, the polymerization system, containing high molecular weight PVC with a polymerization degree higher than 600 obtained in the first stage polymerization. A mixture of the vinyl monomer and other monomers that can be copolymerized, a dispersant, and a polymerization initiator if necessary are added so that the degree of polymerization is lower than that of the high molecular weight PVC obtained in the first stage. It is an important requirement to polymerize the above monomers. For example, even if the degree of polymerization is the same, even if dried high molecular weight PVC is added to an aqueous medium and only the above-mentioned second stage polymerization is carried out, the molded product will have fish eyes and spots. The product will be different from the intended product. Therefore, in the present invention, the first
One of the requirements is to carry out the second stage polymerization subsequent to the stage polymerization, ie without drying the first stage polymer. However, it is possible to prepare the polymerization system by separating the first stage polymer from the aqueous medium and adding the necessary aqueous medium and additives for polymerization again without drying the polymer. Furthermore, as described above, one of the important requirements is to add new monomers and dispersants during the second stage polymerization that is carried out subsequent to the first stage polymerization. This is because if monomers are not added prior to the second stage polymerization, there will be almost no increase in the bulk specific gravity as described above, and the processability of the resulting PVC will not be improved, and similarly, the addition of dispersants can be obtained without
It is not possible to improve the workability of PVC. In the second stage polymerization of the present invention, the means for polymerizing the monomers so that the degree of polymerization is lower than the degree of polymerization of the high molecular weight PVC obtained in the first stage polymerization is not particularly limited, and any known means can be used. , the method can be employed as is or with modification. Generally, the second stage polymerization temperature is 60 to 85°C, preferably 5 to 20°C higher than the first stage polymerization temperature, or
Means such as adding a chain transfer agent during stage polymerization are preferably employed. The chain transfer agent may be appropriately selected from known ones, but generally includes saturated hydrocarbons such as pentane and heptane; chlorinated hydrocarbons such as carbon tetrachloride and trichlorethylene; propionaldehyde and butyl. Aldehydes such as aldehydes; organic mercaptans such as dodecyl mercaptan and 2-mercaptoethanol are preferably used. In particular, organic mercaptans have a large chain transfer effect, so that low molecular weight PVC can be efficiently polymerized. Examples of organic mercaptans include alkyl mercaptans such as octyl mercaptan and dodecyl mercaptan; mercaptoalkanols such as 2-mercaptoethanol and α-thioglycerol; alkyl dithiols such as ethanedithiol and propanedithiol; thioglycolic acid, thiolactic acid, etc. Thiocarboxylic acids; thioglycolic acid alkyl esters such as thioglycolic acid n-butyl ester and thioglycolic acid n-hexyl ester are generally preferably used.
The amount of chain transfer agent to be used is not necessarily limited as it varies depending on the polymerization temperature and type of chain transfer agent, but generally it is 0.001 to vinyl chloride monomer.
It may be in the range of ~10% by weight, preferably 0.01~5% by weight. In the present invention, the high molecular weight PVC obtained in the first stage polymerization and the low molecular weight PVC obtained in the second stage polymerization are
The difference in the degree of polymerization of PVC is not necessarily limited and can be selected depending on the degree of improvement in workability required, but if a sufficient improvement in workability is required, the difference in degree of polymerization should be 200 or more. and preferable. Generally, low molecular weight polymers and high molecular weight polymers are treated as compatible blends. The mechanical properties of blended polymers are organized by parallel models of the mechanical properties of low molecular weight polymers and high molecular weight polymers. Therefore, the mechanical properties of the blended polymer are average values determined by the composition ratio of each component. However, according to the present invention, (a) the mixing ratio of low molecular weight PVC and high molecular weight PVC increases at least on the particle order of secondary particles or higher, and the bulk specific gravity of the PVC particles increases and the gelation rate is accelerated. thing,
(b) A chemical reaction between high molecular weight PVC and low molecular weight PVC, such as a graft reaction, occurs during the polymerization process; (c)
Since the morphology of PVC particles is expected to exhibit specificity that is not possible with conventional known methods, processability and mechanical properties will be improved above average values. That is, PVC produced by the method of the present invention
The mechanical properties of high molecular weight PVC and low molecular weight PVC
It exhibits properties that are far superior to those calculated from the composition ratio. As the degree of polymerization of PVC decreases, the gelation rate increases, but the mechanical strength decreases. In the present invention, the degree of polymerization of high molecular weight PVC is P 1 W ,
When the amount of polymerization is W 1 , the degree of polymerization of low molecular weight PVC is P 2 W , and the amount of polymerization is W 2 , when P 1 W −P 2 W >400,
It is preferable that 0.02≦W 2 /W 1 +W 2 <0.25. When W 2 /W 1 +W 2 ≧0.25, the amount of low molecular weight PVC with reduced mechanical strength may increase compared to high molecular weight PVC.
The mechanical strength of PVC may be reduced. Also
In the range of W 2 /W 1 +W 2 <0.02, improvements in workability and mechanical strength may be small. Furthermore,
When 0<P 1 W −P 2 W ≦400, it is preferable that the range is 0.05≦W 2 /W 1 +W 2 <0.50. P 1 W
When the value of P 2 W is small, it is desirable to have a large amount of low molecular weight PVC polymerized from the viewpoint of improving processability.
When W 2 /W 1 +W 2 ≧0.50, sufficient improvement in mechanical strength may not be expected. Furthermore, when W 2 /W 1 +W 2 <0.05, the improvement in workability may be very small. Therefore, it is most preferable to set P 1 W −P 2 W ≧200. Furthermore, in the present invention, P 1 W
It is preferable to select a production method in which high molecular weight PVC with P 2 W >400 and low molecular weight PVC are polymerized because the amount of polymerized low molecular weight PVC is small and the effects of the present invention can be easily exhibited. In addition, in the present invention, the low molecular weight obtained in the second stage polymerization, which exhibits the effects of the present invention most, is
The degree of polymerization of PVC is the degree of polymerization of the high molecular weight PVC,
Since it varies somewhat depending on the amount of polymerization, etc., it may be determined in advance, but it is generally suitable to select from the range of 200 to 600. As described above, the PVC obtained by the present invention has significantly improved physical properties when compared to a simple blend of high molecular weight PVC and low molecular weight PVC. The cause of this is not always clear, but
Not only are high molecular weight PVC and low molecular weight PVC mixed in the form of secondary particles or higher, but also high molecular weight
Low molecular weight PVC is wrapped around the surface of PVC, which has a particle structure similar to a two-phase structure, and high molecular weight
It is presumed that this is due to the graft polymerization of a portion of low molecular weight PVC to PVC. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples. In addition, the abbreviation P– W in Examples and Comparative Examples indicates the weight average degree of polymerization. Furthermore, the measured values shown in Examples and Comparative Examples were based on the following measuring method. (1) Weight average degree of polymerization and bulk specific gravity Determined according to the method of JIS K-6721. (2) Tensile test Preheat the formed sheet at 175℃ for 10 minutes.
After punching a 1 mm thick sheet pressed at 40 kg/cm 2 for 10 minutes into a No. 2 test piece, JIS K-7113
The measurement was carried out at a temperature of 23°C and a tensile speed of 10 mm/min according to the method of . (3) Gelation time A mixed sample prepared by cold blending the stabilizer and PVC using a Henschel mixer was measured using a Brabender plasticorder. Example 1 8 g of partially saponified polyvinyl alcohol and 3 g of methylcellulose were placed in a 30-inch autoclave with a stirrer.
Pour 10 g of tertiary butyl peroxypivalate into 12 Kg of ion-exchanged water dissolved in it, and after degassing the autoclave, add 8 Kg of vinyl chloride monomer.
C. for 5 hours to obtain high molecular weight PVC with the degree of polymerization shown in Table 1. Next, 2 kg of ion-exchanged water in which vinyl chloride monomer, dodecyl mercaptan, tertiary butyl peroxypivalate, and partially saponified polyvinyl alcohol were dissolved in the proportions shown in Table 1 was pressurized into an autoclave under nitrogen pressure, and the mixture was heated at 57°C. 4
Low molecular weight PVC with a degree of polymerization shown in Table 1 after polymerization over time
I got it. The characteristic values (degree of polymerization, bulk specific gravity) of the obtained PVC are shown in Table 1. The thus obtained PVC
The compositions were formulated according to Table A and blended using a Henschel mixer. Gelation time was measured for this mixed sample.

【表】 次に混合試料をミキシングロールを用いて170
℃で5分間混練りし、厚さ1mmのシートを作成し
た。このシートをプレス成形して引張試験を行な
つた。その結果を第1表に示した。なお第1表に
は実施例1に示す条件中、分散剤、連鎖移動剤、
塩化ビニル単量体等の1つ又は全部を除いた他は
実施例1と同様に実施した結果を、比較例として
第1表No.5〜11に示した。
[Table] Next, mix the mixed sample at 170°C using a mixing roll.
The mixture was kneaded at ℃ for 5 minutes to form a sheet with a thickness of 1 mm. This sheet was press-molded and subjected to a tensile test. The results are shown in Table 1. Table 1 shows that under the conditions shown in Example 1, dispersants, chain transfer agents,
The same procedure as in Example 1 was carried out except that one or all of the vinyl chloride monomers were omitted, and the results are shown in Table 1 Nos. 5 to 11 as comparative examples.

【表】 実施例 2 30の撹拌機つきステンレス製オートクレーブ
に部分鹸化ポリビニルアルコール10gとメチルセ
ルロース4gを溶解したイオン交換水12Kgにター
シヤリブチルパーオキシピバレート12gを仕込
み、オートクレーブを脱気後塩化ビニル単量体を
8Kgを仕込んで50℃で6時間重合し高分子量
PVC(重合度1550)を得た。次いで部分鹸化ポリ
ビニルアルコール3gとメチルセルロース1gを
溶解したイオン交換水2Kg、塩化ビニル単量体1
Kg、2−メルカプトエタノール2.5g、ラウロイ
ルパーオキシド2gを窒素圧力でオートクレーブ
内に圧入した後60℃で4時間重合を行ない低分子
量PVC(重合度350)を得た。得られたPVCの嵩
比重は0.58であつた。かくして得られたPVCを実
施例1と同様の方法で安定剤を配合し、ゲル化時
間と引張強度を測定した。ゲル化時間は7.3分、
引張強度は570Kg/cm2であつた。 比較例として、50℃で6時間重合して得た高分
子量PVC(重合度1550)の嵩比重は0.49であつた。 実施例 3 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.5gとメチルセル
ロース0.6gを溶解したイオン交換水1Kg、ター
シヤリブチルパーオキシピバレート0.5g及び酢
酸ビニル10gを仕込んだ後、オートクレーブを脱
気後塩化ビニル単量体350gを仕込み、57℃で6
時間重合し高分子量PVC(重合度1000)を得た。
次いで、残存モノマーをパージした後、ポリビニ
ルピロリドン0.5gを溶解したイオン交換水50c.c.、
アゾビスイソブチロニトリル0.15g、ドデシルメ
ルカプタン2g及び塩化ビニル単量体80gを仕込
み、70℃で4時間重合を行ない低分子量PVC(重
合度240)を得た。得られたPVCの嵩比重は0.44
であつた。かくして得られたPVC100重量部にジ
ブチル錫マレエート2重量部とジブチル錫ラウレ
ート1重量部を配合して混合した試料のゲル化時
間は3.1分であつた。またロール混練りして作成
したシートの引張強度は520Kg/cm2であつた。 比較例として、実施例3と同様の方法で重合し
た高分子量PVC(重合度1000)の嵩比重は0.38で
あつた。またゲル化時間は5.2分、引張強度は500
Kg/cm2であつた。 実施例 4 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.5gとメチルセル
ロース0.6gを溶解したイオン交換水1Kgとター
シヤリブチルパーオキシピバレート0.5gを仕込
んだ後、オートクレーブを脱気後塩化ビニル単量
体を350g仕込み、57℃で5時間重合し高分子量
PVCを得た。次いで、部分鹸化ポリビニルアル
コール0.6gとメチルセルロース0.2gを溶解した
イオン交換水100g、ターシヤリブチルパーオキ
シピバレート0.2g、2−メルカプトエタノール
0.2g、塩化ビニル単量体80g及び第2表に示す
共重合可能な他の単量体を窒素圧力を利用してオ
ートクレーブに圧入し、57℃で3時間低分子量
PVCを重合した。得られたPVCの特性値と実施
例1と同様の方法で安定剤を混合した試料のゲル
化時間と引張強度を第2表に示した。尚第2表No.
4は第2段の重合に於いて部分鹸化ポリビニルア
ルコールとメチルセルロースの分散剤を添加しな
い以外は実施例4と同様に実施した結果を比較例
として示した。
[Table] Example 2 12 kg of ion-exchanged water in which 10 g of partially saponified polyvinyl alcohol and 4 g of methyl cellulose were dissolved in a stainless steel autoclave equipped with a 30 mm stirrer was charged with 12 g of tertiary butyl peroxypivalate, and after degassing the autoclave, vinyl chloride was dissolved. Charge 8 kg of polymer and polymerize at 50℃ for 6 hours to obtain high molecular weight.
PVC (degree of polymerization 1550) was obtained. Next, 2 kg of ion exchange water in which 3 g of partially saponified polyvinyl alcohol and 1 g of methyl cellulose were dissolved, and 1 kg of vinyl chloride monomer were added.
Kg, 2.5 g of 2-mercaptoethanol, and 2 g of lauroyl peroxide were introduced into the autoclave under nitrogen pressure, and polymerization was carried out at 60° C. for 4 hours to obtain low molecular weight PVC (degree of polymerization: 350). The bulk specific gravity of the obtained PVC was 0.58. A stabilizer was added to the thus obtained PVC in the same manner as in Example 1, and the gelation time and tensile strength were measured. Gelation time is 7.3 minutes,
The tensile strength was 570Kg/ cm2 . As a comparative example, bulk specific gravity of high molecular weight PVC (degree of polymerization 1550) obtained by polymerization at 50° C. for 6 hours was 0.49. Example 3 After charging 1 kg of ion-exchanged water in which 1.5 g of partially saponified polyvinyl alcohol and 0.6 g of methyl cellulose, 0.5 g of tertiary butyl peroxypivalate, and 10 g of vinyl acetate were charged into a stainless steel autoclave equipped with a stirrer, the autoclave was removed. After heating, add 350g of vinyl chloride monomer and heat at 57°C.
Polymerization was performed for a period of time to obtain high molecular weight PVC (degree of polymerization 1000).
Next, after purging the remaining monomer, 50 c.c. of ion exchange water in which 0.5 g of polyvinylpyrrolidone was dissolved,
0.15 g of azobisisobutyronitrile, 2 g of dodecyl mercaptan and 80 g of vinyl chloride monomer were charged, and polymerization was carried out at 70° C. for 4 hours to obtain low molecular weight PVC (degree of polymerization 240). The bulk specific gravity of the obtained PVC is 0.44
It was hot. The gelation time of a sample prepared by mixing 100 parts by weight of the PVC thus obtained with 2 parts by weight of dibutyltin maleate and 1 part by weight of dibutyltin laurate was 3.1 minutes. The tensile strength of the sheet produced by roll kneading was 520 Kg/cm 2 . As a comparative example, high molecular weight PVC (degree of polymerization 1000) polymerized in the same manner as in Example 3 had a bulk specific gravity of 0.38. Also, the gelation time is 5.2 minutes, and the tensile strength is 500
It was Kg/ cm2 . Example 4 1 kg of ion-exchanged water in which 1.5 g of partially saponified polyvinyl alcohol and 0.6 g of methylcellulose were dissolved and 0.5 g of tertiary butyl peroxypivalate were placed in a two-stainless steel autoclave equipped with a stirrer, and after degassing the autoclave, vinyl chloride was removed. Add 350g of monomer and polymerize at 57℃ for 5 hours to achieve high molecular weight.
Got PVC. Next, 100 g of ion exchange water in which 0.6 g of partially saponified polyvinyl alcohol and 0.2 g of methylcellulose were dissolved, 0.2 g of tertiary butyl peroxypivalate, and 2-mercaptoethanol were added.
0.2 g, vinyl chloride monomer 80 g, and other monomers that can be copolymerized shown in Table 2 were pressurized into an autoclave using nitrogen pressure, and the low molecular weight
Polymerized PVC. Table 2 shows the characteristic values of the obtained PVC and the gelation time and tensile strength of a sample mixed with a stabilizer in the same manner as in Example 1. Furthermore, Table 2 No.
Example 4 is a comparative example in which the same procedure as in Example 4 was carried out except that a dispersant of partially saponified polyvinyl alcohol and methyl cellulose was not added in the second stage polymerization.

【表】 実施例 5 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.5gとメチルセル
ロース0.6gを溶解したイオン交換水1Kgとター
シヤリブチルパーオキシピバレート0.5gを仕込
んだ後、オートクレーブを脱気後塩化ビニル単量
体350gを仕込み、57℃で5時間重合し高分子量
PVC(重合度1000)を得た。次いで部分鹸化ポリ
ビニルアルコール0.3gとメチルセルロース0.1g
を溶解したイオン交換水50g、ターシヤリブチル
パーオキシピバレート0.15g、2−メルカプトエ
タノール0.2g及び塩化ビニル単量体90gを仕込
み、57℃で3時間重合し低分子量PVC(重合度
450)を得た。得られたPVCの嵩比重は0.44であ
つた。 また比較のために、本発明の1段目の高分子量
PVCと2段目の低分子量PVCを別個に重合し、
本発明の1段目の重合と2段目の重合に仕込んだ
モノマー組成比にブレンドしたPVCの嵩比重を
測定した。その結果ブレンドPVCの嵩比重は0.40
であつた。 実施例 6 撹拌機つき2のステンレス製オートクレーブ
に、部分鹸化ポリビニルアルコール1.5gとメチ
ルセルロース0.6gを溶解したイオン交換水1Kg
とターシヤリブチルパーオキシピバレート0.5g
を仕込んだ。オートクレーブを脱気した後、塩化
ビニル単量体を350g仕込み、57℃で5時間重合
し高分子量PVC(重合度1010)を得た。次いで部
分鹸化ポリビニルアルコール1.0gとメチルセル
ロース0.4gを溶解したイオン交換水100g、ラウ
ロイルパーオキシド0.15g及び塩化ビニル単量体
80gを仕込み、79℃で2時間重合を行い、低分子
量PVC(重合度440)を得た。得られたPVCの嵩
比重は0.45であつた。またこのようにして得られ
たPVCについて実施例1と同様にしてゲル化時
間と引張強度を測定した。その結果、ゲル化時間
は5.9分、引張強度は560Kg/cm2cm2であつた。また
比較のため実施例6の第1段重合だけで得られた
PVCの物性を測定した結果、嵩比重は0.37で、引
張強度は525Kg/cm2であつた。
[Table] Example 5 After charging 1 kg of ion exchange water in which 1.5 g of partially saponified polyvinyl alcohol and 0.6 g of methyl cellulose and 0.5 g of tertiary butyl peroxypivalate were charged into a stainless steel autoclave equipped with a stirrer, the autoclave was degassed. After adding 350g of vinyl chloride monomer, polymerize at 57℃ for 5 hours to obtain high molecular weight.
PVC (degree of polymerization 1000) was obtained. Next, 0.3 g of partially saponified polyvinyl alcohol and 0.1 g of methylcellulose.
50 g of ion-exchanged water in which PVC was dissolved, 0.15 g of tertiary butyl peroxypivalate, 0.2 g of 2-mercaptoethanol, and 90 g of vinyl chloride monomer were charged and polymerized at 57°C for 3 hours to obtain low molecular weight PVC (polymerization degree
450). The bulk specific gravity of the obtained PVC was 0.44. Also, for comparison, the high molecular weight of the first stage of the present invention
Separately polymerize PVC and second stage low molecular weight PVC,
The bulk specific gravity of PVC blended with the monomer composition ratio charged in the first stage polymerization and second stage polymerization of the present invention was measured. As a result, the bulk specific gravity of the blended PVC is 0.40
It was hot. Example 6 1 kg of ion-exchanged water in which 1.5 g of partially saponified polyvinyl alcohol and 0.6 g of methylcellulose were dissolved was placed in a stainless steel autoclave equipped with a stirrer.
and tertiary butyl peroxypivalate 0.5g
I prepared it. After degassing the autoclave, 350 g of vinyl chloride monomer was charged and polymerized at 57°C for 5 hours to obtain high molecular weight PVC (degree of polymerization 1010). Next, 100 g of ion exchange water in which 1.0 g of partially saponified polyvinyl alcohol and 0.4 g of methylcellulose were dissolved, 0.15 g of lauroyl peroxide, and vinyl chloride monomer
80 g was charged and polymerized at 79°C for 2 hours to obtain low molecular weight PVC (degree of polymerization 440). The bulk specific gravity of the obtained PVC was 0.45. Furthermore, the gelation time and tensile strength of the PVC thus obtained were measured in the same manner as in Example 1. As a result, the gelation time was 5.9 minutes, and the tensile strength was 560 Kg/cm 2 cm 2 . Also, for comparison, the sample obtained only by the first stage polymerization of Example 6
As a result of measuring the physical properties of PVC, the bulk specific gravity was 0.37 and the tensile strength was 525 Kg/cm 2 .

Claims (1)

【特許請求の範囲】 1 水性媒体中で、塩化ビニル単量体又は塩化ビ
ニル単量体と共重合可能な他の単量体との混合物
の第1段の重合を行い、重合度が600よりも大き
い高分子量塩化ビニル重合体を得て、次いで該高
分子量塩化ビニル重合体を含む水性媒体に、新た
な塩化ビニル単量体又は塩化ビニル単量体と共重
合可能な他の単量体との混合物及び分散剤を添加
し、第1段の重合で得られた高分子量塩化ビニル
重合体より重合度が小さくなるように該単量体の
第2段の重合をすることを特徴とする塩化ビニル
重合体の製造方法。 2 第1段で得られる高分子量塩化ビニル重合体
の重合度をP1 W、重合量W1とし、第2段で得られ
る重合体の重合度をP2 W、重合量をW2とすると
き、 P1 W−P2 W>400の場合は、 0.02≦W2/W1+W2<0.25であり、 O<P1 W−P2 W≦400の場合は、 0.05≦W2/W1+W2<0.50 であるような条件下で重合する特許請求の範囲1
記載の製造方法。 3 第2段の重合で得られる重合体の重合度が
200〜600である特許請求の範囲1記載の製造方
法。 4 第2段の重合が連鎖移動剤の存在下に実施さ
れる特許請求の範囲1記載の製造方法。 5 連鎖移動剤が有機メルカプタンである特許請
求の範囲4記載の製造方法。 6 第1段で得られる高分子量塩化ビニル重合体
の重合率が70%以上である特許請求の範囲1記載
の方法。
[Claims] 1. A first stage polymerization of vinyl chloride monomer or a mixture of vinyl chloride monomer and other copolymerizable monomer is carried out in an aqueous medium, and the degree of polymerization is less than 600. A high molecular weight vinyl chloride polymer is obtained, and then an aqueous medium containing the high molecular weight vinyl chloride polymer is added with a new vinyl chloride monomer or another monomer copolymerizable with the vinyl chloride monomer. and a dispersant, and carry out a second stage polymerization of the monomers so that the degree of polymerization is lower than that of the high molecular weight vinyl chloride polymer obtained in the first stage polymerization. Method for producing vinyl polymer. 2 Let the degree of polymerization of the high molecular weight vinyl chloride polymer obtained in the first stage be P 1 W and the amount of polymerization W 1 , and the degree of polymerization of the polymer obtained in the second stage be P 2 W and the amount of polymerization W 2 . When P 1 W −P 2 W >400, 0.02≦W 2 /W 1 +W 2 <0.25, and when O<P 1 W −P 2 W ≦400, 0.05≦W 2 /W Claim 1: Polymerization under conditions such that 1 +W 2 <0.50
Manufacturing method described. 3 The degree of polymerization of the polymer obtained in the second stage polymerization is
200 to 600. The manufacturing method according to claim 1. 4. The production method according to claim 1, wherein the second stage polymerization is carried out in the presence of a chain transfer agent. 5. The manufacturing method according to claim 4, wherein the chain transfer agent is an organic mercaptan. 6. The method according to claim 1, wherein the polymerization rate of the high molecular weight vinyl chloride polymer obtained in the first stage is 70% or more.
JP7673881A 1981-05-22 1981-05-22 Production of vinyl chloride polymer Granted JPS57192411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7673881A JPS57192411A (en) 1981-05-22 1981-05-22 Production of vinyl chloride polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7673881A JPS57192411A (en) 1981-05-22 1981-05-22 Production of vinyl chloride polymer

Publications (2)

Publication Number Publication Date
JPS57192411A JPS57192411A (en) 1982-11-26
JPH0225923B2 true JPH0225923B2 (en) 1990-06-06

Family

ID=13613932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7673881A Granted JPS57192411A (en) 1981-05-22 1981-05-22 Production of vinyl chloride polymer

Country Status (1)

Country Link
JP (1) JPS57192411A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996152A (en) * 1982-11-25 1984-06-02 Tokuyama Soda Co Ltd Production of polyvinyl chloride composition
JPH0780926B2 (en) * 1988-08-19 1995-08-30 サン・アロー化学株式会社 Method for producing vinyl chloride resin powder
KR100398741B1 (en) * 1998-11-20 2003-12-24 주식회사 엘지화학 Manufacturing Method of Vinyl Chloride Resin

Also Published As

Publication number Publication date
JPS57192411A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
US5168109A (en) Process for preparing low inherent viscosity-high glass transition agents as an overpolymer on polyvinyl chloride resins
JP2690309B2 (en) Polymerization Method of Colloidally Stable Vinyl Halide with Chain Transfer Agent
JPS6232205B2 (en)
US3682857A (en) Compositions containing vinyl chloride polymers
US4931518A (en) Low molecular weight copolymers of vinyl halide/vinyl acetate produced by aqueous polymerization with mercaptan
JPH0225923B2 (en)
EP0061134B1 (en) Improved polyvinyl chloride and preparation thereof
JPS6312089B2 (en)
EP0177956B1 (en) Low molecular weight vinyl halide/vinyl ester copolymers by aqueous polymerization
JPH0225924B2 (en)
US4918151A (en) Aqueous suspension process for producing low molecular weight vinyl copolymers
US5254630A (en) Process for the production of a vinyl chloride-butyl acrylate graft copolymer for processing by injection molding
US5112522A (en) Mercaptan chain transfer agent compositions useful in aqueous polymerizations
CN114426646B (en) Preparation method of vinyl chloride graft copolymer with excellent processability
JP3584591B2 (en) Method for producing vinyl chloride polymer
JP2910774B2 (en) Method for producing vinyl chloride resin
JPH0428723B2 (en)
JP3240196B2 (en) Method for producing vinyl polymer
JP2690997B2 (en) Method for producing vinyl chloride resin composition
JP4504490B2 (en) Vinyl chloride resin, molded article thereof and method for producing molded article
JP2996418B2 (en) Dispersion stabilizer for suspension polymerization
JPH0432843B2 (en)
JPH06226877A (en) Pipe made of ethylene-vinyl chloride resin
JP3066136B2 (en) Dispersant
JPH09302003A (en) Polymerization of vinyl chloride monomer