JPH0289963A - Super-low temperature refrigerating machine - Google Patents

Super-low temperature refrigerating machine

Info

Publication number
JPH0289963A
JPH0289963A JP24150588A JP24150588A JPH0289963A JP H0289963 A JPH0289963 A JP H0289963A JP 24150588 A JP24150588 A JP 24150588A JP 24150588 A JP24150588 A JP 24150588A JP H0289963 A JPH0289963 A JP H0289963A
Authority
JP
Japan
Prior art keywords
cooled
precooling
helium gas
valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24150588A
Other languages
Japanese (ja)
Inventor
Toru Kuriyama
透 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24150588A priority Critical patent/JPH0289963A/en
Publication of JPH0289963A publication Critical patent/JPH0289963A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To utilize effectively coldness by only simple opening and closing of a valve and attempt to reduce the precooling time a great deal by a very simple operation by bypassing the helium gas which is most cooled by a piping during precooling to a maximum thermal load such as a body to be cooled, etc. and providing the piping with a valve. CONSTITUTION:Since the helium that is cooled in a second cooling stage 142 can be flowed not to a high pressure flow channel of a third heat exchanger 133 but directly to a body 16 to be cooled through a precooling flow channel 19 by opening a precooling valve 20 in a precooling flow channel 19 during precooling, the body 16 to be cooled can be cooled in a short time. And, the flow of the helium gas in the third heat exchanger 133 is almost only on the low pressure side, and heat exchange between the high pressure helium gas and low pressure helium gas is not made, and the third heat exchanger 133 also can be cooled by the helium gas out of the body 16 to be cooled. If at the time when the temperature at the entrance of a Joule-Thomson valve 15 reaches about 20K at which the effect can be fully exhibited the precooling valve 20 is closed, all the helium gas starts to flow to the third heat exchanger 133, and finally the body 16 to be cooled is cooled to about 4.2K.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) 本発明は、極低温冷凍機に関し、特に予冷用の流路をも
つ極低温冷凍機に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a cryogenic refrigerator, and particularly to a cryogenic refrigerator having a flow path for precooling.

(従来の技術) 従来の極低温冷凍機としては、第2図のフロー図に示す
構成のものが知られている。即ち、図中の1は予冷用の
寒冷発生装置、11はジュール・トムソンループである
。前記寒冷発生装置1は、例えばギフオード−マクマホ
ン(GM)冷凍機が用いられる。このGM冷凍機は、コ
ンプレッサ2、コールドヘッド3及びヘリウムガス配管
4から構成され、かつ前記コールドヘッド3は第1段及
び第2段の冷却へラド51.52を備えている。−方、
前記ジュール・トムソンループ11は主にジュール・ト
ムソンループコンプレッサ12、第1〜第3熱交換器1
3.〜133、前記寒冷発生装置1の第1段、第2段の
冷却ヘッド51%52に接触される第1、第2の冷却ス
テージ14] s 142 、ジュール・トムソン弁1
5から構成されている。
(Prior Art) As a conventional cryogenic refrigerator, one having a configuration shown in the flow diagram of FIG. 2 is known. That is, 1 in the figure is a cold generation device for pre-cooling, and 11 is a Joule-Thompson loop. As the cold generation device 1, for example, a Gifford-McMahon (GM) refrigerator is used. This GM refrigerator is composed of a compressor 2, a cold head 3, and a helium gas pipe 4, and the cold head 3 is equipped with first-stage and second-stage cooling chambers 51 and 52. - way,
The Joule-Thomson loop 11 mainly includes a Joule-Thomson loop compressor 12 and first to third heat exchangers 1.
3. ~133, the first and second cooling stages 14 in contact with the first and second stage cooling heads 51% 52 of the cold generation device 1 ] s 142 , Joule-Thompson valve 1
It consists of 5.

このような第2図に示す極低温冷凍機の作用を説明する
The operation of the cryogenic refrigerator shown in FIG. 2 will be explained.

まず、前記予冷用の寒冷発生装置1のコンプレッサ2に
よって圧縮されたヘリウムガス(約18aLm )はヘ
リウムガス配管4を介してコールドヘッド3に供給され
、該ヘッド3内で低圧(約5ate )に膨張すること
により寒冷を発生させる。
First, helium gas (approximately 18 aLm) compressed by the compressor 2 of the cold generator 1 for precooling is supplied to the cold head 3 via the helium gas pipe 4, and is expanded to a low pressure (approximately 5ate) within the head 3. This produces cold.

この時、第1段冷却ヘッド51は約40Kに、第2膜冷
却ヘッド52は約15Kに冷却される。こうした状態で
、ジュールやトムソンループ11のコンプレッサ12に
より圧縮ヘリウムガス(約18atm)を第1熱交換器
131を通った後、第1冷却ステージ+4.で前記寒冷
発生装置1の第1段冷却ヘッド51において約40Kに
冷却される。つづいて、第2熱交換器132を通り、第
2冷却ステージ142で前記寒冷発生装置■の第2段冷
却へラド5□において約15Kに冷却される。次いで、
第3熱交換器133を通り、第3熱交換器133の高圧
出口では約5に程度まで温度が下がり、ジュール・トム
ソン弁15で約1 atiまでジュール・トムソン膨張
し、ヘリウムガスの温度は膨張後の圧力におけるヘリウ
ム飽和温度(約4.2K)まで冷却される。この時のヘ
リウムガスの状態は、飽和温度の気液二相流で、この二
相流で発生した寒冷を用いて被冷却体(例えば超電導マ
グネット、ヘリウムガス等)IBを冷却する。被冷却体
1Bを通った後のヘリウムガスは、第3熱交換器133
、第2熱交換器132、第1熱交換器】31を通り、各
熱交換器133.13□、131において高圧ヘリウム
ガスを冷却しながら常温に戻り、再びコンプレッサ12
によって昇圧される。
At this time, the first stage cooling head 51 is cooled to about 40K, and the second film cooling head 52 is cooled to about 15K. In this state, compressed helium gas (approximately 18 atm) is passed through the first heat exchanger 131 by the compressor 12 of the Joule or Thomson loop 11, and then passed through the first cooling stage +4. Then, it is cooled to about 40K in the first stage cooling head 51 of the cold generation device 1. Subsequently, it passes through the second heat exchanger 132 and is cooled to about 15 K at the second cooling stage 142 at rad 5□ of the cold generation device (■). Then,
It passes through the third heat exchanger 133, and at the high-pressure outlet of the third heat exchanger 133, the temperature decreases to about 5 degrees, and Joule-Thompson expands to about 1 ati in the Joule-Thomson valve 15, and the temperature of the helium gas expands. It is cooled to the helium saturation temperature (approximately 4.2 K) at a later pressure. The state of the helium gas at this time is a gas-liquid two-phase flow at a saturation temperature, and the cold generated in this two-phase flow is used to cool the object to be cooled (for example, a superconducting magnet, helium gas, etc.) IB. The helium gas after passing through the object to be cooled 1B is transferred to the third heat exchanger 133.
, second heat exchanger 132, and first heat exchanger] 31, the high-pressure helium gas is cooled down to room temperature in each heat exchanger 133, 13□, and 131, and then returned to the compressor 12.
The pressure is boosted by

しかしながら、前記ジュール・トムソン弁15でジュー
ル・トムソン膨張させてヘリウムガスが寒冷を発生させ
るためには最終段である第3熱交換5133の出口側で
のヘリウムガスの温度が十分下がって(約45に以下)
いることが必要である。これは、第3図に示すヘリウム
ガスのジュール・トムソン効果における逆転曲線からも
理解される。
However, in order for the helium gas to generate refrigeration through Joule-Thompson expansion in the Joule-Thompson valve 15, the temperature of the helium gas at the outlet side of the third heat exchanger 5133, which is the final stage, must be sufficiently lowered (approximately 45 below)
It is necessary to be present. This can also be understood from the inversion curve of the Joule-Thomson effect of helium gas shown in FIG.

従って、常温からクールダウンを行なった時、第3熱交
換器133、ジュール・トムソン弁15、被冷却体16
は熱負荷となってしまい、ジュール・トムソン弁15人
口のヘリウムガスの温度を十分に下げることを阻害する
。しかも、第2冷却ステージ142で冷却されたヘリウ
ムガスは第3熱交換器133において温度の上がった還
流低圧ヘリウムガスと熱交換して暖められるため、冷却
にますます多くの時間を必要とする。
Therefore, when cooling down from room temperature, the third heat exchanger 133, the Joule-Thompson valve 15, the object to be cooled 16
becomes a heat load and prevents the Joule-Thompson valve from lowering the temperature of the helium gas sufficiently. Moreover, since the helium gas cooled in the second cooling stage 142 is warmed by exchanging heat with the heated reflux low-pressure helium gas in the third heat exchanger 133, more time is required for cooling.

そこで、予冷時間の短縮のために同第2図に示すように
最終段である第3熱交換器ta3の高圧側出口(ジュー
ルφトムソン弁15の手前)と第1熱交換器131の低
圧側出口(常温部の低圧側流路)とを予冷流路17で連
結し、かつ該流路17の常温部付近に予冷弁18を設け
ている。かかる構成によれば、予冷時(ジュール・トム
ソン効果が現われるまで)には前記予冷弁18を開けて
被冷却体16を冷却した後の暖められたヘリウムガスが
第3熱交換器133の低圧側に流れる量を減少させ、該
熱交換器133において高圧のヘリウムガスが前記低圧
側のヘリウムガスと熱交換して暖められる度合を減少さ
せて予冷時間の短縮が図られる。
Therefore, in order to shorten the precooling time, as shown in FIG. The outlet (low-pressure side flow path of the room temperature section) is connected to the flow path 17 by a precooling channel 17, and a precooling valve 18 is provided near the room temperature section of the flow channel 17. According to this configuration, during precooling (until the Joule-Thomson effect appears), the precooling valve 18 is opened to cool the object 16 to be cooled, and then the warmed helium gas flows to the low pressure side of the third heat exchanger 133. By reducing the amount of helium gas flowing into the heat exchanger 133 and reducing the degree to which the high-pressure helium gas is heated by exchanging heat with the helium gas on the low-pressure side in the heat exchanger 133, the precooling time can be shortened.

しかしながら、上述した従来構成の極低温冷凍機では次
のような問題があった。即ち、第2冷却ステージ142
で冷却されたヘリウムガスを予冷流路17を通して常温
部まで戻すため、該予冷流路17に設けた弁18の調整
により予冷流路17に冷却したヘリウムガスを流し過ぎ
ると、弁18が凍結してヘリウムガス漏れを生じる恐れ
がある。このため、操作に細心の注意を払う必要があり
、運転作業が繁雑となるという問題があった。また、第
2冷却ステージ142でせっかく冷却したヘリウムガス
の一部を被冷却体1Bの冷却に用いずに常温まで戻すこ
とは、非効率的であった。
However, the conventional cryogenic refrigerator described above has the following problems. That is, the second cooling stage 142
In order to return the cooled helium gas to the room temperature through the precooling channel 17, by adjusting the valve 18 provided in the precooling channel 17, if too much cooled helium gas is allowed to flow into the precooling channel 17, the valve 18 freezes. There is a risk of helium gas leaking. For this reason, there is a problem in that it is necessary to pay close attention to the operation, and the driving work becomes complicated. Furthermore, it was inefficient to return a portion of the helium gas that has been cooled in the second cooling stage 142 to room temperature without using it for cooling the object to be cooled 1B.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、予冷時間の短縮を図るための運転操作を簡便化で
き、かつ寒冷の無駄な排出を解消して有効に利用するこ
とが可能な極低温冷凍機を提供しようとするものである
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and it is possible to simplify the operation in order to shorten the pre-cooling time, and to eliminate wasteful discharge of cold. The purpose is to provide a cryogenic refrigerator that can be used effectively.

[発明の構成] (課題を解決するための手段) 本発明は、圧縮したヘリウムガスを予冷用の寒冷発生装
置によって予冷した後ジュール・トムソン膨張させるこ
とにより寒冷を発生する極低温冷凍機において、前記ジ
ュール・トムソン膨張させる前の最終段の熱交換器の高
圧側入口とジュール・トムソン弁の出口とを配管で連結
し、かつ該配管の途中に弁を設けたことを特徴とする極
低温冷凍機である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a cryogenic refrigerator that generates cold by precooling compressed helium gas using a cold generator for precooling and then subjecting it to Joule-Thomson expansion. Cryogenic refrigeration characterized in that the high-pressure side inlet of the final stage heat exchanger before Joule-Thompson expansion is connected to the outlet of the Joule-Thompson valve by a pipe, and a valve is provided in the middle of the pipe. It is a machine.

(作用) 本発明によれば、ジュール−トムソン膨張させる前の最
終段の熱交換器の高圧側入口とジュール・トムソン弁の
出口とを配管で連結し、かつ該配管の途中に弁を設け、
予冷時に該弁を開くことによって、最も冷えているヘリ
ウムガスを被冷却体及び最終段の熱交換器の低圧流路に
流すことができる。従って、簡単な弁操作で予冷時に得
られる寒冷を全て有効に使用して主な熱負荷である被冷
却体及び最終段の熱交換器を冷却し、予冷時間の短縮を
図ることが可能となる。
(Function) According to the present invention, the high-pressure side inlet of the final stage heat exchanger before Joule-Thompson expansion and the outlet of the Joule-Thompson valve are connected by a pipe, and a valve is provided in the middle of the pipe,
By opening the valve during precooling, the coldest helium gas can flow into the low-pressure flow path of the object to be cooled and the final stage heat exchanger. Therefore, with a simple valve operation, all the cold obtained during precooling can be effectively used to cool the body to be cooled, which is the main heat load, and the final stage heat exchanger, thereby shortening the precooling time. .

(実施例) 以下、本発明の実施例を第1図を参照して詳細に説明す
る。なお、第1図において前述した第2図と同様な部材
は同符号を付して説明を省略する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIG. In addition, in FIG. 1, the same members as those in FIG. 2 described above are given the same reference numerals, and explanations thereof will be omitted.

本実施例の極低温冷凍機は、第1図のフロー図に示すよ
うにジュール拳トムソン膨張される前の最終段の熱交換
器である第3熱交換器ia3の高圧側入口とジュール・
トムソン弁15の出口とを配管(予冷流路)19で連結
し、かつ該予冷流路19の途中に予冷弁20を設けた構
造になっている。
As shown in the flow diagram of FIG. 1, the cryogenic refrigerator of this embodiment has a high-pressure side inlet of the third heat exchanger IA3, which is the final stage heat exchanger before Joule-Fist-Thomson expansion, and a Joule-Fist
The outlet of the Thomson valve 15 is connected to the outlet of the Thomson valve 15 by a pipe (precooling channel) 19, and a precooling valve 20 is provided in the middle of the precooling channel 19.

このような構成によれば、予冷時に予冷流路I9の予冷
弁20を開くことによりジュール・トムソンループ11
のジュール・トムソン弁15が該予冷弁20に比べて非
常に圧力損失が大きいため、第2冷却ステージ142で
冷却されたヘリウムガスが第3熱交換器133の高圧流
路に流れることなく殆どのヘリウムガスを予冷流路19
に流すことができる。このため、前記第2冷却ステージ
142で冷却されたヘリウムを該予冷流路19を通って
被冷却体16に直接流すことができるため、被冷却体重
6を短時間で冷却することができる。また、こうした予
冷時においては第3熱交換器133内へのヘリウムガス
の流れが殆ど低圧側のみであり、高・低圧のヘリウムガ
スの間での熱交換が行われず、被冷却体16から出たヘ
リウムガスによって第3熱交換器133も冷やすことが
できる。ジュール・トムソン弁15人口の温度がジュー
ル・トムソン効果を十分に発揮できる温度(約20K)
に達した時点で予冷弁20を閉じると、全てのヘリウム
ガスは第3熱交換器133に流れ始め、ジュール・トム
ソン効果によってジュール・トムソン弁15出口の温度
は益々下がり、最終的には約4.2Kまで被冷却体16
は冷やされる。従って、ジュール・トムソンループ11
の特定の箇所に予冷流路19を連結することによって、
該予冷流路19に設けた予冷弁20の単純な開閉のみで
寒冷を肴効に利用でき、予冷時間の大幅な短縮を達成で
きる。
According to such a configuration, by opening the precooling valve 20 of the precooling passage I9 during precooling, the Joule-Thompson loop 11
Since the Joule-Thomson valve 15 has a much larger pressure loss than the precooling valve 20, most of the helium gas cooled in the second cooling stage 142 does not flow into the high pressure flow path of the third heat exchanger 133. Helium gas pre-cooling channel 19
can be passed to. Therefore, the helium cooled in the second cooling stage 142 can be directly flowed to the object to be cooled 16 through the pre-cooling channel 19, so that the weight to be cooled 6 can be cooled in a short time. Furthermore, during such precooling, the flow of helium gas into the third heat exchanger 133 is almost only on the low pressure side, and heat exchange between high and low pressure helium gases is not performed, so that the helium gas flows out from the object to be cooled 16. The third heat exchanger 133 can also be cooled by the helium gas. Joule-Thomson Valve 15 Temperature at which the Joule-Thomson effect can be fully exerted (approximately 20K)
When the pre-cooling valve 20 is closed when the pre-cooling valve 20 is closed, all the helium gas starts to flow into the third heat exchanger 133, and the temperature at the outlet of the Joule-Thomson valve 15 decreases more and more due to the Joule-Thomson effect, eventually reaching about 4 Cooled object 16 up to .2K
is cooled. Therefore, the Joule Thomson loop 11
By connecting the pre-cooling channel 19 to a specific location,
By simply opening and closing the pre-cooling valve 20 provided in the pre-cooling channel 19, cold can be used for appetizing purposes, and the pre-cooling time can be significantly shortened.

なお、本発明は上記実施例で説明した第1図に示す構成
に限定されない。例えば、予冷用の寒冷発生装置はスタ
ーリング冷凍機や液体窒素、液体水素を用いてもよい。
Note that the present invention is not limited to the configuration shown in FIG. 1 described in the above embodiment. For example, the cold generation device for precooling may use a Stirling refrigerator, liquid nitrogen, or liquid hydrogen.

また、極低温冷凍機のサイクルも、例えば膨張エンジン
を2つ有するクロードサイクルであっても上記実施例と
同様な効果を達成することが可能である。
Furthermore, even if the cycle of the cryogenic refrigerator is a Claude cycle having two expansion engines, for example, it is possible to achieve the same effects as in the above embodiment.

[発明の効果] 以上詳述した如く、本発明によれば配管により予冷時に
最も冷えているヘリウムガスを被冷却体等の最大の熱負
荷にバイパスし、かつ該配管に弁を設けた構成とするこ
とによって、前記弁の単純な開閉のみで寒冷を有効に利
用でき、ひいては極めて簡便な操作により予冷時間の大
幅な短縮を達成し得る極低温冷凍機を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, the helium gas, which is the coldest during precooling, is bypassed by the piping to the maximum heat load of the object to be cooled, etc., and the piping is provided with a valve. By doing so, it is possible to provide a cryogenic refrigerator that can effectively utilize cold by simply opening and closing the valve, and can achieve a significant reduction in precooling time with extremely simple operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す極低温冷凍機のフロー
図、第2図は従来の極低温冷凍機を示すフロー図、第3
図はヘリウムガスのジュール・トムソン効果を説明する
ための特性図である。 l・・・予冷用の寒冷発生装置、2・・・コンプレッサ
、3・・・コールドヘッド、51%52・・・冷却ヘッ
ド、U・・・ジュール・トムソンループ、12・・・ジ
ュール・トムソンループコンブレッド、131〜133
・・・熱交換器、141.142・・・冷却ステージ、
15・・・ジュール・トムソン弁、1B・・・被冷却体
、19・・・予冷流路(配管)、20・・・予冷弁。 出願人代理人 弁理士 鈴江武彦 ご 図 第2図
FIG. 1 is a flow diagram of a cryogenic refrigerator showing an embodiment of the present invention, FIG. 2 is a flow diagram showing a conventional cryogenic refrigerator, and FIG. 3 is a flow diagram showing a conventional cryogenic refrigerator.
The figure is a characteristic diagram for explaining the Joule-Thomson effect of helium gas. l...Cold generator for pre-cooling, 2...Compressor, 3...Cold head, 51%52...Cooling head, U...Joule-Thomson loop, 12...Joule-Thomson loop controller Bread, 131-133
...Heat exchanger, 141.142...Cooling stage,
15... Joule-Thompson valve, 1B... object to be cooled, 19... pre-cooling channel (piping), 20... pre-cooling valve. Applicant's agent Patent attorney Takehiko Suzue Figure 2

Claims (1)

【特許請求の範囲】[Claims] 圧縮したヘリウムガスを予冷用の寒冷発生装置によって
予冷した後ジュール・トムソン膨脹させることにより寒
冷を発生する極低温冷凍機において、前記ジュール・ト
ムソン膨張させる前の最終段の熱交換器の高圧側入口と
ジュール・トムソン弁の出口とを配管で連結し、かつ該
配管の途中に弁を設けたことを特徴とする極低温冷凍機
In a cryogenic refrigerator that generates refrigeration by precooling compressed helium gas using a precooling refrigeration generator and then subjecting it to Joule-Thompson expansion, the high-pressure side inlet of the final stage heat exchanger before Joule-Thompson expansion. A cryogenic refrigerator characterized in that a pipe connects an outlet of a Joule-Thomson valve with a valve, and a valve is provided in the middle of the pipe.
JP24150588A 1988-09-27 1988-09-27 Super-low temperature refrigerating machine Pending JPH0289963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24150588A JPH0289963A (en) 1988-09-27 1988-09-27 Super-low temperature refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24150588A JPH0289963A (en) 1988-09-27 1988-09-27 Super-low temperature refrigerating machine

Publications (1)

Publication Number Publication Date
JPH0289963A true JPH0289963A (en) 1990-03-29

Family

ID=17075327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24150588A Pending JPH0289963A (en) 1988-09-27 1988-09-27 Super-low temperature refrigerating machine

Country Status (1)

Country Link
JP (1) JPH0289963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232455A (en) * 2007-03-16 2008-10-02 Osaka City Univ Dilution refrigerating machine
JP2014092300A (en) * 2012-11-01 2014-05-19 Sumitomo Heavy Ind Ltd Freezer
EP3323294A1 (en) 2016-11-22 2018-05-23 Rheon Automatic Machinery Co., Ltd. Weighing, cutting and arranging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232455A (en) * 2007-03-16 2008-10-02 Osaka City Univ Dilution refrigerating machine
JP2014092300A (en) * 2012-11-01 2014-05-19 Sumitomo Heavy Ind Ltd Freezer
EP3323294A1 (en) 2016-11-22 2018-05-23 Rheon Automatic Machinery Co., Ltd. Weighing, cutting and arranging system

Similar Documents

Publication Publication Date Title
US20100275616A1 (en) Cryogenic refrigerator and control method therefor
CN104879968A (en) Low-temperature surface type heat exchanger adopting bypass throttling and precooling J-T refrigerator
JPH0289963A (en) Super-low temperature refrigerating machine
JP2841955B2 (en) Supercritical helium cooling device and operating method thereof
JPH10246524A (en) Freezing device
CN211560332U (en) Cryoablation system
JPH09113052A (en) Freezer
JP2945806B2 (en) Pre-cooling device for refrigeration load installed in liquefaction refrigeration system
JP2005003314A (en) Superconducting electromagnet cooling device
JPH06101918A (en) Cryogenic refrigerator
JPH06101919A (en) Cryogenic freezing apparatus
JPH0250381B2 (en)
JPH06117716A (en) Pre-cooling method and pre-cooling device in liquifying refrigerator device
CN117232212A (en) Nitrogen-oxygen integrated liquefying device and liquefying method thereof
JPH11125474A (en) Cryogenic refrigeration system
JP3409371B2 (en) Control method of cryogenic precooling device
JP2005003308A (en) Cryogenic cooling device
JPH11325630A (en) Helium liquefying refrigerator
JPH01107059A (en) Cryogenic liquefying refrigerator
JPH01127860A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JPS6317360A (en) Cryogenic refrigerating method
JPH03134439A (en) Very low temperature freezer device and operation method thereof
JPH05223443A (en) Helium liquefier
JPS63315877A (en) He liquefier
JPH05223381A (en) Cryogenic helium cooling system