JPH029037A - Magneto-optical card recording medium - Google Patents

Magneto-optical card recording medium

Info

Publication number
JPH029037A
JPH029037A JP63159675A JP15967588A JPH029037A JP H029037 A JPH029037 A JP H029037A JP 63159675 A JP63159675 A JP 63159675A JP 15967588 A JP15967588 A JP 15967588A JP H029037 A JPH029037 A JP H029037A
Authority
JP
Japan
Prior art keywords
magnetic field
recording
magneto
recording medium
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63159675A
Other languages
Japanese (ja)
Other versions
JP2615866B2 (en
Inventor
Kaoru Toki
土岐 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63159675A priority Critical patent/JP2615866B2/en
Publication of JPH029037A publication Critical patent/JPH029037A/en
Application granted granted Critical
Publication of JP2615866B2 publication Critical patent/JP2615866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form

Landscapes

  • Credit Cards Or The Like (AREA)

Abstract

PURPOSE:To simplify a recording process and to speed up recording by adding conductive patterns to the magneto-optical card recording medium, generating a bias magnetic field by the current passed to the conductor patterns to control the recording magnetization direction, thereby allowing direct overwriting. CONSTITUTION:Magnetic field generating parts M(2i-1), M(2i) are selected as desired two terminals corresponding to an input signal from an input signal terminal 16 by a selecting circuit 3 from n-pieces of the folded conductor patterns 6 of the two terminals. Current is passed between these two terminals via a current supplying terminal 17. The magnetic field shown by broken lines is generated around the generating parts M(2i-1), M(2i) connected in a common juncture Ci in this way. A perpendicular bias magnetic field 13 can be impressed to the recording layer 12 formed between these generating parts M(2i-1), M(2i). Namely, the recording magnetization direction is determined by the direction of the bias magnetic field and, therefore, overwriting of the recording magnetization is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気カード記録媒体、特に、膜面と垂直方
向に磁化容易軸を有する磁性膜を記録層とし、レーザー
などの光ビームを照射した領域に反転磁区を作ることに
より、情報を記録することができ、磁気光学効果を利用
して読み出すことができる光磁気カード記録媒体に関す
る。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a magneto-optical card recording medium, in particular, a magnetic film having an axis of easy magnetization perpendicular to the film surface as a recording layer, and a light beam such as a laser The present invention relates to a magneto-optical card recording medium in which information can be recorded by creating reversed magnetic domains in the irradiated area and read out using the magneto-optic effect.

〔従来の技術〕[Conventional technology]

一般に、光メモリは、大容量ファイルメモリの一つとし
て位置付けられている。中でも光磁気メモリは、記録情
報の書換えが可能であると言う利点を持っていることか
ら、注目され、特に、ディスクへの応用が各所で盛んに
研究されている。その光記録媒体としては、Tb、Gd
、Dy、Ha等の希土類金属とFe、Co、Ni等の遷
移金属との組合せによって作成される非晶質磁性薄膜が
、記録感度が高い、粒界ノイズがない、膜面に垂直方向
の磁気異方性を有する膜が容易に作れる等の利点を有す
るため、最も有望視されている。
Generally, optical memory is positioned as one type of large-capacity file memory. Among them, magneto-optical memory has attracted attention because it has the advantage that recorded information can be rewritten, and in particular, its application to disks is being actively researched in various places. As the optical recording medium, Tb, Gd
, Dy, Ha, etc., and transition metals, such as Fe, Co, Ni, etc., are combined to create an amorphous magnetic thin film that has high recording sensitivity, no grain boundary noise, and magnetic properties perpendicular to the film surface. It is considered the most promising because it has advantages such as the ability to easily produce films with anisotropy.

このような光記録媒体に対する、情報の記録・消去は次
のように行なわれる。
Information is recorded and erased on such an optical recording medium as follows.

記録は、一方向に着磁した光記録媒体にレーザビームを
照射して、媒体温度をキューリ温度Tcもしくは補償温
度7’coml)以上に上昇させ、外部印加磁界と光記
録媒体の反磁界によって、反転磁区な形成することによ
り行われる。
Recording is performed by irradiating a unidirectionally magnetized optical recording medium with a laser beam to raise the medium temperature above the Curie temperature Tc or the compensation temperature 7'coml), and using an externally applied magnetic field and a demagnetizing field of the optical recording medium. This is done by forming reversed magnetic domains.

消去は、外部磁界を記録層とは逆極性に印加しレーザビ
ームを記録時と同等の強度で、光記録媒体に一様に照射
する、いわゆる−括消去により行われる。これにより、
記録媒体の磁化状態は、記録前の初期状態に戻る。
Erasing is performed by applying an external magnetic field with a polarity opposite to that of the recording layer and uniformly irradiating the optical recording medium with a laser beam at the same intensity as during recording, so-called -batch erasing. This results in
The magnetization state of the recording medium returns to the initial state before recording.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来の光磁気記録媒体の応用は、主として
、ディスク媒体を想定したものであり、カード媒体への
応用は、殆ど、報告されていない。
As described above, the application of conventional magneto-optical recording media is mainly intended for disk media, and almost no application to card media has been reported.

また、従来の光磁気記録媒体に対して、情報の記録を行
う場合には、レーザビームを発生する光学系以外に、外
部磁界印加手段が必須であるため、光磁気記録・再生装
置の構成は、複雑になる傾向があった。また、外部磁界
強度として、数百エルステッドのオーダが必要であるた
め、これを高速で切り替えることは、従来の磁界印加手
段である空心コイノペ電磁石、永久磁石等では、困難で
ある。従って、消去には、上述した一括消去方式が用い
られ、また記録には、一定磁界中に、レーザ光パワーを
高速変調する方法が用いられていた。
Furthermore, when recording information on a conventional magneto-optical recording medium, an external magnetic field application means is required in addition to the optical system that generates the laser beam, so the configuration of the magneto-optical recording/reproducing device is , tended to be complex. Furthermore, since the external magnetic field strength requires an order of several hundred oersteds, it is difficult to switch this at high speed using conventional magnetic field applying means such as air-core Koinope electromagnets and permanent magnets. Therefore, for erasing, the above-mentioned batch erasing method has been used, and for recording, a method has been used in which laser light power is modulated at high speed in a constant magnetic field.

従って、情報の記録には、消去過程を必要とするため、
記録再生動作が複雑となるとともに、高速化が限定され
るという欠点があった。
Therefore, recording information requires an erasure process.
This has the drawback that the recording/reproducing operation becomes complicated and speeding up is limited.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光磁気カード記録媒体は基体上に導電体からな
り、一端が共通接続部で接続された一定の間隔を有する
複数の磁界発生部からなる導電体パターンが形成され、
この上に誘電体からなる絶縁層を介して、膜面の垂直方
向に磁気異方性を有し非晶質磁性合金膜からなる記録層
、誘電体からなる保護層の順に形成され、さらに、前記
複数個の磁界発生部の中から、所望の隣接する二端子を
選択する選択回路を含んで構成される。
The magneto-optical card recording medium of the present invention is formed of a conductor on a base, and has a conductor pattern formed of a plurality of magnetic field generating parts having a certain interval and connected at one end by a common connection part,
A recording layer made of an amorphous magnetic alloy film having magnetic anisotropy in the direction perpendicular to the film surface and a protective layer made of a dielectric are formed thereon in this order via an insulating layer made of a dielectric, and further, It is configured to include a selection circuit that selects desired two adjacent terminals from among the plurality of magnetic field generation units.

さらに、本発明の光磁気カード記録媒体は、導電パター
ンが複数個の折り返し状の二端子パターベク ンが簾状のパターンで構成される。
Further, in the magneto-optical card recording medium of the present invention, the conductive pattern is composed of a plurality of folded two-terminal patterns having a blind-like pattern.

〔作用〕[Effect]

折り返し状の導電パターンの場合、複数個の折り返し状
の二端子パターンの中から、所望の二端子を選択し、こ
の二端子間に、電流を流すことによって、このパターン
間に形成された記録層に、垂直方向からバイアス磁界を
印加することができる。このバイアス磁界印加方向は、
通電方向を切り替えることによって、容易に切り替える
ことができる。また、この二端子パターンで形成される
直線状の溝は、光ヘッドのガイドトラックを兼ねる。従
って、レーザビームを、前記ガイドトラッりにそって平
行移動させながら、記録層に照射し、同時に記録信号に
対応した電流を、前記二端子間に通電することによって
、記録層には、信号に対応した磁化状態を実現すること
ができる。
In the case of a folded conductive pattern, a desired two terminal is selected from among a plurality of folded two terminal patterns, and a current is passed between the two terminals to form a recording layer between the patterns. A bias magnetic field can be applied from the perpendicular direction. The direction of applying this bias magnetic field is
Switching can be done easily by switching the current direction. Furthermore, the linear groove formed by this two-terminal pattern also serves as a guide track for the optical head. Therefore, by irradiating the recording layer with a laser beam while moving it in parallel along the guide track, and at the same time passing a current corresponding to the recording signal between the two terminals, the recording layer is exposed to the signal. A corresponding magnetization state can be realized.

また、簾状の導電パターンの場合、一方が複数の端子か
らなり他方が共通に接続された一定の間隔を有する簾状
パターンの中から、所望の隣合う二端子パターンを選択
し、この二端子パターン間に、電流を流すことによって
、このパターン間に形成された記録層に、垂直方向にバ
イアス磁界を印加することができる。このバイアス磁界
印加方向は、通電方向を切り替えることによって、容易
に切り替えることができる。また、この導電体パターン
で形成される直線状の溝は、光ヘッドのガイドトラック
を兼ねる。従って、レーザビームを前記ガイドトラック
にそって平行移動させながら、記録層に照射し、同時に
記録信号に対応した電流の、前記二端子間に通電するこ
とによって、記録層には、信号に対応した磁化状態を実
現することができる。
In the case of a blind-shaped conductive pattern, a desired adjacent two-terminal pattern is selected from blind-shaped patterns having a certain interval, one of which is made up of a plurality of terminals and the other of which is commonly connected, and the two terminals are connected together. By passing a current between the patterns, a bias magnetic field can be applied in the perpendicular direction to the recording layer formed between the patterns. The bias magnetic field application direction can be easily switched by switching the current direction. Further, the linear groove formed by this conductor pattern also serves as a guide track for the optical head. Therefore, by irradiating the recording layer with a laser beam while moving it in parallel along the guide track, and at the same time passing a current corresponding to the recording signal between the two terminals, the recording layer receives the signal corresponding to the signal. A magnetized state can be achieved.

〔実施例〕〔Example〕

次に、本発明の実施例について、図面を参照して詳細に
説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例を示す平面図、第2図は
第1図に示す光磁気媒体の部分斜視図、第3図は第1図
に示す光磁気媒体の部分断面図、第4図(a)、 (b
)は第1図〜第3図に示す導電体パターンの作成法を示
す斜視図、第5図は第1図に示す実施例の動作を説明す
るための動作説明図である。
1 is a plan view showing a first embodiment of the present invention, FIG. 2 is a partial perspective view of the magneto-optical medium shown in FIG. 1, and FIG. 3 is a partial cross-sectional view of the magneto-optical medium shown in FIG. 1. , Fig. 4(a), (b
) is a perspective view showing a method of creating the conductor pattern shown in FIGS. 1 to 3, and FIG. 5 is an operation explanatory diagram for explaining the operation of the embodiment shown in FIG. 1.

第1図に示す光磁気カード記録媒体は、カード状の基体
1の上に導電体パターン6を含む光磁気記録媒体2およ
び入力信号端子16に供給される入力信号に応じて所望
の二端子を選択して電流供給端子17からの電流を供給
する選択回路3とを含んで構成される。
The magneto-optical card recording medium shown in FIG. The selection circuit 3 selectively supplies current from the current supply terminal 17.

基板1は、厚さ1.2胴のポリカーボネイトやPMMA
などから成るカード状のプラスチックの基板(縦55m
m横85鵬)で、この基板1の上に厚さ500人の5i
sNa膜(窒化シリコン膜)からなる絶縁パターン4お
よび厚さ100人のTi膜(チタン膜)からなる付着パ
ターン5を介して、高さ約3000人、幅約4000人
のAu(金)やAA(アルミニウム)等の導電体からな
る折り返し状の二端子の導電体パターン6が形成されて
いる。
The substrate 1 is made of polycarbonate or PMMA with a thickness of 1.2 mm.
A card-shaped plastic board (55 m long) consisting of
5i with a thickness of 500 people on this board 1.
Through an insulating pattern 4 made of an sNa film (silicon nitride film) and an adhesion pattern 5 made of a Ti film (titanium film) with a thickness of 100, Au (gold) or AA with a height of about 3000 and a width of about 4000 is formed. A folded two-terminal conductive pattern 6 made of a conductive material such as (aluminum) is formed.

この導電体パターン6は、一定の間隔的1.6μmを隔
てて形成されている磁界発生部Ml、 M2.〜M(2
n)と、共通接続部CI、C2,〜Cnとで形成されて
いる。
This conductor pattern 6 includes magnetic field generating portions M1, M2, . ~M(2
n) and common connection portions CI, C2, to Cn.

この導電体パターン6の上に厚さ500人の5ixN4
膜からなる絶縁層7を介して、膜面の垂直方向に磁気異
方性を有し非晶質磁性合金膜からなる記録層8として、
厚さ3000人のTbFeCo合金膜(T b a2z
F e o、v*c o aos)、さらに保護層9と
して、厚さ1000人のS i 3N4膜が形成されて
いる。
5ixN4 with a thickness of 500 on this conductor pattern 6
A recording layer 8 made of an amorphous magnetic alloy film having magnetic anisotropy in the direction perpendicular to the film surface is formed through an insulating layer 7 made of a film.
3000mm thick TbFeCo alloy film (Tb a2z
F e o, v*c o aos), and a Si 3N4 film with a thickness of 1000 nm is further formed as a protective layer 9.

各層はマグネトロンスパッタにより成膜される。Each layer is formed by magnetron sputtering.

まず、A u ’e’ A 1等の導電体からなる折り
返し状の二端子の導電体パターン6は、次のようにして
形成される。
First, a folded two-terminal conductor pattern 6 made of a conductor such as A u 'e' A 1 is formed as follows.

第4図(a)に示すように、基板1上に厚さ500人の
5isNt膜からなる絶縁層4′、厚さ100人のTi
膜からなる付着層5′お、よび厚さ3000人のAuの
導電体層6′の順にスパッタした後、厚さ2500人、
幅5000人、長さ30mmのレジストパター7(AZ
1350J使用)10を1.6μmピッチで形成する。
As shown in FIG. 4(a), an insulating layer 4' consisting of a 5isNt film with a thickness of 500 nm and a Ti film with a thickness of 100 nm are formed on the substrate 1.
After sputtering an adhesion layer 5' consisting of a film, and a conductor layer 6' of 3000 mm thick Au,
Resist putter 7 (AZ) with width 5000 and length 30mm
1350J) are formed at a pitch of 1.6 μm.

しかる後、A r (アルゴン)を用いて、ガス圧2.
6 X 10−”P aで4分間イオンミリングする。
Then, using Ar (argon), the gas pressure was increased to 2.
Ion mill for 4 minutes at 6 x 10-''Pa.

さらに、酸素プラズマにより、残ったレジストを剥離す
ることによって、第4図(b)に示すように、Auの折
り返し状の二端子の導電体パターン6が、高さ3000
人、幅4000人、ピッチ1.6μmで形成される。記
録層8をなすTbFeCo合金膜は、FeCoターゲ、
ト上に、Tb片を配した複合ターゲットを用い、Arガ
ス雰囲気で、パワー密度4 W/Ci、スパッタガス圧
3.5X10−’Paで作成される。絶縁層7と保護層
9を形成する5ixN4膜は、Siターゲットを用い、
irとN2の混合ガス(50%N2)を、スパッタガス
とした反応性スパッタにより、パワー密度8W/co!
、スハッタガスEE2.5XlO−’Paで作成される
Furthermore, by peeling off the remaining resist using oxygen plasma, a folded two-terminal conductor pattern 6 of Au is formed with a height of 3000 mm, as shown in FIG. 4(b).
It is formed with a width of 4,000 people and a pitch of 1.6 μm. The TbFeCo alloy film forming the recording layer 8 has a FeCo target,
Using a composite target with a Tb piece placed on top of the target, it was created in an Ar gas atmosphere at a power density of 4 W/Ci and a sputtering gas pressure of 3.5 x 10-'Pa. The 5ixN4 film forming the insulating layer 7 and the protective layer 9 was formed using a Si target.
By reactive sputtering using a mixed gas of IR and N2 (50% N2) as the sputtering gas, the power density is 8W/co!
, prepared with Shutta gas EE2.5XlO-'Pa.

次に、第7図および第3図に示す光磁気記録媒体を用い
た第1図に示す光磁気カード記録媒体の記録動作を図面
を用いて説明する。
Next, the recording operation of the magneto-optical card recording medium shown in FIG. 1 using the magneto-optical recording medium shown in FIGS. 7 and 3 will be explained with reference to the drawings.

第1図に示したn個の折り返し状の二端子の導電体パタ
ーン6の中から、選択回路3により入力信号端子16か
ら入力信号に応じた所望の二端子として磁界発生部M(
21−1)、M(2i)を選択し、第5図に示すように
、この二端子間に電流供給端子17を介して電流を流す
と、共通接続部Ciで接続された折り返し状磁界発生部
M(2i−1)、M(2i)のまわりには、破線11で
示す磁界を生じる。つまり、この磁界発生部M(2i1
)、 M (2i)の間に形成された記録層12には、
垂直方向バイアス磁界13を印加することができる。そ
して、このバイアス磁界の印加方向および大きさは、二
端子間に流す電流の通電方向18および大きさを変える
ことにより、容易に選択できる。従って、第5図に示す
ように、レーザビーム14を、折り返し状パターンをガ
イドトラックとして、その長さ方向に相対的に平行移動
させながら、前記パターンの間にある記録層12.20
に順次照射して、記録層12.20の温度をキュリー温
度Tc以上(約220℃)に上昇させ、同時に、着磁す
るタイミングに合わせて前記二端子間に流す電流を、ス
イッチングすることによって、記録層12.20の冷却
過程で、記録層12.20には、記録信号に対応した所
望の磁化状態を実現することができる。
From among the n folded two-terminal conductor patterns 6 shown in FIG. 1, the selection circuit 3 selects a magnetic field generating portion M (
21-1), M(2i) is selected, and as shown in FIG. 5, when a current is passed between these two terminals via the current supply terminal 17, a folded magnetic field connected at the common connection part Ci is generated. A magnetic field indicated by a broken line 11 is generated around the portions M(2i-1) and M(2i). In other words, this magnetic field generating part M (2i1
), M (2i), the recording layer 12 formed between
A vertical bias magnetic field 13 can be applied. The direction and magnitude of this bias magnetic field can be easily selected by changing the current direction 18 and magnitude of the current flowing between the two terminals. Therefore, as shown in FIG. 5, while moving the laser beam 14 relatively parallel in the longitudinal direction using the folded pattern as a guide track, the recording layer 12, 20 between the patterns is moved.
by sequentially irradiating the recording layer 12.20 to raise the temperature of the recording layer 12.20 above the Curie temperature Tc (approximately 220° C.), and at the same time, by switching the current flowing between the two terminals in accordance with the timing of magnetization, During the cooling process of the recording layer 12.20, a desired magnetization state corresponding to the recording signal can be realized in the recording layer 12.20.

このように、光磁気記録媒体2を用いた記録動作では、
記録磁化方向は記録層の初期磁化方向にはよらず、バイ
アス磁界の方向によって決まるため、通常の磁気記録と
同様に、記録磁化の重ね書き、つまりオーバーライドが
可能である。また二端子パターンのインダクタンスは数
マイクロヘンリーオーダにすることができるので、メガ
ヘルツオーダの高速の電流スイッチングも可能である。
In this way, in the recording operation using the magneto-optical recording medium 2,
Since the recorded magnetization direction is determined by the direction of the bias magnetic field, not by the initial magnetization direction of the recording layer, it is possible to overwrite, ie, override, the recorded magnetization as in normal magnetic recording. Furthermore, since the inductance of the two-terminal pattern can be on the order of several microhenries, high-speed current switching on the order of megahertz is also possible.

ここで、前記電流値は、記録層の膜組成に応じて、数十
〜数百mAの範囲で適宜選択される。導電体パターンの
高さ、ピッチおよび長さ等の形状は、上述の物に限定さ
れるものではなく、所望の光記録媒体の記録密度および
バイアス磁界の大きさに応じて、適宜選定される。導電
体パターンの高さとしては、数千穴、ピッチとしては、
数μmオーダが望ましい。絶縁層および保護層として用
いられる誘電体としては、5i31’Lの他にAl;I
N。
Here, the current value is appropriately selected in the range of several tens to several hundred mA depending on the film composition of the recording layer. The height, pitch, length, and other shapes of the conductor pattern are not limited to those described above, but are appropriately selected depending on the recording density of the desired optical recording medium and the magnitude of the bias magnetic field. The height of the conductor pattern is several thousand holes, and the pitch is:
Desirably, the thickness is on the order of several μm. In addition to 5i31'L, the dielectric materials used as the insulating layer and the protective layer include Al;
N.

SiO,SiO等を数百〜数千穴の厚さに形成したもの
が用いられる。また、上記付着物層5′すなわち付着パ
ターン5は絶縁層4′すなわち絶縁パターン4と導電体
層6′すなわち導電体パターン6との付着が十分強い場
合は、必ずしも必要ではない。
A material formed of SiO, SiO, etc. with a thickness of several hundred to several thousand holes is used. Further, the deposit layer 5', that is, the deposit pattern 5, is not necessarily necessary if the adhesion between the insulating layer 4', that is, the insulating pattern 4, and the conductive layer 6', that is, the conductive pattern 6 is sufficiently strong.

第6図は本発明の第2の実施例を示す平面図、第7図は
第6図に示す光磁気記録媒体の部分斜視図、第8図は第
7図に示す光磁気記録媒体の部分断面図、第9図(a)
、 (b)は第6図〜第8図に示す導電体パターンの作
成法を示す斜視図、第1O図は第6図に示す実施例の動
作を説明するための動作説明図である。
6 is a plan view showing a second embodiment of the present invention, FIG. 7 is a partial perspective view of the magneto-optical recording medium shown in FIG. 6, and FIG. 8 is a partial perspective view of the magneto-optical recording medium shown in FIG. 7. Cross-sectional view, Figure 9(a)
, (b) is a perspective view showing the method of creating the conductor patterns shown in FIGS. 6 to 8, and FIG. 1O is an operation explanatory diagram for explaining the operation of the embodiment shown in FIG. 6.

第6図に示す光磁気カード記録媒体は、カード状の基体
1の上に導電体パターン23を含む光磁気媒体21と、
選択回路22とを含んで構成される。
The magneto-optical card recording medium shown in FIG. 6 includes a magneto-optical medium 21 including a conductive pattern 23 on a card-like base 1;
The selection circuit 22 is configured to include a selection circuit 22.

光磁気記録媒体21は第7図および第8図に示すように
絶縁パターン24と、付着パターン25と、導電体パタ
ーン23と、絶縁層7と記録層8と、保護層9とを含ん
でいる。
As shown in FIGS. 7 and 8, the magneto-optical recording medium 21 includes an insulating pattern 24, an adhesion pattern 25, a conductor pattern 23, an insulating layer 7, a recording layer 8, and a protective layer 9. .

導電体パターン23は磁界発生部Ml、M2.〜M (
21−1)、 M (2i)、 〜M (2n)とこの
磁界発生部Ml、M2.〜の一端を共通に接続する共通
接続部CTとで構成される。すなわち、導電体パター 
723 ハ絶1&パターン24、付着パター725と同
様に星状をなす。
The conductor pattern 23 includes magnetic field generating portions Ml, M2 . ~M (
21-1), M (2i), ~M (2n) and the magnetic field generating portions Ml, M2. . . . and a common connection portion CT that commonly connects one end of . In other words, the conductor pattern
723 C-Zetsu 1 & Pattern 24 forms a star like the adhered putter 725.

選択回路22は、磁界発生部Ml、M2.〜のうち隣接
する二端子を入力信号端子16から供給される入力信号
に応じて選択し、磁界を発生するために電流供給端子1
7からの電流が供給される。
The selection circuit 22 includes magnetic field generating units Ml, M2 . Select two adjacent terminals among ~ according to the input signal supplied from the input signal terminal 16, and select the current supply terminal 1 to generate a magnetic field.
7 is supplied with current.

基板1は、厚さ1.2 mmのポリカーボネイトやPM
MAなどからなるカード状のプラスチックの基板(縦5
5mm横85胴)でこの基板1の上に厚さ500人の5
1gN4膜からなる絶縁層4、および厚さ100人のT
i膜からなる付着層5を介して、高さ約3000人、幅
約4000人のAuやAn等の導電体が、一定の間隔約
1.6μmを隔てて磁界発生部Ml、M2.〜が複数併
置された。ffi!状の導電体パターン23が形成され
ている。この上に、厚さ500人の5isN4膜から成
る絶縁層7を介して、膜面の垂直方向に磁気異方性を有
し非晶質磁性合金膜からなる記録層8として、厚さ30
00人のTbFeCo合金膜(T b a、u F e
 o、tzCOn、o*)、さらに保護層9として、厚
さ1000人のSi3N4膜が形成されている。
The substrate 1 is made of polycarbonate or PM with a thickness of 1.2 mm.
A card-shaped plastic board made of MA etc. (vertical 5
5 mm (width 85 mm) and 500 mm thick on this board 1.
Insulating layer 4 made of 1gN4 film and T of 100mm thick
Through an adhesion layer 5 made of an i-film, conductors such as Au and An having a height of about 3,000 and a width of about 4,000 are connected to the magnetic field generating portions M1, M2, etc. at a constant interval of about 1.6 μm. ~ were placed together. ffi! A conductor pattern 23 having a shape is formed. On top of this, a recording layer 8 made of an amorphous magnetic alloy film having magnetic anisotropy in the direction perpendicular to the film surface is formed, with a thickness of 30 nm, through an insulating layer 7 made of a 5isN4 film with a thickness of 500 nm.
00 TbFeCo alloy film (T b a, u Fe
o, tzCOn, o*), and a Si3N4 film with a thickness of 1000 nm is further formed as a protective layer 9.

各層ハ、マグネトロンスバ、りにより成膜される。まず
、Auやへ1等からなる泥状の導電体パターン23は、
次のようにして形成される。第9図(a)に示すように
、基板lの上に厚さ500人の5iiN4膜からなる絶
縁層4′、厚さ100人のTi膜からなる付着層5′お
よび厚さ3000人のAuからなる導電体層6′の順に
スパッタした後、厚さ2500人、幅5500人、長さ
30皿、ピッチ1.6μmの泥状のレジストパターン(
AZ1350J使用)10を形成する。
Each layer is formed by magnetron bathing. First, the mud-like conductor pattern 23 made of Au, F1, etc.
It is formed as follows. As shown in FIG. 9(a), on the substrate l, there is an insulating layer 4' made of a 5II N4 film with a thickness of 500, an adhesion layer 5' made of a Ti film with a thickness of 100, and an Au layer with a thickness of 3000. After sputtering the conductive layer 6' in this order, a mud-like resist pattern (2500 mm thick, 5500 mm wide, 30 plates long, and 1.6 μm pitch) is formed.
AZ1350J is used) 10 is formed.

しかる後、Arを用いて、ガス圧2.6X10−’Pa
で4分間イオンミリングする。さらに、酸素プラズマに
より、残ったレジストを剥離することによって、第9図
(b)に示すように、Auの泥状の導電体パターン23
が、高さ3000人、幅4000人、ピッチ1.6μm
で形成される。記録層8を成すTbFeCo合金膜は、
FeCoターゲット上に、Tb片を配して複合ターゲッ
トを用い、Arガス雰囲気で、パワー密度4W/cni
、スパッタガス圧3.5X10’Paで作成される。絶
縁層7と保護層9を形成するS i3N4膜は、Siタ
ーゲットを用い、ArとN2の混合ガス(50%N2)
を、スパッタガスとした反応性スパッタによす、パワー
密度8 W/cd、スパッタガス[2,5X10””P
aで作製される。
After that, using Ar, the gas pressure was 2.6×10-'Pa.
Perform ion milling for 4 minutes. Furthermore, by peeling off the remaining resist using oxygen plasma, a muddy Au conductor pattern 23 is formed, as shown in FIG. 9(b).
However, the height is 3000 people, the width is 4000 people, and the pitch is 1.6 μm.
is formed. The TbFeCo alloy film forming the recording layer 8 is
Using a composite target with a Tb piece placed on a FeCo target, the power density was 4 W/cni in an Ar gas atmosphere.
, with a sputtering gas pressure of 3.5×10'Pa. The Si3N4 film forming the insulating layer 7 and the protective layer 9 is formed using a Si target and a mixed gas of Ar and N2 (50% N2).
was used as sputtering gas, power density 8 W/cd, sputtering gas [2.5X10''P
It is made in a.

次に、第6図に示す光磁気カード記録媒体の記録動作を
図面を用いて説明する。
Next, the recording operation of the magneto-optical card recording medium shown in FIG. 6 will be explained using the drawings.

第6図に示した泥状の導電体パターン23の2n個の磁
界発生部Ml、M2.〜.M (2n)の端子の中から
、選択回路22により入力信号端子16から入力信号に
応じた所望の隣合う二端子M(2i−1)とM(2i)
とを選択し、第10図に示すように、この二端子間に電
流供給端子17を介して電流を流すと、この二端子に連
なる泥状の導電体パターン22のまわりには、破線11
で示す磁界を生じる。つまり、このパターンの間に形成
された記録層部分12,19.20には、垂直方向にバ
イアス磁界13を印加することができる。
2n magnetic field generating portions Ml, M2 . ~. From the terminals of M(2n), the selection circuit 22 selects two desired adjacent terminals M(2i-1) and M(2i) according to the input signal from the input signal terminal 16.
When a current is passed between these two terminals via the current supply terminal 17 as shown in FIG.
It produces a magnetic field shown as . That is, the bias magnetic field 13 can be applied in the perpendicular direction to the recording layer portions 12, 19, 20 formed between these patterns.

そして、このバイアス磁界の印加方向および大きさは、
二端子間に流す電流の方向および大きさを変えることに
より、容易に選択できる。
The direction and magnitude of this bias magnetic field are:
It can be easily selected by changing the direction and magnitude of the current flowing between the two terminals.

従って、第10図に示すように、レーザビーム14を、
泥状の導電体パターン23の磁界発生部Ml、M2.〜
をガイドトラックとして、その長さ方向に相対的に平行
移動させながら、前記磁界発生部Ml、M2.〜の間に
ある記録層12,19゜20に照射して、記録層12,
19.20の温度をキュリー温度Tc以上(約220℃
)に上昇させ、同時に、着磁するタイミングに合わせて
前記二端子間に流す電流を、スイッチングすることによ
って、記録層12,19.20の冷却過程で、記録層1
2,19,20には、記録信号に対応した所望の磁化状
態を実現することができる。
Therefore, as shown in FIG. 10, the laser beam 14 is
The magnetic field generating portions Ml, M2 . of the mud-like conductor pattern 23 . ~
are used as guide tracks, and the magnetic field generating parts Ml, M2 . By irradiating the recording layers 12, 19° 20 located between .
The temperature of 19.20℃ is higher than the Curie temperature Tc (approximately 220℃
), and at the same time, by switching the current flowing between the two terminals in accordance with the timing of magnetization, the recording layer 1
2, 19, and 20, a desired magnetization state corresponding to the recording signal can be realized.

このように、光磁気記録媒体を用いた記録動作では、記
録磁化方向は記録層の初期磁化方向にはよらず、バイア
ス磁界の方向によって決まるため、通常の磁気記録と同
様に、記録磁化の重ね書き、つまりオーバーライドが可
能である。また二端子パターンのインダクタンスは数マ
イクロヘンリーオーダにすることが出来るので、メガヘ
ルツオーダの高速の電流スイッチングも可能である。
In this way, in a recording operation using a magneto-optical recording medium, the direction of recorded magnetization is determined by the direction of the bias magnetic field, not by the initial magnetization direction of the recording layer. can be written, or overridden. Furthermore, since the inductance of the two-terminal pattern can be on the order of several microhenries, high-speed current switching on the order of megahertz is also possible.

また、泥状の導電体パターン23を用いる場合はすべて
の記録層12,19.20が利用できるので折り返し状
より効率がよい。
Furthermore, when using the mud-like conductor pattern 23, all the recording layers 12, 19, 20 can be used, which is more efficient than the folded pattern.

ここで、前記電流値は、記録層の膜組成に応じて、数十
〜数百mAの範囲で適宜選択される。導iff体パター
ンの高さ、ピッチおよび長さ等の形状は、上述の物に限
定されるものではなく、所望の記録媒体の記録密度及び
バイアス磁界の大きさに応じて、適宜選定される。導電
体パターンの高さとしては、数千人、ピッチとしては、
数μmオーダが望ましい。絶縁層及び保護層として用い
られる誘電体としては、Si3N4の他に、AuN、 
S jo2゜Si○等を数百〜数千人の厚さに形成した
ものが用いられる。
Here, the current value is appropriately selected in the range of several tens to several hundred mA depending on the film composition of the recording layer. The height, pitch, length, and other shapes of the conductor pattern are not limited to those described above, but are appropriately selected depending on the recording density of the desired recording medium and the magnitude of the bias magnetic field. The height of the conductor pattern is several thousand people, and the pitch is:
Desirably, the thickness is on the order of several μm. In addition to Si3N4, the dielectric materials used as the insulating layer and the protective layer include AuN,
A material formed of S jo2°Si○ or the like to a thickness of several hundred to several thousand layers is used.

また、上述の付着層5′は、絶縁層4′と導電体層6′
との付着力が十分強い場合は付着パターン5がなくとも
絶縁パターン4と導電体パターン6は十分に付着するた
め必ずしも必要ではない。
Further, the above-mentioned adhesion layer 5' includes an insulating layer 4' and a conductive layer 6'.
If the adhesion force between the insulating pattern 4 and the conductive pattern 6 is sufficiently strong, the insulating pattern 4 and the conductive pattern 6 will be sufficiently adhered even without the adhesion pattern 5, so this is not necessarily necessary.

〔発明の効果〕〔Effect of the invention〕

本発明の光磁気カード記録媒体は、導電体パターンを追
加することにより、この導電体パターンに流す電流によ
ってバイアス磁界を発生し記録磁化方向を制御できるた
め、直接オーバーライドが達成できるので、記録過程を
簡単化できるとともに高速化も達成できるという効果が
ある。
By adding a conductor pattern to the magneto-optical card recording medium of the present invention, a bias magnetic field can be generated by the current flowing through the conductor pattern to control the direction of recording magnetization, so direct override can be achieved, so the recording process can be controlled. This has the effect of being simpler and faster.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例を示す平面図、第2図
は第1図に示す光磁気記録媒体の部分斜視図、第3図は
第2図に示す光磁気記録媒体の断面図、第4図(a)、
 (b)は第1図〜第3図に示す導電体パターンの作成
法を示す斜視図、第5図は第1図に示す実施例の動作を
説明するための動作説明図、第6図は本発明の第2の実
施例を示す平面図、第7図は第6図に示す光磁気記録媒
体の部分斜視図、第8図は第7図に示す光磁気記録媒体
の部分断面図、第9図(a)、 (b)は第6図〜第8
図に示す導電体パターンの作成法を示す斜視図、第10
図は第6図に示す実施例の動作を説明するための動作説
明図である。 ■・・・・・・基体、2,21.・・・・・・光磁気記
録媒体、3.22・・・・・・選択回路、4,24・・
・・・・絶縁パターン、5,25・・・・・・付着パタ
ーン、4’、7・・・・・・絶縁層、5′・・・・・・
付着層、6,23・・・・・・導電体パターン、6′・
・・・・・導電体層、8.12.19.20・・・・・
・記録層、9・・・・・・保護層、10・・・・・・レ
ジストパターン、11・・・・・・磁界、13・・・・
・・バイアス磁界、14・・・・・・レーザビーム、1
5・・・・・・レンズ、16・・・・・・入力信号端子
、17・・・・・・電流供給端子、18・・・・・・通
電方向、Ml、M2.〜.M (2n) ・−・・−磁
界発生部、C1,C2,〜Cn、CT・・・・・・共通
接続部。 代理人 弁理士  内 原   晋 \ \ 第2回 第4回 αυ (b) M7面 ′!A9TiJ
1 is a plan view showing a first embodiment of the present invention, FIG. 2 is a partial perspective view of the magneto-optical recording medium shown in FIG. 1, and FIG. 3 is a partial perspective view of the magneto-optical recording medium shown in FIG. 2. Cross-sectional view, Fig. 4(a),
(b) is a perspective view showing the method for creating the conductive pattern shown in FIGS. 1 to 3, FIG. 5 is an operation explanatory diagram for explaining the operation of the embodiment shown in FIG. 1, and FIG. 7 is a partial perspective view of the magneto-optical recording medium shown in FIG. 6; FIG. 8 is a partial sectional view of the magneto-optical recording medium shown in FIG. 7; Figures 9 (a) and (b) are from Figures 6 to 8.
A perspective view illustrating the method for creating the conductor pattern shown in the figure, No. 10.
This figure is an operation explanatory diagram for explaining the operation of the embodiment shown in FIG. 6. ■...Base, 2,21. ...Magneto-optical recording medium, 3.22...Selection circuit, 4,24...
...Insulating pattern, 5, 25... Adhesion pattern, 4', 7... Insulating layer, 5'...
Adhesive layer, 6, 23... Conductor pattern, 6'.
...Conductor layer, 8.12.19.20...
・Recording layer, 9...protective layer, 10...resist pattern, 11...magnetic field, 13...
...Bias magnetic field, 14...Laser beam, 1
5... Lens, 16... Input signal terminal, 17... Current supply terminal, 18... Current direction, Ml, M2. ~. M (2n) ---Magnetic field generation section, C1, C2, ~Cn, CT... Common connection section. Agent Patent Attorney Susumu Uchihara \ \ 2nd 4th αυ (b) M7 side′! A9TiJ

Claims (1)

【特許請求の範囲】 1、基体と、前記基体の上に設けられ複数の磁界発生部
と隣接する前記磁界発生部の少なくとも二つの一端を共
通に接続する一つ以上の共通接続部とからなる導電体パ
ターンと、前記導電体パターンの上に設けられた誘電体
からなる絶縁層と、隣接する前記磁界発生部の相互間に
少なくとも設けられた膜面の垂直方向に磁気異方性を有
し非晶質磁性合金膜からなる記録層と、誘電体からなり
前記記録層を保護するための保護層と、前記記録層に記
録するために磁界を発生すべく通電するための隣接する
一対の前記磁界発生部の他端を選択するための選択回路
とを含むことを特徴とする光磁気カード記録媒体。 2、基体と、前記基体の上に設けられ複数の磁界発生部
と隣接する一対の前記磁界発生部の一端を折り返し状に
共通に接続する複数対の共通接続部とからなる導電体パ
ターンと、前記導電体パターンの上に設けられ誘電体か
らなる絶縁層と、隣接する前記磁界発生部の相互間に少
なくとも設けられた膜面の垂直方向に磁気異方性を有し
非晶質磁性合金膜からなる記録層と、誘電体からなり前
記記録層を保護するための保護層と、前記記録層に記録
するために磁界を発生すべく通電するための隣接する一
対の前記磁界発生部の他端を選択するための選択回路と
を含むことを特徴とする光磁気カード記録媒体。 3、基体と、前記基体の上に設けられ複数の磁界発生部
と前記磁界発生部の一端を簾状に共通に接続する共通接
続部とからなる導電体パターンと、前記導電体パターン
の上に設けられ誘電体からなる絶縁層と、隣接する前記
磁界発生部の相互間に少なくとも設けられた膜面の垂直
方向に磁気異方性を有し非晶質磁性合金膜からなる記録
層と、誘電体からなり前記記録層を保護するための保護
層と、前記記録層に記録するために磁界を発生すべく通
電するための隣接する一対の前記磁界発生部の他端を選
択するための選択回路とを含むことを特徴とする光磁気
カード記録媒体。
[Claims] 1. Consisting of a base body and one or more common connection parts that are provided on the base body and commonly connect one end of at least two of the magnetic field generation parts adjacent to the plurality of magnetic field generation parts. A conductor pattern, an insulating layer made of a dielectric material provided on the conductor pattern, and a magnetic anisotropy in a direction perpendicular to a film surface provided at least between the adjacent magnetic field generating parts. a recording layer made of an amorphous magnetic alloy film, a protective layer made of a dielectric material for protecting the recording layer, and a pair of adjacent said recording layers for energizing to generate a magnetic field for recording in the recording layer. 1. A magneto-optical card recording medium, comprising a selection circuit for selecting the other end of the magnetic field generating section. 2. A conductive pattern consisting of a base body and a plurality of pairs of common connection parts that are provided on the base body and commonly connect ends of a pair of adjacent magnetic field generation parts in a folded manner; an amorphous magnetic alloy film having magnetic anisotropy in a direction perpendicular to the film surface provided at least between an insulating layer made of a dielectric material provided on the conductive pattern and the adjacent magnetic field generating portions; a protective layer made of a dielectric material to protect the recording layer; and the other end of a pair of adjacent magnetic field generating parts for applying current to generate a magnetic field for recording in the recording layer. A magneto-optical card recording medium comprising a selection circuit for selecting. 3. A conductive pattern comprising a base body, a common connection part provided on the base body and commonly connecting a plurality of magnetic field generating parts and one end of the magnetic field generating parts in a blind shape, and a conductive pattern on the conductive pattern. an insulating layer made of a dielectric material, a recording layer made of an amorphous magnetic alloy film having magnetic anisotropy in the direction perpendicular to the film surface and provided at least between the adjacent magnetic field generating parts; a protective layer for protecting the recording layer; and a selection circuit for selecting the other end of the pair of adjacent magnetic field generating parts for energizing to generate a magnetic field for recording in the recording layer. A magneto-optical card recording medium comprising:
JP63159675A 1988-06-27 1988-06-27 Magneto-optical card recording medium Expired - Lifetime JP2615866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63159675A JP2615866B2 (en) 1988-06-27 1988-06-27 Magneto-optical card recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159675A JP2615866B2 (en) 1988-06-27 1988-06-27 Magneto-optical card recording medium

Publications (2)

Publication Number Publication Date
JPH029037A true JPH029037A (en) 1990-01-12
JP2615866B2 JP2615866B2 (en) 1997-06-04

Family

ID=15698876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159675A Expired - Lifetime JP2615866B2 (en) 1988-06-27 1988-06-27 Magneto-optical card recording medium

Country Status (1)

Country Link
JP (1) JP2615866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608410A (en) * 1993-05-07 1997-03-04 Associated Rt, Inc. System for locating a source of bursty transmissions cross reference to related applications
JP2003513392A (en) * 1999-10-23 2003-04-08 ウルトラカード,アイエヌシー. Data storage device, apparatus and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608410A (en) * 1993-05-07 1997-03-04 Associated Rt, Inc. System for locating a source of bursty transmissions cross reference to related applications
JP2003513392A (en) * 1999-10-23 2003-04-08 ウルトラカード,アイエヌシー. Data storage device, apparatus and use thereof

Also Published As

Publication number Publication date
JP2615866B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPH07244877A (en) Magneto-optic recording medium and method for reproducing data recorded in the medium
JPH06119669A (en) Magneto-optical recording medium and recording and reproducing method using the same
KR20000023634A (en) magneto-optical recording medium, its reproducing method and reproducer
US6477118B1 (en) Method and apparatus for recording and reproducing information by applying field in a direction other than the direction of magnetization or the direction to a surface of an information recording medium
JPH0395745A (en) Magneto-optical recording method and recording device
JPH029037A (en) Magneto-optical card recording medium
JPH1125531A (en) Magneto-optical recording medium
JPH03266243A (en) Magneto-optical recording method
JPH0522301B2 (en)
JP3424806B2 (en) Method of reproducing information recorded on magneto-optical recording medium
JPH03152743A (en) Magneto-optical recording medium
JPS63237237A (en) Magneto-optical recording medium and recording method
JP3390713B2 (en) Magneto-optical recording medium
JP3162168B2 (en) Magneto-optical recording medium
JPS63237242A (en) Magneto-optical recording system
JPS63193351A (en) Magneto-optical recording medium and recording system
JPH10289503A (en) Method for reproducing magneto-optical recording medium and magneto-optical recording medium
JP2815122B2 (en) Information recording device
JP3184273B2 (en) Magneto-optical recording method
JPS63191338A (en) Magneto-optical recording medium and recording system
JPH0242664A (en) Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them
JPH01227245A (en) Magneto-optical recording system
JPH0536147A (en) Magneto-optical recording method
JPH0522300B2 (en)
JPH07320332A (en) Magneto-optical recording method