JPH0288729A - Production of sintered hard alloy - Google Patents
Production of sintered hard alloyInfo
- Publication number
- JPH0288729A JPH0288729A JP63243051A JP24305188A JPH0288729A JP H0288729 A JPH0288729 A JP H0288729A JP 63243051 A JP63243051 A JP 63243051A JP 24305188 A JP24305188 A JP 24305188A JP H0288729 A JPH0288729 A JP H0288729A
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- cemented carbide
- weight
- gas
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000956 alloy Substances 0.000 title abstract description 16
- 229910045601 alloy Inorganic materials 0.000 title abstract description 16
- 238000005245 sintering Methods 0.000 claims abstract description 73
- 239000007789 gas Substances 0.000 claims abstract description 46
- 239000000843 powder Substances 0.000 claims abstract description 31
- 239000000314 lubricant Substances 0.000 claims abstract description 27
- 238000005255 carburizing Methods 0.000 claims abstract description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 27
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- -1 iron group metals Chemical class 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 19
- 239000000463 material Substances 0.000 abstract description 2
- 238000005262 decarbonization Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 13
- 238000005261 decarburization Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000012188 paraffin wax Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RSAQARAFWMUYLL-UHFFFAOYSA-N tic-10 Chemical compound CC1=CC=CC=C1CN1C(CCN(CC=2C=CC=CC=2)C2)=C2C(=O)N2CCN=C21 RSAQARAFWMUYLL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、耐摩耗性、耐食性に優れたNiを1重量%以
上含む超硬合金の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a cemented carbide containing 1% by weight or more of Ni, which has excellent wear resistance and corrosion resistance.
〈従来の技術〉
超硬合金の製造方法は、まず原料粉末を所定形状にプレ
ス等により成形することから始まり、その成形に際して
はパラフィン等の粉末潤滑剤が添加されている。その量
は超硬合金の種類、成形法にもよるが、大体全量の1〜
15重量%程度である。<Prior Art> A method for manufacturing cemented carbide starts with molding raw material powder into a predetermined shape by pressing or the like, and during the molding, a powder lubricant such as paraffin is added. The amount depends on the type of cemented carbide and the forming method, but it is approximately 1 to 10% of the total amount.
It is about 15% by weight.
この粉末潤滑剤は成形後は不要になるばかりか、有害で
あるので除去する必要がある。この粉末潤滑剤除去工程
は、予備焼結工程と称され、通常は真空中で400〜1
000″Cまで加熱する方策を採っている。This powder lubricant is not only unnecessary after molding, but also harmful, so it must be removed. This powder lubricant removal process is called a pre-sintering process, and is usually performed in a vacuum at a
A measure is being taken to heat it up to 000''C.
なお予備焼結体は、その後中間加工を施され、あるいは
施されないまま、焼結されて焼結体が得られる。Note that the preliminary sintered body is then subjected to intermediate processing or sintered without being subjected to intermediate processing to obtain a sintered body.
〈発明が解決しようとする課題〉
前記従来技術として述べた予備焼結方法では、対象物の
寸法が小さい場合には、粉末潤滑剤は十分に除去される
。しかし、寸法が大、例えば肉厚が20胚以上にもなる
と、粉末潤滑剤の除去が十分ではなく、炭素として予備
焼結体内に残留し、結果としては予備焼結体が浸炭され
た状態となる。<Problems to be Solved by the Invention> In the preliminary sintering method described as the prior art, the powder lubricant is sufficiently removed when the size of the object is small. However, when the dimensions are large, for example, the wall thickness exceeds 20 mm, the powder lubricant is not removed sufficiently and remains in the pre-sintered body as carbon, resulting in the pre-sintered body becoming carburized. Become.
このような状態の予備焼結体を焼結すると、残留炭素の
分だけ炭素量が多くなっているので、焼結体に有害な遊
離炭素が生じてしまう。そこでこのような場合には、水
素が粉末潤滑剤の蒸散を促進する性質があることを活用
し水素気流中で予備焼結する方法が採られた。When the preliminary sintered body in such a state is sintered, the amount of carbon increases by the amount of residual carbon, and harmful free carbon is generated in the sintered body. Therefore, in such cases, a method of pre-sintering in a hydrogen stream was adopted, taking advantage of the fact that hydrogen has the property of promoting evaporation of the powdered lubricant.
これらの方法により甑−CO超硬合金のようにCoを結
合相とする一般的な超硬合金については、粉末潤滑剤は
ほぼ完全に除去できるようになった。These methods have made it possible to almost completely remove the powder lubricant from common cemented carbide containing Co as a binder phase, such as Koshiki-CO cemented carbide.
ところで近年の著しい産業の進展に伴い、高耐摩耗性に
加え、高耐食性をも具有する超硬合金が要求されるよう
になり、例えば−C−Co−旧、WC−Ni。However, with the remarkable progress of industry in recent years, there has been a demand for cemented carbide having not only high wear resistance but also high corrosion resistance, such as -C-Co-old, WC-Ni.
あるいはこれらにCr(Cr3Cλ) 、 Mo(Mo
xC)等を含有せしめた超硬合金、又はTiC−Mo2
C−Nj (Go)を基本系とする所謂サーメットと
も称される超硬合金も使用されるようになって来た。こ
のような新しい組成の超硬合金に対しては、既述の予備
焼結法では十分ではないことが判明した。即ち、その肉
厚が1oan以下であれば真空中に於ける予備焼結で十
分に粉末潤滑剤は除去されるが、肉厚がそれ以上に大き
くなると、予備焼結体内に炭素が残留し、しかも該残留
炭素の濃度が中心部と表層部とでは差が生じるようにな
り、さらには予備焼結時に成形体に亀裂が生起する場合
すらあるのである。Alternatively, Cr(Cr3Cλ), Mo(Mo
xC) etc., or TiC-Mo2
Cemented carbide, also called cermet, based on C-Nj (Go) has also come into use. It has been found that the previously described preliminary sintering method is not sufficient for cemented carbide with such a new composition. That is, if the wall thickness is 1 oan or less, the powder lubricant can be sufficiently removed by pre-sintering in a vacuum, but if the wall thickness becomes larger than that, carbon remains in the pre-sintered body. Moreover, the concentration of residual carbon becomes different between the center and the surface layer, and even cracks may occur in the compact during preliminary sintering.
一方このような新しい組成の超硬合金を、水素気流中で
予備焼結すると、粉末潤滑剤は十分に除去され、また成
形体に亀裂が生起するようなこともないが、著しく脱炭
が進み、それを焼結すると、合金が低炭素の時に生じる
有害な複炭化物相が出来、しかもその脱炭の度合は中心
部と表層部とでは異なるので結果的に予備焼結体の中心
部と表層部とでは、炭素濃度の差があるようになる。On the other hand, when cemented carbide with such a new composition is presintered in a hydrogen stream, the powder lubricant is sufficiently removed and no cracks occur in the compact, but decarburization progresses significantly. , when it is sintered, a harmful double carbide phase that occurs when the alloy is low in carbon is formed, and the degree of decarburization is different between the center and surface layers, resulting in a difference between the center and surface layers of the pre-sintered body. There is a difference in carbon concentration between the two parts.
本発明は上記諸問題を解決し、予備焼結中に成形体が割
れることなく、結果的に健全な焼結体が得られる超硬合
金の製造方法を提供することを目的とするものである。The present invention aims to solve the above-mentioned problems and provide a method for manufacturing cemented carbide, which does not cause the molded body to crack during preliminary sintering and results in a healthy sintered body. .
〈課題を解決する為の手段〉
上記本発明の目的を達成する為の手段は次の通りである
。即ち、
粉末潤滑剤を添加した超硬合金の原料粉末を成形して得
られた成形体を、水素と浸炭性ガスとの混合ガス雰囲気
中にて400〜1000℃まで加熱する予備焼結処理を
施し、次いで焼結処理を施す方法である。<Means for Solving the Problems> The means for achieving the above object of the present invention are as follows. That is, a pre-sintering process is performed in which a compact obtained by compacting cemented carbide raw material powder to which a powder lubricant has been added is heated to 400 to 1000°C in a mixed gas atmosphere of hydrogen and carburizing gas. This is a method in which a sintering treatment is performed.
なお浸炭性ガスとは、例えばメタン、エタン。Note that carburizing gases include, for example, methane and ethane.
プロパンの如き灰化水素系ガスをはじめ浸炭作用を具有
するガスであれば何でもよいが、後述する如くメタンが
最も好ましく、メタンの場合は、水素ガスに対する濃度
が4〜30体積%が好ましい。Any gas may be used as long as it has a carburizing effect, including a hydrogen ashing gas such as propane, but as described later, methane is most preferred, and in the case of methane, the concentration relative to hydrogen gas is preferably 4 to 30% by volume.
上記方法の他に結合相金属がlO0重量%以上含された
超硬合金の原料粉末を成形して得られた成形体を、真空
中あるいは不活性雰囲気中にて400〜1000℃まで
加熱する予備焼結処理を施し、次いで通常の焼結処理を
施す方法、又は結合相金属が100重量%以上含された
超硬合金の原料粉末を成形して得られた成形体を、真空
中あるいは不活性雰囲気中にて1300〜1500℃ま
で加熱する焼結処理を施す方法もある。In addition to the above method, a preliminarily heated compact obtained by compacting a cemented carbide raw material powder containing 100% by weight or more of a binder phase metal to 400 to 1000°C in a vacuum or an inert atmosphere is used. A molded body obtained by performing sintering treatment and then regular sintering treatment, or by molding raw material powder of cemented carbide containing 100% by weight or more of binder phase metal, in a vacuum or inert There is also a method of performing a sintering treatment in which the material is heated to 1300 to 1500°C in an atmosphere.
以下、上述のように限定した理由を説明する。The reason for the above limitation will be explained below.
■対象とする超硬合金組成について
既述のように、旧を含まない、通常のCoを結合相とす
る超硬合金の場合には、従来技術で十分に製造可能なの
で、旧を1重量%以上含む超硬合金に限定する。なお、
ここで超硬合金とは周期律表のIVa 、Va 、’A
a族金属の炭化物、窒化物、硼化物、またはそれらの2
種以上から成る固溶体から成る硬質物質の群の中の1種
または2種以上と、0.1〜30重量%の鉄族金属の1
種または2種以上とから成る合金を示称する。■ Regarding the composition of the target cemented carbide As mentioned above, in the case of cemented carbide that does not contain old and has normal Co as a binder phase, it can be sufficiently manufactured using conventional technology, so 1% by weight of old Limited to cemented carbide containing the above. In addition,
Here, cemented carbide refers to IVa, Va, 'A of the periodic table.
Group a metal carbide, nitride, boride, or two of them
one or more of the group of hard substances consisting of a solid solution consisting of more than one species, and 0.1 to 30% by weight of one of the iron group metals.
Refers to an alloy consisting of a species or two or more species.
■粉末潤滑剤を含む成形体の場合について2−1 混合
ガス組成
粉末潤滑剤の除去を容易にするために、水素ガスを基本
とし、これだけでは予備焼結時に脱炭しすぎるなどの問
題があるので、これを抑制するために適量の浸炭性ガス
を、これに含ませる。ここで浸炭性ガスは、例えばメタ
ン、エタン、プロパンの如き炭化水素系ガスをはじめ、
浸炭作用を有するガスであれば何でも良い。しかし高次
の炭化水素系ガスでは、その濃度のわずかな変化で、浸
炭性が大きく変化するので、安定に予備焼結をするのが
難しくなる。従って浸炭性ガスとしては、低次の炭化水
素系ガスが好ましく、特にメタンガスが好ましいのであ
る。■For molded bodies containing powdered lubricant 2-1 Mixed gas composition In order to facilitate the removal of powdered lubricant, hydrogen gas is used as the basis, but using only this gas has problems such as excessive decarburization during preliminary sintering. Therefore, in order to suppress this, an appropriate amount of carburizing gas is included. Here, the carburizing gas includes, for example, hydrocarbon gases such as methane, ethane, and propane.
Any gas may be used as long as it has a carburizing effect. However, in the case of high-order hydrocarbon gases, a slight change in the concentration significantly changes the carburizing properties, making it difficult to perform pre-sintering stably. Therefore, the carburizing gas is preferably a low-order hydrocarbon gas, and methane gas is particularly preferred.
2−2 メタンガスの濃度について
メタンガスの濃度が低すぎる、具体的には4体積%未満
だと、予備焼結時に、脱炭の抑制が十分に出来ず、逆に
高すぎる、具体的には30体積%を超えると脱炭はしな
いが浸炭するようになる。そこで、水素ガス中でのメタ
ンガスの濃度は4〜30体積%とする。2-2 Concentration of methane gas If the concentration of methane gas is too low, specifically less than 4% by volume, decarburization cannot be sufficiently suppressed during preliminary sintering, and on the contrary, it is too high, specifically less than 30% by volume. If it exceeds the volume percentage, decarburization will not occur but carburization will occur. Therefore, the concentration of methane gas in hydrogen gas is set to 4 to 30% by volume.
2−3 混合ガス中での酸素の濃度について超硬合金中
にはCr、 Tiなどの酸化され易い元素も含まれる場
合がある。この時に、水素−浸炭性ガスの混合ガス中に
酸素または酸化性ガス(H2O、CO2など)が20重
量ppmよりも多いと、これらの元素を酸化し、かつそ
の酸化量が多くなり、結果的に健全な超硬合金が得られ
なくなる。よって混合ガス中での酸素または酸化性ガス
の濃度は20重量ppm以下としたのである。2-3 Concerning the concentration of oxygen in the mixed gas Cemented carbide may also contain elements that are easily oxidized, such as Cr and Ti. At this time, if oxygen or oxidizing gas (H2O, CO2, etc.) is more than 20 ppm by weight in the hydrogen-carburizing gas mixture, these elements will be oxidized and the amount of oxidation will increase, resulting in It becomes impossible to obtain a sound cemented carbide. Therefore, the concentration of oxygen or oxidizing gas in the mixed gas was set to 20 ppm by weight or less.
■粉末潤滑剤を含まない成形体の場合について3−1
超硬合金組成
この場合には、粉末潤滑剤を使わずに、プレス成形する
ので、そのプレス性が重要である。プレス性は鉄族金属
の量が多いほど向上し、10重量%以上では実質上問題
がなくなる。それゆえ、■の限定に加えて、結合相とな
る鉄族金属の量を10重量%以上と限定する。■About the case of compacts that do not contain powder lubricant 3-1
Cemented Carbide Composition In this case, press forming is performed without using a powder lubricant, so pressability is important. The pressability improves as the amount of iron group metal increases, and there is virtually no problem at 10% by weight or more. Therefore, in addition to the limitation (2), the amount of iron group metal serving as the binder phase is limited to 10% by weight or more.
3−2 予備焼結あるいは焼結方法について粉末潤滑剤
を含まない成形体であるので、当然ながら真空中あるい
は不活性ガス中で予備焼結をしても浸炭することはなく
、また割れることもない。従って真空中あるいは不活性
ガス中子備焼結に限定する。なお、予備焼結後の中間加
工が不要な場合には予備焼結、中間加工を経ずに直接焼
結しても良い。この場合もその雰囲気は真空または不活
性ガスとするのである。3-2 Preliminary sintering or sintering method Since the compact does not contain powder lubricant, it will naturally not be carburized or cracked even if pre-sintered in a vacuum or inert gas. do not have. Therefore, sintering is limited to a vacuum or inert gas core. Note that if intermediate processing after preliminary sintering is not necessary, direct sintering may be performed without preliminary sintering or intermediate processing. In this case as well, the atmosphere is vacuum or inert gas.
〈実施例〉
以下本発明をその実施例及び比較例を示し乍ら更に詳述
する。<Examples> The present invention will be described in more detail below with reference to Examples and Comparative Examples.
実41例」2
まず下記の第1表に示す3種の組成の超硬合金の原料粉
末に、2.5重量%のパラフィンを粉末潤滑剤として配
合した混合粉末を、1t/c1ilの圧力でプレス成形
し、成形体を得た。この成形体の寸法は38X 38X
30刷の方形とした。41 Actual Examples 2 First, a mixed powder containing 2.5% by weight of paraffin as a powder lubricant was added to cemented carbide raw material powders having the three compositions shown in Table 1 below at a pressure of 1t/c1il. Press molding was performed to obtain a molded body. The dimensions of this molded body are 38X 38X
It was made into a square with 30 prints.
第1表 試料の組成
この成形体を、■λガスと共にCI、ガスをも同時に流
すことが出来るようにした予備焼結炉へ装入し、種々の
ガス組成で予備焼結した。ガス組成は本発明方法として
2種、即ち、Hλ−5,6体積%CH,、+fλ−10
,0体積%CH≠及び比較例として1種即ちHλのみ(
この場合のパラフィン添加前の原料粉末の炭素量は約0
.7重量%多くした)の3種とした。なお、昇温条件は
いずれの場合も、700℃まで20hrとし、700℃
に達した所で冷却した。また、混合ガス中の酸素または
酸化物ガスの濃度はいずれも20重量ppa+以下にし
た。なお、必要に応じてCHy濃度を変えた予備焼結も
実施し、更にまた必要に応じて真空焼結を施し、更に組
織観察等も実施した。Table 1 Composition of Samples The molded bodies were charged into a pre-sintering furnace which was capable of simultaneously flowing CI and λ gases, and pre-sintered with various gas compositions. There are two gas compositions for the method of the present invention: Hλ-5, 6 volume% CH, +fλ-10.
, 0 volume% CH≠ and only one type, ie, Hλ, as a comparative example (
In this case, the carbon content of the raw material powder before adding paraffin is approximately 0.
.. There were three types (7% more by weight). In addition, the temperature raising conditions are 20 hours up to 700°C in both cases, and 700°C
It was cooled when it reached . Further, the concentration of oxygen or oxide gas in the mixed gas was set to 20 ppa+ or less by weight. Preliminary sintering was performed with varying CHy concentrations as needed, vacuum sintering was performed as needed, and microstructural observations were also performed.
このようなガス雰囲気中予備焼結して得られた予備焼結
体には割れは認められなかった。そこで次にこれらの予
備焼結体の炭素量及び、予備焼結前の炭素量とを測定し
た。第1図にはその結果例を示す。No cracks were observed in the pre-sintered body obtained by pre-sintering in such a gas atmosphere. Therefore, next, the carbon content of these pre-sintered bodies and the carbon content before pre-sintering were measured. Figure 1 shows an example of the results.
まず△印破線で示した比較例について述べる。First, a comparative example indicated by a dashed line △ will be described.
これは試料2をH2中で予備焼結した例であるが、表面
部の方が中心部よりも炭素(以後Cと略す)量が少なく
、その差が0.4重量%もあること、更に中心部でも予
備焼結前(このC量はパラフィンを添加する前に測定)
に比べて0.5重量%もC量が減少していることが判る
。従ってこの予備焼結体を、このまま焼結(真空中、1
350°(:X1hr)しても、表面部と内部とで著し
い組織差を生じ、実用に供し得ない。なお、詳細なデー
タについては割愛するが、真空予備焼結をすると、表面
と中心部とで、このH,予備焼結と同程度のC量差を生
じ、しかも割れを生じたのでこれも実用に供し得なかっ
た・
一方、本発明方法であるHニーCL雰囲気予備焼結した
例では次の通りである。まず比較例と同じく試料2につ
いて述べる。Hλ−5,6体積%CH,の場合をムで、
F12−10.0体積%CH,の場合をムで示している
が、いずれの場合も表面から中心までほぼ一定のC量に
なっていることが判る。また予備焼結前に比べてC量は
減少しているが、その程度は比較例に比べて小さくなっ
ていることが判る。This is an example of sample 2 pre-sintered in H2, but the surface part has less carbon (hereinafter abbreviated as C) than the center part, and the difference is 0.4% by weight. Even in the center before pre-sintering (this amount of C is measured before adding paraffin)
It can be seen that the amount of C is reduced by 0.5% by weight compared to the above. Therefore, this pre-sintered body is sintered as it is (in vacuum, 1
Even at 350° (:X1 hr), a significant difference in structure occurs between the surface and the inside, making it impossible to put it to practical use. Although detailed data will be omitted, vacuum pre-sintering produced a difference in the amount of H and C between the surface and the center, which was the same as that of pre-sintering, and also caused cracks, so this method is also not suitable for practical use. On the other hand, an example of preliminary sintering in an H-nee CL atmosphere, which is the method of the present invention, is as follows. First, Sample 2 will be described as in the comparative example. In the case of Hλ-5,6 volume% CH,
The case of F12-10.0 volume % CH is shown in mu, and it can be seen that in both cases, the amount of C is almost constant from the surface to the center. It can also be seen that although the amount of C is reduced compared to before preliminary sintering, the extent is smaller than that of the comparative example.
なお、CI、ガス濃度の高い方がC量が多いことも判る
。It can also be seen that the higher the CI and gas concentration, the higher the amount of C.
このように、このHλ−CHq雰囲気予備焼結により、
Hλ予備焼結の2つの問題、即ち、著しく脱炭し、しか
も表面と内部にも著しく C量の差が生じるという双方
とも抑制または解決出来ることが明らかになった。但し
、このC量では、健全組織の得られるC量よりも下にな
るので、焼結しても健全な合金は得られない。しかしこ
れは、予備焼結前のC量と、予備焼結のCI、濃度とを
適宜コントロールして解決できる。例えば予備焼結前の
C量をこのままとし、CHzの濃度を約25体積%にし
て予備焼結するか、あるいは、予備焼結前のC量を0.
5重量%程度増し、CI、の濃度は5.6〜10.0体
積%にして予備焼結することで解決できることを確認し
た。In this way, by this Hλ-CHq atmosphere pre-sintering,
It has become clear that the two problems of Hλ pre-sintering, namely, significant decarburization and the occurrence of a significant difference in C content between the surface and the interior, can be suppressed or solved. However, this amount of C is lower than the amount of C required to obtain a sound structure, so even if sintered, a sound alloy cannot be obtained. However, this problem can be solved by appropriately controlling the amount of C before pre-sintering, and the CI and concentration of pre-sintering. For example, the amount of C before pre-sintering may be kept as it is, and the C concentration before pre-sintering may be increased to approximately 25% by volume, or the amount of C before pre-sintering may be reduced to 0.
It was confirmed that the problem could be solved by increasing the CI concentration by about 5% by weight and pre-sintering the concentration of CI from 5.6 to 10.0% by volume.
試料1(C2・印)の場合も試料2と同様にHλCHQ
予備焼結の著しい効果が認められることが判る。そして
、この予備焼結体を、焼結(真空中、1400℃X I
hr) シて健全な合金が得られる事を確認した。In the case of sample 1 (marked C2), HλCHQ is the same as sample 2.
It can be seen that the remarkable effect of pre-sintering is recognized. Then, this preliminary sintered body was sintered (in vacuum at 1400°C
hr) It was confirmed that a sound alloy could be obtained.
試料3(l、■印)の場合は、試料1.2はどの効果は
認められず、表面と内部とで、0.2%程度のC蓋差が
残っていることが判る。しかし、この合金の健全組織の
幅は約0.4%Cもあるので、この程度で差し支えない
。ただし、このC量では健全相域の得られる C量より
も低いので、焼結(真空中、 1350℃X1hr)し
ても健全な合金は得られない。これは、試料2と同様に
予備焼結前のC量と、予備焼結のCH%濃度とを適宜コ
ントロールして解決できる。例えば予備焼結前のC量を
このままとしCI、の濃度を約25体積%にして予備焼
結するか、あるいは予備焼結前のC量を0.7重量%程
度増してH2−(5,6〜10)体積%CH≠雰囲気予
備焼結をすることによって、焼結(真空中、1350℃
X 1 hr)後、健全な合金の得られるこ七を確認し
た。In the case of sample 3 (l, ■ mark), no effect was observed in sample 1.2, and it can be seen that there remains a C lid difference of about 0.2% between the surface and the inside. However, since the width of the healthy structure of this alloy is about 0.4%C, this level is sufficient. However, since this amount of C is lower than the amount of C that would result in a sound phase region, a sound alloy cannot be obtained even by sintering (in vacuum, at 1350° C. for 1 hr). This problem can be solved by appropriately controlling the amount of C before pre-sintering and the CH% concentration during pre-sintering, as in Sample 2. For example, the amount of C before pre-sintering can be left as is and the concentration of CI is about 25% by volume and pre-sintered, or the amount of C before pre-sintering can be increased by about 0.7% by weight and H2- 6-10) Sintering (in vacuum, 1350℃
After X 1 hr), it was confirmed that a sound alloy was obtained.
支隻亘1
組成が45重量%Tic −10重量%TiN 5重
量%TaC−25重量%Mo:LC15重量%Niから
なるサーメット(超硬合金の一種、以下試料4とする)
の原料粉末に4重量%のパラフィンを粉末潤滑剤として
配合した混合粉末をプレス成形し、38X 38X 3
0鵬の成形体を得た。1 Cermet (a type of cemented carbide, hereinafter referred to as sample 4) whose composition is 45% by weight Tic - 10% by weight TiN 5% by weight TaC - 25% by weight Mo:LC 15% by weight Ni
A mixed powder made by blending 4% by weight of paraffin as a powder lubricant with the raw material powder is press-molded into 38X 38X 3
A molded body of 0.0 % was obtained.
この成形体を、実施例1と同じ予備焼結炉に装入し、2
種のガス組成で予備焼結した。ガス組成は本発明方法と
して)12−10.0体積%CH,、比較例としてH,
Lのみの2種である。昇温条件は実施例1と同じ(、い
ずれも700℃まで20hrとし、700℃に達した所
で冷却した。また混合ガス中の酸素または酸化物ガスの
濃度はいずれも20重量ppH1以下にした。This compact was charged into the same preliminary sintering furnace as in Example 1, and
Pre-sintered with a different gas composition. The gas composition is 12-10.0% by volume CH (as the method of the present invention), H as a comparative example,
There are two types, L only. The temperature raising conditions were the same as in Example 1 (in both cases, the temperature was raised to 700°C for 20 hr, and when it reached 700°C, it was cooled. Also, the concentration of oxygen or oxide gas in the mixed gas was set to 20% by weight or less than 1). .
このようにして得られた予備焼結体には割れは認められ
なかった。そこで次にこれらの予備焼結体のC量、及び
予備焼結前のC量とを測定した。No cracks were observed in the pre-sintered body thus obtained. Therefore, next, the amount of C in these preliminary sintered bodies and the amount of C before preliminary sintering were measured.
第2図にはその結果例を示す。Figure 2 shows an example of the results.
まず○印破線で示した比較例について述べる。First, a comparative example indicated by a broken line marked with a circle will be described.
これは試料4をR2中で予備焼結した例であるが、表面
の方が中心部よりも著しく脱戻し、その差が1.3%も
あること、更に中心部でも予備焼結前(このC量はパラ
フィンを添加する前に測定)のC量に比べて0.8%も
脱炭していることが判る。This is an example of sample 4 pre-sintered in R2, but the surface is more markedly detached than the center, and the difference is as much as 1.3%. It can be seen that the amount of C was decarburized by 0.8% compared to the amount of C (measured before adding paraffin).
従ってこの予備焼結体を、このまま焼結(真空中、14
00℃x Ihr) シても、表面と内部とで著しい組
織差を生じ実用に供し得ない。なお、詳細なデータにつ
いては割愛するが、真空予備焼結をすると、成形体の表
面から中心近くまで多数の割れを生じ、これも実用に供
し得なかった。Therefore, this pre-sintered body was sintered (in vacuum, for 14 hours).
Even if the temperature is 00°C x Ihr), a significant difference in structure occurs between the surface and the inside, making it impossible to put it to practical use. Although detailed data will be omitted, when vacuum preliminary sintering was performed, many cracks were generated from the surface of the compact to near the center, which also made it impossible to put it to practical use.
一方本発明方法であるR2− CB、、を雰囲気予備焼
結した例を・印実線で示したが、比較例の結果に比べ、
表面から中心まで脱炭量は著しく減少し、しかも表面と
中心部との差も0.3%Cと小さくなっていることが判
る。この予備焼結体を焼結(真空中、1400℃×1h
r)シた所、表面から中心まで健全な合金の得られてい
ることが判った。On the other hand, an example in which R2-CB, which is the method of the present invention, is pre-sintered in an atmosphere is shown by a solid line marked with . Compared to the results of the comparative example,
It can be seen that the amount of decarburization decreases significantly from the surface to the center, and the difference between the surface and the center is as small as 0.3%C. This preliminary sintered body is sintered (in vacuum, 1400℃ x 1h
r) It was found that a sound alloy was obtained from the surface to the center.
即ち、実施例1で述べたと同様に、本発明のHLCH−
雰囲気予備焼結により従来の問題点は解決されたと言え
る。That is, as described in Example 1, the HLCH-
It can be said that the conventional problems have been solved by atmosphere pre-sintering.
実Jl医」一
実施例1の第1表に示される試料2について、実施例1
と同様な成形体を得た。これをR1−1,6体積%C,
H,雰囲気予備焼結した。昇温条件は実施例1と同様に
した。Regarding sample 2 shown in Table 1 of Example 1, Example 1
A molded article similar to that was obtained. This is R1-1,6 volume%C,
H, atmosphere pre-sintering. The temperature raising conditions were the same as in Example 1.
その結果は、実施例1の第1図に示されるR21000
体積
で、Hλ予備焼結に比べて脱炭は抑制され、しかも、表
面と中心とのC量の差もなかった。即ち、■2CH,雰
囲気予備焼結と同様な効果があることが判った。The results are as follows: R21000 shown in FIG. 1 of Example 1
In terms of volume, decarburization was suppressed compared to Hλ pre-sintering, and there was no difference in the amount of C between the surface and center. That is, it was found that the effect was similar to that of (2CH) and atmosphere preliminary sintering.
念のため、CJH,の濃度を増し、127.6体積%C
jHg雰囲気予備焼結も実施したが、この場合は著しく
浸炭し、予備焼結体の表面に炭素の析出が認められた。Just to be sure, the concentration of CJH was increased to 127.6 volume%C.
Preliminary sintering in a jHg atmosphere was also carried out, but in this case significant carburization occurred and carbon precipitation was observed on the surface of the presintered body.
従ってCB Hsrガスの場合にはそのHλガス中で濃
度が変化すると、ガスの浸炭性あるいは脱炭性が変化し
易いことが判った。よって浸炭性のガスとしてC, H
.も使えるが、実施例1で示したCHヤガスの方が好ま
しいことが判った。Therefore, in the case of CB Hsr gas, it has been found that when the concentration changes in the Hλ gas, the carburizing property or decarburizing property of the gas tends to change. Therefore, as carburizing gases, C, H
.. Although it is also possible to use CH Yagas, it was found that CH Yagas shown in Example 1 is more preferable.
支路■1
実施例1の第1表に示す試料2と試料3について、粉末
潤滑剤を添加しない混合粉末を、1 t/c4でプレス
成形し、38X 38X 30mmの成形体を得た。Branch ■1 For Samples 2 and 3 shown in Table 1 of Example 1, the mixed powders to which no powder lubricant was added were press-molded at 1 t/c4 to obtain compacts of 38 x 38 x 30 mm.
これらを真空中で予備焼結(700℃まで8hrで昇温
)し、更に焼結(真空中、1350℃X1hr)L,た
。These were pre-sintered in vacuum (temperature raised to 700°C over 8 hours) and further sintered (in vacuum at 1350°C for 1 hour).
その結果、試料2,試料3のいずれも、これらの工程に
よって0.1−0.2%Cの脱炭はするが、健全な合金
の得られることが判った。As a result, it was found that in both Samples 2 and 3, although 0.1-0.2% C was decarburized by these steps, sound alloys were obtained.
また、上記の予備焼結を経ないで、直接焼結した場合も
同様であった。即ち、混合粉末中に粉末潤滑剤を添加し
ないという新規な方法により成形体を作れば、上述のよ
うに(予備焼結→)焼結して健全な合金が得られること
が判った。Further, the same result was obtained when direct sintering was performed without undergoing the above-mentioned preliminary sintering. That is, it has been found that if a compact is made by a novel method in which no powder lubricant is added to the mixed powder, a sound alloy can be obtained by sintering as described above (preliminary sintering→).
〈発明の効果〉
以上述べて来た如く、本発明の方法によれば、粉末潤滑
剤を用いてもその粉末潤滑剤が予備焼結中にほぼ完全に
除去され、しかも過度な脱炭もされる事がないので、最
終焼結体の炭素量はその全域に渡って均一で、かつ複炭
化物相が生じる事もなく健全な超硬合金が得られる。<Effects of the Invention> As described above, according to the method of the present invention, even if a powder lubricant is used, the powder lubricant is almost completely removed during preliminary sintering, and excessive decarburization is also prevented. Therefore, the amount of carbon in the final sintered body is uniform over the entire area, and a sound cemented carbide is obtained without the formation of double carbide phases.
又予備焼結中に成形体が割れるというような事もない。Moreover, there is no possibility that the molded body will crack during preliminary sintering.
一方結合和金属を10重量%以上含むものについては、
それを真空中あるいは非酸化物性雰囲気中にて400〜
1000℃まで加熱して予備焼結し、あるいは1300
〜1500″Cまで加熱して焼結する事で粉末潤滑剤に
起因する炭素量の変動、脱炭及び浸炭のいずれもがない
ので健全な超硬合金が容易に得られる。On the other hand, for those containing 10% by weight or more of bonded metals,
400~ in vacuum or non-oxide atmosphere
Pre-sintered by heating to 1000℃ or 1300℃
By heating and sintering to ~1500''C, a sound cemented carbide can be easily obtained because there is no variation in carbon content caused by powder lubricant, no decarburization, and no carburization.
第1図は本発明の実施例1で行った予備焼結による炭素
量の変化を示すグラフ、第2図は実施例で行った予備焼
結による炭素量の変化を示すグラフ。
第
図
試料表面からの深さ/″JrLγζ
試料表面からの深さ/顎爪FIG. 1 is a graph showing changes in carbon content due to preliminary sintering performed in Example 1 of the present invention, and FIG. 2 is a graph showing changes in carbon content due to preliminary sintering performed in Example 1. Diagram: Depth from sample surface/″JrLγζ Depth from sample surface/jaw claw
Claims (1)
て得られた成形体を、水素と浸炭性ガスとの混合ガス雰
囲気中にて400〜1000℃まで加熱する予備焼結処
理を施し、次いで焼結処理を施すことを特徴とするNi
を1重量%以上含む超硬合金の製造方法。 2、浸炭性ガスがメタンで、その水素ガスに対する濃度
が4〜30体積%であることを特徴とする請求項1に記
載の超硬合金の製造方法。 3、水素と浸炭性ガスとの混合ガス中の酸素または酸化
性ガス(H_2O、CO_2など)の濃度が20重量p
pm以下であることを特徴とする請求項1若しくは2に
記載の超硬合金の製造方法。 4、鉄族金属の1種または2種以上からなる結合相金属
が10重量%以上配合された超硬合金の原料粉末を成形
して得られた成形体を、真空中あるいは不活性雰囲気中
にて400〜1000℃まで加熱する予備焼結処置を施
し、次いで焼結処理を施すことを特徴とするNiを1重
量%以上含む超硬合金の製造方法。 5、鉄族金属の1種または2種以上からなる結合相金属
が10重量%以上配合された超硬合金の原料粉末を成形
して得られた成形体を、真空中あるいは不活性雰囲気中
にて1300〜1500℃まで加熱する焼結処置を施す
ことを特徴とするNiを1重量%以上含む超硬合金の製
造方法。[Claims] 1. A compact obtained by compacting cemented carbide raw material powder to which a powder lubricant has been added is heated to 400 to 1000°C in a mixed gas atmosphere of hydrogen and carburizing gas. Ni, characterized in that it undergoes a preliminary sintering treatment and then a sintering treatment.
A method for manufacturing cemented carbide containing 1% by weight or more of 2. The method for manufacturing cemented carbide according to claim 1, wherein the carburizing gas is methane, and its concentration with respect to hydrogen gas is 4 to 30% by volume. 3. The concentration of oxygen or oxidizing gas (H_2O, CO_2, etc.) in the mixed gas of hydrogen and carburizing gas is 20 parts by weight.
3. The method for manufacturing a cemented carbide according to claim 1 or 2, characterized in that the content of the cemented carbide is pm or less. 4. A compact obtained by compacting a cemented carbide raw material powder containing 10% by weight or more of a binder phase metal consisting of one or more iron group metals is placed in a vacuum or an inert atmosphere. 1. A method for producing a cemented carbide containing 1% by weight or more of Ni, the method comprising performing a preliminary sintering treatment of heating to 400 to 1000° C. and then performing a sintering treatment. 5. A compact obtained by compacting a cemented carbide raw material powder containing 10% by weight or more of a binder phase metal consisting of one or more iron group metals is placed in a vacuum or an inert atmosphere. 1. A method for producing a cemented carbide containing 1% by weight or more of Ni, the method comprising performing a sintering treatment of heating to 1300 to 1500°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63243051A JP2666853B2 (en) | 1988-09-27 | 1988-09-27 | Manufacturing method of cemented carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63243051A JP2666853B2 (en) | 1988-09-27 | 1988-09-27 | Manufacturing method of cemented carbide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0288729A true JPH0288729A (en) | 1990-03-28 |
JP2666853B2 JP2666853B2 (en) | 1997-10-22 |
Family
ID=17098081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63243051A Expired - Lifetime JP2666853B2 (en) | 1988-09-27 | 1988-09-27 | Manufacturing method of cemented carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2666853B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013188857A (en) * | 2012-03-15 | 2013-09-26 | Sumitomo Electric Ind Ltd | Cutting edge replaceable type cutting tip |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5819404A (en) * | 1981-07-24 | 1983-02-04 | Sumitomo Electric Ind Ltd | Sintering method for cermet |
JPS6345345A (en) * | 1986-08-11 | 1988-02-26 | Mitsubishi Metal Corp | Tough cermet and its manufacture |
JPS63203743A (en) * | 1987-02-20 | 1988-08-23 | Yoshida Kogyo Kk <Ykk> | Titanium nitride cermet |
-
1988
- 1988-09-27 JP JP63243051A patent/JP2666853B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5819404A (en) * | 1981-07-24 | 1983-02-04 | Sumitomo Electric Ind Ltd | Sintering method for cermet |
JPS6345345A (en) * | 1986-08-11 | 1988-02-26 | Mitsubishi Metal Corp | Tough cermet and its manufacture |
JPS63203743A (en) * | 1987-02-20 | 1988-08-23 | Yoshida Kogyo Kk <Ykk> | Titanium nitride cermet |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013188857A (en) * | 2012-03-15 | 2013-09-26 | Sumitomo Electric Ind Ltd | Cutting edge replaceable type cutting tip |
Also Published As
Publication number | Publication date |
---|---|
JP2666853B2 (en) | 1997-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012506948A (en) | Functionally graded carbide tungsten carbide material made with hard surface | |
JP7018315B2 (en) | Ferrite alloy | |
JP2005133168A (en) | Method for manufacturing compound soft magnetic material having excellent magnetic characteristic, high strength and low core loss | |
CN111195724B (en) | Ti (C, N) -based cermet nitrogen atmosphere sintering process | |
JPH0288729A (en) | Production of sintered hard alloy | |
CN113811631B (en) | Nickel-free austenitic stainless steel powder composition and parts produced by sintering said powder | |
JPH0581655B2 (en) | ||
JP4608090B2 (en) | Low oxygen sputtering target | |
JPS5949297B2 (en) | Hard sintered alloy for decorative parts | |
JP2006134958A (en) | Manufacturing method of soft magnetic material | |
JPS6345345A (en) | Tough cermet and its manufacture | |
JP2992166B2 (en) | Method of forming sprayed carbide film | |
JPH0114985B2 (en) | ||
JPS6249345B2 (en) | ||
JPS636601B2 (en) | ||
JPH11181541A (en) | Production of stainless steel sintered body | |
JP2766427B2 (en) | Method for producing iron-chromium sintered soft magnetic material | |
JPH07138602A (en) | Low alloy steel powder for powder metallurgy | |
JPH03271334A (en) | Manufacture of sintered alloy excellent in corrosion resistance | |
RU1822382C (en) | Process for manufacturing sintered wares from iron-glass materials | |
JPH09202934A (en) | Production of stainless steel sintered body | |
JPH025811B2 (en) | ||
JPS61108132A (en) | Manufacture of material containing metallic silicide radical | |
CN115815597A (en) | Hard alloy burning-back device and hard alloy burning-back method | |
JPS6369939A (en) | Manufacture of sintered high-alloy steel |