JPH0289313A - Cleaning nethod for silicon substrate surface - Google Patents

Cleaning nethod for silicon substrate surface

Info

Publication number
JPH0289313A
JPH0289313A JP24181888A JP24181888A JPH0289313A JP H0289313 A JPH0289313 A JP H0289313A JP 24181888 A JP24181888 A JP 24181888A JP 24181888 A JP24181888 A JP 24181888A JP H0289313 A JPH0289313 A JP H0289313A
Authority
JP
Japan
Prior art keywords
substrate
hydrogen
filament
temperature
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24181888A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugii
寿博 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24181888A priority Critical patent/JPH0289313A/en
Publication of JPH0289313A publication Critical patent/JPH0289313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress diffusion of impurity and pollution by forming atomic hydrogen through bringing hydrogen gas in contact with a filament and by removing a silicon oxide film coated on the substrate surface using the atomic hydrogen. CONSTITUTION:An Si substrate 2 is heated to 800 deg.C by a substrate heater 4, and a current is supplied to a tungsten filament 5 from a power supply 6, and the temperature of the filament is set at 2000 deg.C. Then, H2 is introduced into a vacuum vessel 1 through an H2 introduction tube at a flow rate of about 0.1cc/min. In case where the filament temperature is at 2000 deg.C, about 0.1% of molecular hydrogen is thermally dissociated into atomic hydrogen. Therefore, in this case, hydrogen atoms are formed at 5.4X10<15>/sec. If the pressure in the vacuum vessel 1 is kept at the order of 10<-5>Torr, the mean free path of the residual hydrogen is about 5m, so that the formed atomic hydrogens can reach the surface of the Si substrate 2 without even one collision. Thus, SiO2 is removed from the surface of the Si substrate 2 and the surface is cleaned.

Description

【発明の詳細な説明】 〔概要〕 珪素(Si)基板上にSiをエピタキシャル成長させる
際等の前処理としての基板表面の清浄化方法に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for cleaning the surface of a silicon (Si) substrate as a pretreatment when epitaxially growing Si on the substrate.

基板清浄化の際の基板温度を低下させて、基板への不純
物の拡散や汚染を抑制することを目的とし。
The purpose is to lower the substrate temperature during substrate cleaning and to suppress the diffusion of impurities and contamination into the substrate.

真空容器内に珪素基板と加熱されたフィラメントを離し
て置き、該フィラメントに水素ガスを接触させて原子状
水素を生成させ、該原子状水素により該基板表面に被着
されている酸化珪素膜を除去するように構成する。
A silicon substrate and a heated filament are placed apart in a vacuum container, hydrogen gas is brought into contact with the filament to generate atomic hydrogen, and the silicon oxide film deposited on the substrate surface is removed by the atomic hydrogen. Configure to remove.

〔産業上の利用分野〕[Industrial application field]

本発明はSi基板上にSiをエピタキシャル成長させる
際等の前処理としての基板表面の清浄化方法に関する。
The present invention relates to a method for cleaning a substrate surface as a pretreatment when epitaxially growing Si on a Si substrate.

〔従来の技術〕[Conventional technology]

従来のエピタキシャル成長前のSi基板の清浄化方法は
、基板を化学洗浄したときに形成される薄いSi酸化膜
を保護膜として成長室に入れ、水素ガス雰囲気中で基板
温度を1000℃程度に上げてSi酸化膜を除去してい
る。
The conventional method for cleaning a Si substrate before epitaxial growth is to put a thin Si oxide film formed when the substrate is chemically cleaned into a growth chamber as a protective film, and raise the substrate temperature to about 1000°C in a hydrogen gas atmosphere. The Si oxide film is removed.

この場合の反応は次式で示される。The reaction in this case is shown by the following formula.

let→2 II 、        +1)SiO□
+2H−5iO↑+H!0↑、(2)このような基板表
面清浄化方法では基板温度が1000℃と高温であるた
め、その低温化が必要である。その理由は、基板への不
純物拡散の抑制、装置からの汚染の低減のためである。
let→2 II, +1) SiO□
+2H-5iO↑+H! 0↑, (2) In such a substrate surface cleaning method, the substrate temperature is as high as 1000° C., so it is necessary to lower the temperature. The reason for this is to suppress impurity diffusion into the substrate and reduce contamination from the device.

この清浄化方法で基板温度の低温化を妨げているのは(
1)式の反応である。即ち、基板表面の近くで原子状水
素を発生させるのに上記の温度1000℃が必要なため
である。
What prevents the substrate temperature from lowering with this cleaning method is (
1) This is the reaction of formula. That is, this is because the above temperature of 1000° C. is required to generate atomic hydrogen near the substrate surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように、基板を清浄化する効果を低下させること
なく基板温度を低下させることが重要である。
As mentioned above, it is important to reduce the substrate temperature without reducing the effectiveness of cleaning the substrate.

本発明は基板清浄化の際の基板温度を低下させて、基板
への不純物の拡散や汚染を抑制することを目的とする。
An object of the present invention is to reduce the substrate temperature during substrate cleaning to suppress diffusion of impurities and contamination to the substrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、真空容器内に珪素基板と加熱された
フィラメントを離して置き、該フィラメントに水素ガス
を接触させて原子状水素を生成させ、該原子状水素によ
り該基板表面に被着されている酸化珪素膜を除去するこ
とを特徴とする珪素基板表面の清浄化方法により達成さ
れる。
To solve the above problem, a silicon substrate and a heated filament are placed apart in a vacuum container, hydrogen gas is brought into contact with the filament to generate atomic hydrogen, and the atomic hydrogen is deposited on the surface of the substrate. This is achieved by a method for cleaning the surface of a silicon substrate, which is characterized by removing the silicon oxide film that is present on the surface of the silicon substrate.

〔作用〕[Effect]

本発明は、水素ガスH,を高温のフィラメントと接触さ
せて、これを熱的に分解して原子状水素Hを発生させ1
発生した■を基板表面に輸送し基板表面に形成されてい
るSi酸化膜を還元するようにしたものである。
The present invention brings hydrogen gas H, into contact with a high-temperature filament, thermally decomposes it, and generates atomic hydrogen H.
The generated ■ is transported to the substrate surface to reduce the Si oxide film formed on the substrate surface.

そのときの反応は前記の(2)式による。即ちSiOx
+ 2 H−SiO↑+Ih01.   (2)本発明
によれば、従来法のように原子状水素を発生させるため
に基板温度を高温にする必要はなく、基板温度としては
(2)式のSiOが基板表面から離脱する温度で十分で
ある。
The reaction at that time is according to the above formula (2). That is, SiOx
+2H-SiO↑+Ih01. (2) According to the present invention, it is not necessary to raise the substrate temperature to a high temperature in order to generate atomic hydrogen as in the conventional method, and the substrate temperature is the temperature at which SiO in equation (2) separates from the substrate surface. It is enough.

この温度は800℃で十分であり、従来法に比べて低温
化が実現される。
A temperature of 800° C. is sufficient, and the temperature is lower than that of the conventional method.

〔実施例〕〔Example〕

図は本発明の一実施例を説明する装置の模式図である。 The figure is a schematic diagram of an apparatus for explaining an embodiment of the present invention.

図において、1は真空容器、2はSi基板、3は基板ホ
ルダ、4は基板加熱用ヒータ、5はH2分解用タングス
テンフィラメント、6はフィラメント加熱用電源、7は
H,導入管、8はフィラメントカバー、9は排気口であ
る。
In the figure, 1 is a vacuum container, 2 is a Si substrate, 3 is a substrate holder, 4 is a heater for heating the substrate, 5 is a tungsten filament for H2 decomposition, 6 is a power source for heating the filament, 7 is H, an introduction tube, and 8 is a filament. The cover 9 is an exhaust port.

基板2と■2分解用タングステンフィラメントJ 5の距離安約30 craである。Substrate 2 and ■2 Tungsten filament J for disassembly The distance of 5 is about 30 cra.

まず、化学洗浄(例えば、硝酸、過酸化水素水等でエツ
チングする)により厚さ10人程度の5in2膜が形成
されているSi基板2を真空容器1内の基板ホルダ3上
に保持する。
First, a Si substrate 2 on which a 5in2 film with a thickness of about 10 layers has been formed by chemical cleaning (for example, etching with nitric acid, hydrogen peroxide, etc.) is held on a substrate holder 3 in a vacuum container 1.

次に、排気口9より、真空容器1内の圧力が1×1O−
9Torr以下まで排気する。
Next, from the exhaust port 9, the pressure inside the vacuum container 1 is increased to 1×1O-
Evacuate to 9 Torr or less.

次に、基板加熱用ヒータ4により、 Si基板2を80
0℃に加熱する。
Next, the substrate heating heater 4 heats the Si substrate 2 by 80°C.
Heat to 0°C.

次に、電源6よりタングステンフィラメント5に電流を
流し、フィラメントの温度を2000℃に設定する。
Next, a current is applied to the tungsten filament 5 from the power source 6, and the temperature of the filament is set to 2000°C.

次に+  OX導入管7より流量0.1cc/min程
度の■2を真空容器1内に導入する。
Next, 2 is introduced into the vacuum vessel 1 through the +OX introduction pipe 7 at a flow rate of about 0.1 cc/min.

フィラメントの温度が2000℃の場合1分子状の水素
H3は約0.1%程度原子状水素)1に熱解離する。従
ってこの場合1 5.4X10”個へecの11が生成
されることになる。
When the temperature of the filament is 2000° C., one molecule of hydrogen H3 thermally dissociates into about 0.1% atomic hydrogen)1. Therefore, in this case, 11 of ec will be generated into 15.4×10” pieces.

水素を導入した状態で、真空容器l内の圧力を10−’
 Torr台に保てば、残留水素の平均自由行程は約5
IIlであるから、生成されたHが一回の衝突もな(S
i基板2の表面に到達できる。
With hydrogen introduced, the pressure inside the vacuum vessel l is increased to 10-'
If maintained at Torr level, the mean free path of residual hydrogen is approximately 5
IIl, the generated H does not even have a single collision (S
The surface of the i-substrate 2 can be reached.

そして、 St基板2上で(2)式の反応が起こり。Then, the reaction of formula (2) occurs on the St substrate 2.

SiO2が除去され、清浄表面が得られる。The SiO2 is removed and a clean surface is obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、原子状水素の発生
を、基板の位置でなく基板より離れたフィラメントの位
置で行うため、基板自身を高温にする必要はない。従っ
て、基板温度の低下が可能となり、基板への不純物拡散
が抑制され、又、装置からの汚染が低減される。
As explained above, according to the present invention, atomic hydrogen is generated not at the substrate but at a filament position distant from the substrate, so there is no need to heat the substrate itself to a high temperature. Therefore, the substrate temperature can be lowered, impurity diffusion into the substrate is suppressed, and contamination from the device is reduced.

従来例に比し、約200℃の低温化が実現でき。Compared to the conventional example, the temperature can be lowered by approximately 200℃.

その結果、不純物の拡散定数は約2桁小さくなり。As a result, the impurity diffusion constant becomes approximately two orders of magnitude smaller.

基板上に成長したエピタキシャル層に浅い接合の形成が
可能となり、デバイスの高速化、集積化が容易になる。
It becomes possible to form shallow junctions in the epitaxial layer grown on the substrate, making it easier to speed up and integrate devices.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を説明する装置の模式図である。 図において。 lは真空容器、   2はSt基板。 3は基板ホルダ、  4は基板加熱用ヒータ。 5はH8分解用タングステンフィラメント。 6はフィラメント加熱用電源。 7はHt導入管、  8はフィラメントカバー9は排気
口 4と一タ に1の梗式°叉 図
The figure is a schematic diagram of an apparatus for explaining an embodiment of the present invention. In fig. 1 is a vacuum container, 2 is an St substrate. 3 is a substrate holder, and 4 is a heater for heating the substrate. 5 is a tungsten filament for H8 decomposition. 6 is a power supply for heating the filament. 7 is the Ht inlet pipe, 8 is the filament cover 9 is the exhaust port 4, and the infrared fork diagram.

Claims (1)

【特許請求の範囲】[Claims] 真空容器内に珪素基板と加熱されたフィラメントを離し
て置き、該フィラメントに水素ガスを接触させて原子状
水素を生成させ、該原子状水素により該基板表面に被着
されている酸化珪素膜を除去することを特徴とする珪素
基板表面の清浄化方法。
A silicon substrate and a heated filament are placed apart in a vacuum container, hydrogen gas is brought into contact with the filament to generate atomic hydrogen, and the silicon oxide film deposited on the substrate surface is removed by the atomic hydrogen. 1. A method of cleaning a silicon substrate surface, the method comprising: removing the surface of a silicon substrate;
JP24181888A 1988-09-27 1988-09-27 Cleaning nethod for silicon substrate surface Pending JPH0289313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24181888A JPH0289313A (en) 1988-09-27 1988-09-27 Cleaning nethod for silicon substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24181888A JPH0289313A (en) 1988-09-27 1988-09-27 Cleaning nethod for silicon substrate surface

Publications (1)

Publication Number Publication Date
JPH0289313A true JPH0289313A (en) 1990-03-29

Family

ID=17079955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24181888A Pending JPH0289313A (en) 1988-09-27 1988-09-27 Cleaning nethod for silicon substrate surface

Country Status (1)

Country Link
JP (1) JPH0289313A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304405A (en) * 1991-01-11 1994-04-19 Anelva Corporation Thin film deposition method and apparatus
US5409543A (en) * 1992-12-22 1995-04-25 Sandia Corporation Dry soldering with hot filament produced atomic hydrogen
EP0784337A3 (en) * 1996-01-10 1998-06-03 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
US6350984B1 (en) 1998-06-05 2002-02-26 Kabushiki Kaisha Yaskawa Denki Optical encoder
JP2008229690A (en) * 2007-03-22 2008-10-02 Daido Air Products Electronics Inc Soldering method and device used therefor
JP2012009738A (en) * 2010-06-28 2012-01-12 Ulvac Japan Ltd Dry etching method and dry etching apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304405A (en) * 1991-01-11 1994-04-19 Anelva Corporation Thin film deposition method and apparatus
US5409543A (en) * 1992-12-22 1995-04-25 Sandia Corporation Dry soldering with hot filament produced atomic hydrogen
EP0784337A3 (en) * 1996-01-10 1998-06-03 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
US6107197A (en) * 1996-01-10 2000-08-22 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
EP1045432A2 (en) * 1996-01-10 2000-10-18 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon
EP1045432A3 (en) * 1996-01-10 2000-12-13 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon
US6350984B1 (en) 1998-06-05 2002-02-26 Kabushiki Kaisha Yaskawa Denki Optical encoder
JP2008229690A (en) * 2007-03-22 2008-10-02 Daido Air Products Electronics Inc Soldering method and device used therefor
JP2012009738A (en) * 2010-06-28 2012-01-12 Ulvac Japan Ltd Dry etching method and dry etching apparatus

Similar Documents

Publication Publication Date Title
JP7046162B2 (en) Epitaxy system integrated with highly selective oxide removal and high temperature pollutant removal
TWI687966B (en) Method of processing substrate and vacuum processing system and apparatus
US7105055B2 (en) In situ growth of oxide and silicon layers
JP2728766B2 (en) Semiconductor processing method and apparatus
EP0445754B1 (en) Method for growing a diamond or c-BN thin film
TWI331364B (en)
JPH0752718B2 (en) Thin film formation method
EP1393361A2 (en) Low temperature load and bake
WO2006049225A1 (en) Semiconductor device manufacturing method and substrate treating apparatus
JP2022084597A (en) Integrated epitaxy and preclean system
JP4039385B2 (en) Removal method of chemical oxide film
US4267205A (en) Process for low-temperature surface layer oxidation of a semiconductor substrate
JP4851647B2 (en) In situ growth of oxide and silicon layers
JPH0289313A (en) Cleaning nethod for silicon substrate surface
JPS5884111A (en) Improved plasma deposition for silicon
TWI719768B (en) Method of growing doped group iv materials
JPH04290219A (en) Method of forming polycrystalline silicon film
JPH118226A (en) Cleaning of semiconductor substrate surface and apparatus therefor
JPS62166527A (en) Formation of silicon oxide film
JP2006108595A (en) Semiconductor device manufacturing method
JPH04254328A (en) Manufacture of semiconductor device
JPH0355439B2 (en)
JPH0355440B2 (en)
JPH05308064A (en) &#39;on the spot&#39; elimination method and device of silicon natural oxide film
JPS58194718A (en) Device for forming thermal silicon nitride film