JPS61108132A - Manufacture of material containing metallic silicide radical - Google Patents

Manufacture of material containing metallic silicide radical

Info

Publication number
JPS61108132A
JPS61108132A JP59230996A JP23099684A JPS61108132A JP S61108132 A JPS61108132 A JP S61108132A JP 59230996 A JP59230996 A JP 59230996A JP 23099684 A JP23099684 A JP 23099684A JP S61108132 A JPS61108132 A JP S61108132A
Authority
JP
Japan
Prior art keywords
sintered body
oxygen content
silicide
powder
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59230996A
Other languages
Japanese (ja)
Inventor
Kenichi Hijikata
土方 研一
Tadashi Sugihara
杉原 忠
Masashi Komabayashi
正士 駒林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59230996A priority Critical patent/JPS61108132A/en
Priority to US06/769,935 priority patent/US4619697A/en
Priority to DE19853531085 priority patent/DE3531085A1/en
Priority to GB08521604A priority patent/GB2166160B/en
Publication of JPS61108132A publication Critical patent/JPS61108132A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce the oxygen content in target material by a method wherein a calcined body containing silicide forming metallic component and silicone component is impregnated with molten silicon. CONSTITUTION:A calcined body containing more than one kind of silicide forming metallic component and silicon component is produced. The calcination is performed by means of mixing and forming powder blended with specified composition ratio for heat treatment in nooxygen atmosphere. Next, the calcined body is brought into contact with molten Si meeting specified requirements to impregnate the calcined body with Si providing itself with two phases of metallic silicide and Si. In such a constitution, the oxygen content in calcined body becomes volatile carbon monoxide reacting to the molten Si to be discharged out of the system. Through these procedures, the oxygen content in a target material comprising the calcined body may be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体電極配線用の金属珪化物膜をスパッタ
リングにより形成するために使用されるターゲット材の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a target material used for forming a metal silicide film for semiconductor electrode wiring by sputtering.

〔従来の技術〕[Conventional technology]

近年、半導体の電極配置には従来のに膜、A/−Si合
金膜や多結晶Si膜に代りMOSi2+WSi2. T
aSi2゜TiSi2などの高融点金属珪化物膜が使用
されるようになっている。これらの高融点金属珪化物は
従来の電極配線材と比べ、比抵抗が小さく、高温におけ
る耐腐食性が高いため、前記の金属珪化物を半導体の電
極配線に用いると、半導体装置における演算の高速化を
可能とし、また半導体製造時において薬品による腐食や
高温処理による酸化を受けにくいという利点を有してい
る。
In recent years, MOSi2+WSi2. T
Refractory metal silicide films such as aSi2°TiSi2 have come into use. These high-melting-point metal silicides have lower specific resistance and higher corrosion resistance at high temperatures than conventional electrode wiring materials, so if these metal silicides are used for semiconductor electrode wiring, they can speed up calculations in semiconductor devices. It also has the advantage of being less susceptible to corrosion by chemicals and oxidation due to high-temperature processing during semiconductor manufacturing.

一般に、高融点金属珪化物膜を形成する方法としてはス
パッタリング法が用いられる。たとえば、MOとSiを
反応させて、モリブデンの珪化物であるlMo5izを
形成させる場合には、反応前の両者の体積に比べ、反応
後の珪化物の体積が小さいため、形成された珪化物膜に
は大きな引張り応力が発生するが、膜中のSiを過剰に
すると引張り応力を低くおさえることができるため、膜
の組成したがってターゲット材の組成はSi /Mo 
(原子比)〉2となることが好ましい。又、形成された
モリブデン珪化物膜がSi過剰であれば、余分なSiが
酸化され、モリブデン珪化物表面にシリカ保護膜が形成
され得るので、従来のシリコンゲートプロセスとの互換
性が保たれるという利点も有している。しかし、ターゲ
ット材の組成がSi/Mo(原子比)〉4になると、こ
のターゲット材のスパッタリングにより得られる膜の組
成もSt /Mo (原子比)〉4となり、膜抵抗が高
くなってしまい、好ましくない。以上はMOの場合を例
にして述べたが、このように、一般に、前記のような高
融点金属珪化物膜の組成は2<Si/M’(原子比)≦
4(但し、M′:高融点金属)であることが要求されて
おり、そのような組成の膜を形成するためには、M′S
i2とStの複合組織よりなり組成が2 <St/M’
r原子比)≦4のターゲット材とすることが不可欠であ
る。
Generally, a sputtering method is used as a method for forming a high melting point metal silicide film. For example, when reacting MO and Si to form lMo5iz, which is a molybdenum silicide, the volume of the silicide after the reaction is smaller than the volume of both before the reaction, so the formed silicide film A large tensile stress occurs in the film, but if Si in the film is made excessive, the tensile stress can be kept low. Therefore, the composition of the film and therefore the composition of the target material is
(Atomic ratio)>2 is preferable. Furthermore, if the formed molybdenum silicide film has an excess of Si, the excess Si can be oxidized and a silica protective film can be formed on the molybdenum silicide surface, thus maintaining compatibility with conventional silicon gate processes. It also has the advantage of However, when the composition of the target material becomes Si/Mo (atomic ratio)>4, the composition of the film obtained by sputtering this target material also becomes St/Mo (atomic ratio)>4, resulting in a high film resistance. Undesirable. The above has been described using the case of MO as an example, but in general, the composition of the above-mentioned high melting point metal silicide film is 2<Si/M' (atomic ratio)≦
4 (however, M': high melting point metal), and in order to form a film with such a composition, M'S
Consisting of a composite structure of i2 and St, the composition is 2 <St/M'
It is essential to use a target material with an r atomic ratio)≦4.

従来、M’S 12とSiの複合組織よりなり、組成が
2 < St /M’ (原子比)く4であるターゲッ
ト材は、次のように製造されていた。即ち、所定のター
ゲット組成になるように原料粉末(M/粉末とSi粉末
)を混合し、焼結するのである。焼結方法としては常圧
焼結法、ホットプレス法等が用いられる。
Conventionally, a target material consisting of a composite structure of M'S 12 and Si and having a composition of 2 < St /M' (atomic ratio) < 4 has been manufactured as follows. That is, raw material powders (M/powder and Si powder) are mixed so as to have a predetermined target composition and sintered. As the sintering method, a normal pressure sintering method, a hot press method, etc. are used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような粉末冶金的手法による製造においては、原料
粉、特にSi粉末中に含まれる多量の酸素〔酸素含有量
:約13000ppm)のため、製造されたターゲット
中にも大量の酸素が取り込まれ(酸累含有量:約250
0 ppm )、その結果、スパッタリングにより形成
された膜中にも酸素が多く存在し前記膜を半導体の電極
配線に用いたときの抵抗が増加するという欠点がある。
In manufacturing using such a powder metallurgical method, a large amount of oxygen (oxygen content: approximately 13,000 ppm) is contained in the raw material powder, especially Si powder, so a large amount of oxygen is incorporated into the manufactured target ( Acid cumulative content: about 250
0 ppm), as a result, there is a drawback that a large amount of oxygen exists in the film formed by sputtering, which increases the resistance when the film is used for electrode wiring of a semiconductor.

そして、Si粉末中の酸素はSiO□の形で含まれてい
るので、通常の方法では取り除くことはできない。
Since oxygen in the Si powder is contained in the form of SiO□, it cannot be removed by normal methods.

この発明の目的は、所望の組成、例えば2<Si/M 
(原子比)≦4(但し、Mは少なくとも1mの珪化物形
成金属成分)の金属珪化物膜をヌパッタリング法によっ
て形成するために適した、金属珪化物(例えば、MSi
2)とSiの2相からなる複合組織を有し、酸素含有量
が低減したターゲット材の新しい製造法を提供すること
である。
The purpose of this invention is to obtain a desired composition, e.g. 2<Si/M
(atomic ratio)≦4 (where M is a silicide-forming metal component of at least 1 m).
2) It is an object of the present invention to provide a new method for producing a target material having a composite structure consisting of two phases of 2) and Si and having a reduced oxygen content.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは種々研究の結果、少なくとも1種の珪化物
形成金属成分と珪素成分とよりなる仮焼結体に溶融珪素
を含浸させることにより、仮焼結体中に主としてSiO
□の形で含まれる酸素分が、浸入してきた溶融Siある
いは、仮焼結体中にもともと存在するSiが前記溶融S
iとの接触若しくは間接加熱により溶融して生成した溶
融Siと反応し、揮発性の一酸化珪素となり、系外に放
出されるので、酸素含有量が極めて低減されたターゲッ
ト材を得ることができることを見い出した。
As a result of various studies, the present inventors have found that by impregnating a pre-sintered body composed of at least one silicide-forming metal component and a silicon component with molten silicon, the pre-sintered body contains mainly SiO2.
Oxygen contained in the form of
It reacts with molten Si generated by melting through contact with i or indirect heating, becomes volatile silicon monoxide, and is released outside the system, making it possible to obtain a target material with extremely reduced oxygen content. I found out.

この発明は、上記知見に基いて発明されたものであり、 (1)少なくとも1種の珪化物形成金属成分と珪素成分
を含有する仮焼結体に溶融珪素を含浸させて、金属珪化
物と珪素とを含有する酸素含有量の低減した焼結体を生
成させることを特徴とする半導体電極配線用の金属珪化
物膜を形成するための酸素含有量゛の低減したターゲッ
ト材の製造法。
This invention was invented based on the above findings, and includes: (1) impregnating a pre-sintered body containing at least one silicide-forming metal component and a silicon component with molten silicon to form a metal silicide; A method for producing a target material with a reduced oxygen content for forming a metal silicide film for semiconductor electrode wiring, characterized by producing a sintered body containing silicon and with a reduced oxygen content.

(21珪化物形成金属成分と珪素成分の全部又は一部が
、両元素からなる化合物を形成している特許請求の範囲
第1項記載の半導体電極配線用の金属珪化物膜を形成す
るための酸素含有量の低減したターゲット材の製造法 である。
(21) For forming a metal silicide film for semiconductor electrode wiring according to claim 1, in which all or part of the silicide-forming metal component and the silicon component form a compound consisting of both elements. This is a method for producing target material with reduced oxygen content.

以下、この発明の製造法について述べる。The manufacturing method of this invention will be described below.

(1)仮焼結体について 仮焼結体は、少なくとも1種の珪化物形成金属成分と珪
素成分とよりなる。ここで、珪化物形成金属成分とは、
Mo、W、Ta、Ti 、V、Cr+Zr、Nb。
(1) About the pre-sintered body The pre-sintered body consists of at least one silicide-forming metal component and a silicon component. Here, the silicide-forming metal component is
Mo, W, Ta, Ti, V, Cr+Zr, Nb.

Hf、Re、Y等の比抵抗の小さい金属珪化物膜を形成
することができる金属成分である。そして、これらの珪
化物形成金属成分は単独で、あるいは二種以上併用して
用いられる。仮焼結体中の珪化物形成金属成分と珪素成
分の全部又は一部は両元素からなる化合物を形成してい
る。即ち、珪素成分6一 の全部が化合物を形成している場合は、仮焼結体は訟1
2、あるいは、Mと3iの他の化合物(例えば、M05
Si3)のみからなり、珪素成分の一部が化合物を形成
している場合は、仮焼結体はMgI2とSi1あるいは
、MとStの他の化合物とSiとからなる。そして、珪
化物形成金属成分を二種以上併用する場合は、この二種
以上の珪化物形成金属成分と珪素成分とは、仮焼結体中
では、ある金属の珪化物と別の金属の珪化物と場合によ
りSiとが混在している組織となる場合もあるし、ある
いは、2種以上の金属成分を固溶して含む複合金属珪化
物と場合によりSiからなる組織となる場合もあるし、
あるいは、ある金属の珪化物と別の金属の珪化物と一部
形成された又は出発原料として配合された前記複合金属
珪化物と場合によりSiからなる組織となる場合もある
。又、仮焼結体中には、少なくとも1種の珪化物形成金
属成分と珪素成分との他に、他の微量成分、例えば、R
u 、 pd 、 Pt等の成分を含んでいてもよい。
It is a metal component such as Hf, Re, Y, etc. that can form a metal silicide film with low specific resistance. These silicide-forming metal components may be used alone or in combination of two or more. All or part of the silicide-forming metal component and the silicon component in the pre-sintered body form a compound consisting of both elements. That is, if all of the silicon components 61 form a compound, the pre-sintered body is
2, or other compounds of M and 3i (e.g. M05
In the case where a part of the silicon component forms a compound, the pre-sintered body consists of MgI2 and Si1 or another compound of M and St and Si. When two or more types of silicide-forming metal components are used together, the two or more types of silicide-forming metal components and silicon components are the silicide of one metal and the silicide of another metal in the pre-sintered body. In some cases, the structure may be a mixture of metal components and Si in some cases, or in other cases, it may be a structure consisting of a composite metal silicide containing two or more metal components as a solid solution and in some cases Si. ,
Alternatively, the composite metal silicide may be partially formed with a silicide of a certain metal and a silicide of another metal, or may be composed of the composite metal silicide blended as a starting material, and optionally Si. Furthermore, in addition to at least one silicide-forming metal component and a silicon component, the pre-sintered body contains other trace components, such as R.
It may contain components such as u, pd, and Pt.

又、含有されても支障のない不純物としてはMn 、 
Fe 、 Co 、 Ni 、Mtが挙げられる。
In addition, impurities that can be included without causing any problems include Mn,
Examples include Fe, Co, Ni, and Mt.

仮焼結体は例えば次のようにして製造されたものである
。即ち、原料としてMSi2+ M 、 Si 、又は
MとSiの他の化合物の粉末を用い、あるいは2種以上
のMS 12粉末を用いて、又、M粉末、Si粉末。
The temporary sintered body is manufactured, for example, as follows. That is, powders of MSi2+ M, Si, or other compounds of M and Si are used as raw materials, or two or more types of MS 12 powders are used, or M powders and Si powders are used.

MとSiの他の化合物の粉末を用いる場合は、これらの
うちの2種以上を必要組成比にして十分に混合した後、
よ(乾燥し、−軸プレスあるいは静水圧プレス等を用い
て成形する。成形体を無酸素雰囲気下において、120
0〜1750℃の範囲内の温度において温度で定まる適
当な時間熱処理して、前述したような組織を有する仮焼
結体を得る。
When using powders of other compounds of M and Si, after thoroughly mixing two or more of these at the required composition ratio,
(dry) and mold using a -axial press or isostatic press.
Heat treatment is performed at a temperature within the range of 0 to 1750° C. for an appropriate time determined by the temperature to obtain a temporary sintered body having the structure as described above.

仮焼結体は上記のように成形と熱処理を二段で行なわず
に、真空ホットプレス法により混合粉末から一段で直接
製造することもできる。
The pre-sintered body can also be directly produced in one step from a mixed powder by a vacuum hot press method, without performing the two-step molding and heat treatment as described above.

又、仮焼結体としては、−軸プレスあるいは静水圧プレ
ス等を用いて成形された成形体を本工程の含浸のために
昇温する途中で生成した仮焼結体も使用することができ
る(実施例8)。
Furthermore, as the pre-sintered body, it is also possible to use a pre-sintered body formed during heating of a compact formed using a -axis press, a hydrostatic press, etc. for impregnation in this step. (Example 8).

この熱処理(仮焼結)により、次工程の溶融Siとの接
触に耐えられるように形状を保持させるものであり、又
、熱処理(仮焼結)温度等を変えることにより仮焼結体
の密度を調節することができるのである。そして、Mと
Siを原料として用いた場合は、この熱処理(仮焼結)
工程においてMとSiとの間に反応が起こり、MgI2
あるいはMとSiの他の化合物が生成する。又、2種以
上のM及び/又は2種以上のMとSiの化合物を原料と
して用いたときは固溶体の生成も起こる。
This heat treatment (preliminary sintering) maintains the shape so that it can withstand contact with molten Si in the next step, and by changing the heat treatment (preliminary sintering) temperature, etc., the density of the preliminarily sintered body can be changed. can be adjusted. When M and Si are used as raw materials, this heat treatment (preliminary sintering)
In the process, a reaction occurs between M and Si, resulting in MgI2
Alternatively, other compounds of M and Si are generated. Furthermore, when two or more types of M and/or two or more types of M and Si compounds are used as raw materials, a solid solution also occurs.

(II)含浸工程について 仮焼結体を真空中(好ましくは〜10−3torr )
で、好ましくは温度1430へ1500℃の条件で、酸
素含有量の少ないC〜1 ppm )溶融Siと接触さ
せることにより、仮焼結体中にSiを含浸させ、金属珪
化物(例えばMgI2)とStの2相よりなる複合組織
を有する焼結体からなる、酸素含有量が極めて低減され
たターゲット材を得ることができる。
(II) For the impregnation step, the pre-sintered body is placed in a vacuum (preferably ~10-3 torr)
The pre-sintered body is impregnated with Si by bringing it into contact with molten Si (C ~ 1 ppm) with a low oxygen content, preferably at a temperature of 1430°C to 1500°C. It is possible to obtain a target material which is made of a sintered body having a composite structure made of two phases of St and whose oxygen content is extremely reduced.

これは、この含浸工程により、知見事項の所でも述べた
ように、仮焼結体中の酸素分が溶融Stとの反応によっ
て一酸化珪素となり揮発・除去されるからである。焼結
体からなるターゲット材の酸累含有量は、溶融Siと接
触させている時間を十分に長くすることにより、含浸に
使用している溶融Si中の酸素含有量と同程度まで減少
させることができるので、時間は60〜120分が望ま
しい。
This is because through this impregnation step, the oxygen content in the temporary sintered body reacts with the molten St and becomes silicon monoxide, which is volatilized and removed, as described in the findings section. The accumulated acid content of the target material made of a sintered body can be reduced to the same level as the oxygen content in the molten Si used for impregnation by making the time in contact with molten Si sufficiently long. Therefore, the time is preferably 60 to 120 minutes.

又、酸素含有量の少ないC〜1 ppm ’)溶融si
としては半導体用超高純度Stを使用すればよい。
In addition, C~1 ppm') fused Si with low oxygen content
For this purpose, ultra-high purity St for semiconductors may be used.

この含浸工程により、焼結も起こり、そして、仮焼結体
としてMとSiの他の化合物よりなるものを用いた場合
には、MgI2の生成も起こる。又、成形と熱処理の二
段工程により得られた仮焼結体の場合は、溶融Stの含
浸によって仮焼結体の空隙がSiで充填されるので、得
られる焼結体からなるターゲット材の817M(原子比
)は増大するが、真空ホットプレス法により一段で得ら
れた仮焼結体であって、その相対密度が9896以上の
場合は、含浸工程においては溶融Siと仮焼結体中のS
iとの置換や、仮焼結体中の不純物である酸素との結合
で失われた仮焼結体中のsiの補給が起こるだけなので
、得られるターゲット材のSi 7M (原子比)は増
大しない。
This impregnation step also causes sintering, and when a pre-sintered body made of another compound of M and Si is used, the formation of MgI2 also occurs. In addition, in the case of a pre-sintered body obtained by a two-step process of forming and heat treatment, the voids in the pre-sintered body are filled with Si by impregnation with molten St, so that the target material made of the obtained sintered body is 817M (atomic ratio) increases, but if the temporary sintered body is obtained in one step by the vacuum hot press method and its relative density is 9896 or more, the molten Si and the temporary sintered body will be mixed in the impregnation process. S of
The Si 7M (atomic ratio) of the target material obtained increases because the Si in the temporary sintered body that is lost due to replacement with i or combination with oxygen, which is an impurity in the temporary sintered body, is only replenished. do not.

結局、含浸工程により、金属珪化物(例えば、Msi2
)とSiの2相よりなる複合組織を有し、酸素含有量が
極めて低減された焼結体が得られるのである。
Eventually, the impregnation process results in metal silicides (e.g. Msi2
) and Si, and a sintered body with extremely reduced oxygen content can be obtained.

(iill  ターゲット材のSi/MC原子比)の調
節について 上記の原子比は、仮焼結体のための原料混合物中のSt
/Mの原子比を変えることによって、あるいは仮焼結体
の密度を変えることによって、所望の原子比に変化させ
ることが可能である。
Regarding the adjustment of the Si/MC atomic ratio of the target material (iill), the above atomic ratio is based on the St
It is possible to change the atomic ratio to a desired one by changing the atomic ratio of /M or by changing the density of the pre-sintered body.

例えば、仮焼結体が、成形と熱処理の二段工程で製造さ
れたMo5iz仮焼結体の場合、Mo粉とSi粉とから
なる原料混合物中のSi/Mo比く315、即ちMO過
剰のとき、溶融Siの含浸時にMoSi2の生成量が多
すぎるため発生する多大な反応熱により形状を保持し得
ない。そして、実験結果によれば前記原料混合物中のS
i/Mo比−約2.0のとき、焼結体の組成がS i 
/MO比−イー4.0のが得られた。したがって、成形
と熱処理の二段工程で仮焼結体を製造する場合には、前
記原料混合物中のSi/Mo比を315〜約2.0の範
囲内で変えることが適当であり、こうすることにより、
焼結体の組成がSi/Mo比−2,57〜4.0のもの
が得られるC弗3表参照を一方、真空ホットプレス法に
より一段で例えばMo粉とSi粉とからMo5iz仮焼
結体を製造する場合には、仮焼結体のための原料混合物
中のS 1 /Mo比〉2であって、しかもホットプレ
ス温度が1400℃以上となると、容易に仮焼結体の相
対密度が9896以上となり、このような仮焼結体にお
いては、溶融Siの含浸時、仮焼結体中に含まれるSi
との置換や、仮焼結体中の不純物である酸素との結合で
失なわれた仮焼結体中のSiの補給が起きるだけなので
、仮焼結体のための原料混合物中のSi/Mo比とター
ゲット材中の比gぼ同じ値をとることになる。ターゲッ
ト材中のSi/Mo比の調節の容易性の観点から、真空
ホットプレス法では、仮焼結体のための原料混合物中の
Si/Mo比〉2であることが好ましい(@4表参照)
。真空ホットプレス法による仮焼結体のための原料混合
物のSi/Mo比〈Tであると、前記の二段工程と同じ
く含浸時に形状を保持し得ない。そして、真空ホットプ
レス法においても原料混合物中において÷≦Si/MO
≦2の場合には仮焼結体の密度に依存し、焼結体の組成
がSi/Mo比−2,10〜4. OOOものが得られ
る(実施例5参照)。
For example, when the temporary sintered body is a Mo5iz temporary sintered body manufactured by a two-step process of forming and heat treatment, the Si/Mo ratio in the raw material mixture consisting of Mo powder and Si powder is 315, that is, the MO excess. At this time, the amount of MoSi2 generated during impregnation with molten Si is too large and the shape cannot be maintained due to the large amount of reaction heat generated. According to the experimental results, S in the raw material mixture
When the i/Mo ratio is approximately 2.0, the composition of the sintered body is Si
/MO ratio-E of 4.0 was obtained. Therefore, when producing a pre-sintered body through a two-step process of forming and heat treatment, it is appropriate to vary the Si/Mo ratio in the raw material mixture within the range of 315 to about 2.0. By this,
On the other hand, Mo5iz temporary sintering is performed from, for example, Mo powder and Si powder in one step by a vacuum hot press method, in which a sintered body having a Si/Mo ratio of -2.57 to 4.0 is obtained. When producing a body, if the S 1 /Mo ratio in the raw material mixture for the temporary sintered body is >2 and the hot press temperature is 1400°C or higher, the relative density of the temporary sintered body will easily change. is 9896 or more, and in such a pre-sintered body, when impregnated with molten Si, the Si contained in the pre-sintered body is
Si in the raw material mixture for the temporary sintered body is only replenished by replacement of Si in the temporary sintered body, which was lost due to replacement with oxygen and combination with oxygen, which is an impurity in the temporary sintered body. The Mo ratio and the ratio g in the target material are about the same value. From the viewpoint of ease of adjusting the Si/Mo ratio in the target material, in the vacuum hot press method, it is preferable that the Si/Mo ratio in the raw material mixture for the pre-sintered body is 2 (see @Table 4). )
. If the Si/Mo ratio of the raw material mixture for the pre-sintered body produced by the vacuum hot pressing method is <T, the shape cannot be maintained during impregnation as in the above-mentioned two-stage process. Also in the vacuum hot press method, ÷≦Si/MO is found in the raw material mixture.
In the case of ≦2, it depends on the density of the temporary sintered body, and the composition of the sintered body has a Si/Mo ratio of -2, 10 to 4. An OOO product is obtained (see Example 5).

次に、仮焼結体の密度をどのように変えるか、又、それ
によってターゲット材のSi7M比がどのように変わる
かについて説明する。
Next, a description will be given of how the density of the pre-sintered body is changed and how the Si7M ratio of the target material is changed accordingly.

まず、仮焼結体の密度は熱処理(仮焼結)温度を変える
ことにより、変えることができる。これは特に成形と熱
処理の二段工程で仮焼結体を製造する場合に顕著である
が、熱処理温度が高くなるにつれて得られる仮焼結体の
密度も高(なる。仮焼結体の密度が高くなれば、溶融S
iの含浸量が減少するので、得られるターゲット材のS
i7M比は小さくなるC第2表、実施例1と実施例3を
比較参照のこと)。
First, the density of the pre-sintered body can be changed by changing the heat treatment (pre-sintering) temperature. This is particularly noticeable when a pre-sintered body is produced in a two-step process of forming and heat treatment; however, as the heat treatment temperature increases, the density of the obtained pre-sintered body also increases. The higher the value, the higher the melting S
Since the impregnation amount of i decreases, S of the target material obtained
The i7M ratio decreases (see Table 2 for a comparison of Examples 1 and 3).

又、真空ホットプレス法により仮焼結体を製造する場合
にも、仮焼結体の密度はホットプレス温度あるいはプレ
ス圧を変えることで容易にコントロールできる。これは
仮焼結体のための原料混合物中のSi7M比が互≦Si
/M≦2のとき特に顕著である。この場合も二段熱処理
工程の場合と同じく仮焼結体の密度が亮くなれば、溶融
Siの含浸量が減少するので、得られるターゲット材の
Si7M比は小さくなる。
Further, even when a pre-sintered body is produced by a vacuum hot press method, the density of the pre-sintered body can be easily controlled by changing the hot press temperature or press pressure. This means that the Si7M ratio in the raw material mixture for the pre-sintered body is equal to ≦Si.
This is particularly noticeable when /M≦2. In this case as well, as in the case of the two-stage heat treatment step, as the density of the pre-sintered body increases, the amount of molten Si impregnated decreases, so the Si7M ratio of the obtained target material decreases.

同じ熱処理温度で、しかも原料混合物中のSi7M比が
同じであっても、原料として化合物を用いるか、あるい
は単体を用いるかによって、得られる仮焼結体の密度が
異なる。例えば、Si/Mo比−2のMo粉とSi粉と
からなる原料混合物を成形後、1500℃で熱処理する
と、密度3.00 t / cm”のMoSi2仮焼結
体が得られるのに対して、原料としてMoSi2粉末を
用いて上記と一様に成形・熱処理すると、4.70 t
 / cm”のMoSi2仮焼結体が得られるのである
。即ち、化合物を用いた場合の方が単体を用いる場合よ
りも密度の大きな仮焼結体が得られるので、溶融Siの
含浸量も、得られる焼結体のsi/M比も小さい。
Even if the heat treatment temperature is the same and the Si7M ratio in the raw material mixture is the same, the density of the obtained pre-sintered body will differ depending on whether a compound or a single substance is used as the raw material. For example, if a raw material mixture consisting of Mo powder and Si powder with a Si/Mo ratio of -2 is molded and then heat-treated at 1500°C, a pre-sintered MoSi2 body with a density of 3.00 t/cm" can be obtained. , when MoSi2 powder is used as the raw material and molded and heat treated in the same manner as above, 4.70 t
/ cm". In other words, when a compound is used, a pre-sintered body with a higher density can be obtained than when a single substance is used, so the amount of molten Si impregnated can also be reduced. The sintered body obtained also has a small si/M ratio.

以上のように、ターゲット材のSi 7M (原子比)
は、仮焼結体のための原料混合物中のSt/Mの原子比
を変えることによって、あるいは仮焼結体の密度を変え
ることによって、所望の値、例えば2より大きく4以下
の値に調節することができる。
As mentioned above, the target material Si 7M (atomic ratio)
is adjusted to a desired value, for example, a value greater than 2 and 4 or less, by changing the atomic ratio of St/M in the raw material mixture for the pre-sintered body or by changing the density of the pre-sintered body. can do.

〔実施例〕〔Example〕

以下、実施例により、この発明の構成及び効果を詳細に
説明する。
Hereinafter, the configuration and effects of the present invention will be explained in detail using Examples.

実施例1 平均粒径3μmのMO粉(酸素含有it1400ppm
)と平均粒径1.5μmのSi粉(酸素含有量1300
0ppm )とを用意し、MO粉63重量部とSi粉3
7重量部とからなる組成物をヘキサンを混合溶媒として
ボールミルで2時間混合後、十分に乾燥し、−軸ブレス
Cブレス圧:2t/d)により30 tin 730m
mX5mmの大きさの成形体を作製する。この成形体を
1200℃の温度、10−3torrの真空中で1時間
加熱してMn5izにし・た後、1700℃で1時間熱
処理し、密度が4.10 f / cm”の仮焼結体(
酸素含有量1800’ppm )を得る。
Example 1 MO powder with an average particle size of 3 μm (oxygen content 1400 ppm)
) and Si powder with an average particle size of 1.5 μm (oxygen content 1300
0ppm), 63 parts by weight of MO powder and 3 parts by weight of Si powder.
After mixing a composition consisting of 7 parts by weight in a ball mill using hexane as a mixed solvent for 2 hours, it was thoroughly dried, and then heated to 30 tin 730 m using a -shaft press C press pressure: 2 t/d).
A molded body with a size of m x 5 mm is produced. This molded body was heated at a temperature of 1200°C for 1 hour in a vacuum of 10-3 torr to make Mn5iz, and then heat treated at 1700°C for 1 hour to obtain a pre-sintered body (with a density of 4.10 f/cm).
An oxygen content of 1800'ppm) is obtained.

このようにして得られたMO8i2仮焼結体に10to
rr  の真空中において1500℃で酸素含有量がl
ppmである溶融Siを4時間含浸させた後炉冷し、組
成がSi /MO比=3.06でありMoSi2とSi
の複合組織よりなる焼結体(酸素含有量6 ppm )
を製造した。
10 to the MO8i2 pre-sintered body thus obtained
At 1500℃ in a vacuum of rr, the oxygen content is l.
ppm of molten Si was impregnated for 4 hours and then cooled in the furnace.The composition was Si/MO ratio = 3.06 and MoSi2 and Si
Sintered body consisting of a composite structure (oxygen content 6 ppm)
was manufactured.

上記の製造方法において含浸時間を変えて、又Mo5i
z仮焼結体のかわりに、WS 12 、TaSi 2あ
るいはTiSi2仮焼結体を用いて同様な溶融Si含浸
処理を行なった。なお、TiSi2の場合の熱処理温度
とシリコン含浸温度は共に1430℃である。これらの
結果を上記結果とともに第1表に示した。
By changing the impregnation time in the above manufacturing method, Mo5i
Similar molten Si impregnation treatment was performed using a WS 12 , TaSi 2 or TiSi 2 pre-sintered body instead of the Z pre-sintered body. Note that the heat treatment temperature and silicon impregnation temperature in the case of TiSi2 are both 1430°C. These results are shown in Table 1 together with the above results.

実施例2 平均粒径5μmのMO8j2粉C酸累含有量:5500
 ppm )を−軸ブレス法によりプレス圧2t/cf
Aでプレス成形し、30 tmn X 30 ttrm
 X 5 mmの直方体とした。直方体の密度は3,3
0り7cm3で密度比は52.9%である。この直方体
を10−3torrの真空中において1450℃で1時
間熱処理し、密度4.80 f / am3の仮焼結体
(酸素含有量:3500 ppm )とした。
Example 2 MO8j2 powder C acid cumulative content with average particle size of 5 μm: 5500
ppm) with a press pressure of 2t/cf using the -axial press method.
Press molded at A, 30 tmn x 30 ttrm
It was made into a rectangular parallelepiped with a size of 5 mm. The density of a rectangular parallelepiped is 3,3
At 7 cm3, the density ratio is 52.9%. This rectangular parallelepiped was heat-treated at 1450° C. for 1 hour in a vacuum of 10 −3 torr to obtain a pre-sintered body (oxygen content: 3500 ppm) with a density of 4.80 f/am 3 .

第1表 次に、]0torrの真空中において1450℃の温度
で90分間溶融St(酸素含有量: 1 ppm )と
接触させて、Siを含浸させたのち炉冷する。
Table 1 [Table 1] Next, the sample was brought into contact with molten St (oxygen content: 1 ppm) for 90 minutes at a temperature of 1450° C. in a vacuum of 0 torr to impregnate Si, and then cooled in a furnace.

製造された焼結体の密度は5.33 f / am”で
、気孔量は19I5以下である。この焼、給体のMoS
i2の含有率は77容量%で残部はSiであり、組成は
St/MO(原子比) −2,60である。そして、酸
素含有量は10 ppmであった。
The produced sintered body has a density of 5.33 f/am” and a porosity of 19I5 or less.
The content of i2 is 77% by volume, the remainder being Si, and the composition is St/MO (atomic ratio) -2.60. And the oxygen content was 10 ppm.

同様の方法で仮焼結温度を変化させた場合の結果を前記
結果とともに第2表に示す。なお、仮焼結温度が150
0℃以上の場合には、siを含浸させる温度を1500
℃とした。
The results obtained when the preliminary sintering temperature was varied in the same manner are shown in Table 2 together with the above results. In addition, the preliminary sintering temperature is 150
If the temperature is 0°C or higher, the temperature for impregnating Si should be set to 1500°C.
℃.

第2表 実施例3 実施例1と同じ原料、配合組成(Si/Moの2原子比
は2.006である)、惚合方法及び成形方法により、
同じ大きさの成形体を作製する。この成形体の密度は2
.52 f/ cmFである。この成形体を10”””
 torrの真空中で1200℃まで600℃/hrで
昇温し、化学反応によりMoSi2にした後、1500
℃で1時間熱処理し、密度が3−00 f 7cm”の
仮焼結体(酸素含有量: 2600 ppm )を得る
Table 2 Example 3 Using the same raw materials, blending composition (Si/Mo diatomic ratio is 2.006), matching method, and molding method as in Example 1,
Produce molded bodies of the same size. The density of this compact is 2
.. 52 f/cmF. 10""" of this molded body
The temperature was raised at a rate of 600°C/hr to 1200°C in a vacuum of torr, and the temperature was increased to 1500°C.
C. for 1 hour to obtain a pre-sintered body (oxygen content: 2600 ppm) with a density of 3-00 f 7 cm''.

この仮焼結体を1500℃の温度、10torrの真空
中において60分間溶融Si(酸素含有量=1 ppm
 )と接触させ、Siを含浸させた後、炉冷する。製造
された焼結体の密度は4.28 ? / cm3で気孔
率は196以下であり、しかも焼結体中のMoSi2含
有率は50容量%で残部はSiであって、組成はSi/
MO(原子比)−4,00であった。そして、焼結体の
酸素含有量は7 ppmである。
This pre-sintered body was heated at a temperature of 1500°C in a vacuum of 10 torr for 60 minutes to melt Si (oxygen content = 1 ppm).
) and impregnated with Si, and then cooled in a furnace. The density of the manufactured sintered body is 4.28? /cm3, and the porosity is 196 or less, and the MoSi2 content in the sintered body is 50% by volume, the remainder being Si, and the composition is Si/cm3.
MO (atomic ratio) was −4,00. The oxygen content of the sintered body was 7 ppm.

原料であるMO粉とSi粉の混合比を変えて、上記の方
法を繰り返した結果を、上記結果とともに第3表に示す
The results of repeating the above method by changing the mixing ratio of the raw materials MO powder and Si powder are shown in Table 3 together with the above results.

実施例4 実施例3と同様にして、Si/Mo(原子比)=2.2
8であり、 MO粉とSi粉とからなる原料混合物を1
300℃の温度、150Kgf/mの圧力、真空度10
−”t’orrの条件下で1時間ホットプレス、し、密
度5.50 ? / cm”の仮焼結体C酸素含有量:
6200 ppm )を得る。
Example 4 Similar to Example 3, Si/Mo (atomic ratio) = 2.2
8, and the raw material mixture consisting of MO powder and Si powder is 1
Temperature of 300℃, pressure of 150Kgf/m, degree of vacuum 10
- Preliminary sintered body C with a density of 5.50?/cm after hot pressing for 1 hour under the condition of "t'orr" Oxygen content:
6200 ppm).

第3表 この仮焼結体に実施例3と同じ条件で81を含浸させて
、焼結体を製造した。
Table 3 This pre-sintered body was impregnated with 81 under the same conditions as in Example 3 to produce a sintered body.

この焼結体の密度は5.77 f / cm”で、組成
はSt/MO(原子比)−2,30であり、焼結体中の
MoSi2の含有率は87容量%で残部は81であった
The density of this sintered body is 5.77 f/cm'', the composition is St/MO (atomic ratio) -2.30, the content of MoSi2 in the sintered body is 87% by volume, and the remainder is 81%. there were.

そして、酸素含有量は19 ppmであった。The oxygen content was 19 ppm.

原料混合物中のMOとStの混合比を変えて前記と同様
な方法を行なった場合の結果を、前記の結果とともに第
4表に示す。
Table 4 shows the results when the same method as above was carried out by changing the mixing ratio of MO and St in the raw material mixture, together with the above results.

第4表 実施例5 平均粒径5μmのMoSi2粉(酸素含有量:5500
 ppm )を1230℃の温度、150Kgf/Qm
2の圧力、真空度10’−”torrの条件下で1時間
ホットプレスし、密度4.68グ/CrIL3のMo5
iz仮焼結体(酸素含有量: 5100 ppm )を
得た。
Table 4 Example 5 MoSi2 powder with an average particle size of 5 μm (oxygen content: 5500
ppm) at a temperature of 1230℃, 150Kgf/Qm
Mo5 with a density of 4.68 g/CrIL3 was hot pressed for 1 hour under the conditions of a pressure of 2 and a vacuum of 10'-'' torr.
An iz temporary sintered body (oxygen content: 5100 ppm) was obtained.

この仮焼結体に実施例3と同じ条件でSiを含浸させて
、焼結体を製造した。
This pre-sintered body was impregnated with Si under the same conditions as in Example 3 to produce a sintered body.

この焼結体の密度は5.2697cm”で、組成はSi
/Mo(原子比)−2,67であり、焼結体中のMoS
i2の含有率は75容量%で残部はSiであった。
The density of this sintered body is 5.2697cm'', and the composition is Si.
/Mo (atomic ratio) -2,67, and MoS in the sintered body
The i2 content was 75% by volume, with the remainder being Si.

そして、この焼結体の酸素含有量は13 ppmであっ
た。
The oxygen content of this sintered body was 13 ppm.

原、料理合物中のMOとSiの混合比を変え、あるいは
、ホットプレス温度、ホットプレス圧力を変えて前記と
同様な方法を行なった場合の結果を、前記の結果ととも
に弗5表に示す。
Table 5 shows the results when the same method as above was carried out by changing the mixing ratio of MO and Si in the raw material mixture, or by changing the hot press temperature and hot press pressure, along with the above results. .

第5表 =22− 実施例6 平均粒径4μmのwsi2粉末(酸素含有量:6200
 pl)m )を−軸プレスによりプレス圧2t/ c
rAでプレス成形し、30 mm M 30 MmX 
5 mx+の大きさの直方体とした。直方体の密度は4
.95f/cm”であった。この直方体を1500℃の
温度、10torrの真空中で1時間熱処理し、密度が
7、409 / cm”の仮焼結体(酸素含有量: 3
800ppm )を得た。この仮焼結体に、温度15o
o℃、真空度10−3torrの条件で溶融si(酸素
含有量=1 ppm )を60分間接触させて含浸させ
た後、炉冷シテ、密度7.98 f / am”の焼結
体を得た。この焼結体中のW St 2含有率75容量
%で残りはsiであり、組成はSt/W(原子比)=2
.67である。
Table 5 = 22- Example 6 wsi2 powder with an average particle size of 4 μm (oxygen content: 6200
pl)m) with a press pressure of 2t/c using a -shaft press.
Press molded with rA, 30 mm M 30 MmX
It was made into a rectangular parallelepiped with a size of 5 mx+. The density of a rectangular parallelepiped is 4
.. This rectangular parallelepiped was heat-treated at a temperature of 1500° C. in a vacuum of 10 torr for 1 hour to form a pre-sintered body with a density of 7,409/cm” (oxygen content: 3
800 ppm) was obtained. This temporary sintered body was heated to a temperature of 15o.
After contacting and impregnating with molten Si (oxygen content = 1 ppm) for 60 minutes at 0°C and vacuum level of 10-3 torr, a sintered body with a density of 7.98 f/am was obtained using a furnace-cooled sheet. The W St 2 content in this sintered body was 75% by volume, the rest was Si, and the composition was St/W (atomic ratio) = 2
.. It is 67.

そして、酸素含有量は12 ppmであった。The oxygen content was 12 ppm.

TaSi2粉末として、平均粒径4μmのTa5i2粉
末(酸素含有量: 58001)I)m )を用いる他
は上記とまったく同様にして、TaSi2とStとから
なる焼結体を製造した。得られた焼結体の密度は7.1
69 / am”で、焼結体中の’l’aSi2の含有
率は71容蓋%、組成はSi/Ta(原子比)=2.8
8であり、酸素含有量は10 ppmであった。
A sintered body made of TaSi2 and St was produced in exactly the same manner as described above, except that Ta5i2 powder (oxygen content: 58001) I)m ) having an average particle size of 4 μm was used as the TaSi2 powder. The density of the obtained sintered body is 7.1
69/am”, the content of 'l'aSi2 in the sintered body is 71%, and the composition is Si/Ta (atomic ratio) = 2.8.
8 and the oxygen content was 10 ppm.

M−Tiの場合は、平均粒径45μmのTiSi2粉(
酸素含有量: 2500 ppm )を使用し、Si含
浸温度を1430℃と低(してSiを含浸させて、密度
が390グ/cm”の焼結体を製造した。この焼結体中
のT I S x 2含有率は86容量%で残りはSi
であり、組成はSi/Ta(原子比)=2.34である
。そして、酸素含有量は9 ppmであった。
In the case of M-Ti, TiSi2 powder with an average particle size of 45 μm (
A sintered body with a density of 390 g/cm" was manufactured by impregnating Si at a low Si impregnation temperature of 1430° C. (oxygen content: 2500 ppm). I S x 2 content is 86% by volume and the rest is Si
The composition is Si/Ta (atomic ratio) = 2.34. And the oxygen content was 9 ppm.

実施例7 平均粒径3μmのMO粉末(酸素含有量:1400pp
m )、口1.5μmのSi粉末(同: 13000p
11m )、同5μmの1)4oSi2粉末(同: 5
500ppm )、同4μmのW S l 2粉末(同
:6200ppm)、同4pmのTaSi2粉末(同:
 5800 ppm )及び同45μmのT I S 
12粉末(同: 2500 ppm )を用意し、弗6
表記載の配合組成に配合し、実施例1と同様な混合・成
形方法により同1様な大きさの成形体を作製する。次い
で、42及び5においては、まず1200℃の温度、1
0−3torrの真空中において1時間加熱し、それか
ら1700℃で1時間熱処理して、仮焼結体とする。又
、41.3゜4及び6においては、1500℃の温度、
1o−3torrの真空中において1時間熱処理して、
第6表記載のe集金有量を有する仮焼結体とする。
Example 7 MO powder with an average particle size of 3 μm (oxygen content: 1400 pp
m ), Si powder with a diameter of 1.5 μm (same: 13000 p
11m), 5μm 1)4oSi2 powder (same: 5
500ppm), 4μm W S l 2 powder (6200ppm), 4pm TaSi2 powder (same:
5800 ppm) and 45 μm TIS
12 powder (same: 2500 ppm) was prepared,
The compositions are blended according to the composition shown in the table, and a molded article of the same size is produced by the same mixing and molding method as in Example 1. Next, in 42 and 5, the temperature was 1200°C, 1
It is heated in a vacuum of 0-3 torr for 1 hour, and then heat-treated at 1700° C. for 1 hour to obtain a temporary sintered body. Also, at 41.3° 4 and 6, the temperature of 1500°C,
Heat treated in a vacuum of 10-3 torr for 1 hour,
The pre-sintered body has the e-collection amount shown in Table 6.

次に、41.2及び5の仮焼結体においては、10−3
torrの真空中において1500℃で1時間の条件で
、又、” 3 s 4及び6の仮焼結体においては、1
0torrの真空中において1430℃で1時間の条件
で、酸素含有量が1 ppmの溶融Slを含浸させて、
それぞれ第6表に示すMSi2含有率、Si7M原子比
及び酸素含有量を有する焼結体を得た。
Next, in the pre-sintered bodies of 41.2 and 5, 10-3
torr vacuum at 1500°C for 1 hour, and in the pre-sintered bodies of 3s 4 and 6, 1
Impregnation with molten Sl having an oxygen content of 1 ppm at 1430° C. for 1 hour in a vacuum of 0 torr,
Sintered bodies having the MSi2 content, Si7M atomic ratio, and oxygen content shown in Table 6 were obtained.

実施例8 平均粒径5μmのMoSi2粉(酸素含有量:5500
 ppm )を−軸プレス性によりプレス圧2t / 
ctliでプレス成形し、30mm”i 30tprm
X5mの直方体とした。直方体の密度は3.309 /
 cm”で密度比は52.996である。
Example 8 MoSi2 powder with an average particle size of 5 μm (oxygen content: 5500
ppm) with a press pressure of 2t /
Press molded with ctli, 30mm”i 30tprm
It was made into a rectangular parallelepiped with a size of 5 m. The density of a rectangular parallelepiped is 3.309/
cm'' and the density ratio is 52.996.

この直方体上に3.72の板状Stを積み重ね、135
0℃まで300℃/hrの昇温速度で昇温することによ
り、仮焼結体を生成させ、更に、50℃/hrの昇温速
度で1425℃まで昇温し、この温度、I 0−3to
rrの真空中で30分保持した後、炉冷する。板状Si
は溶融し、MoSi2仮焼結体中に含浸して、密度が5
.18 f/ / cm”で気孔率が196以下である
焼結体を得た。
3.72 plate-like Sts are stacked on this rectangular parallelepiped, and 135
By raising the temperature to 0°C at a heating rate of 300°C/hr, a temporary sintered body is generated, and further heating to 1425°C at a heating rate of 50°C/hr. 3to
After being kept in a vacuum of rr for 30 minutes, it was cooled in a furnace. Plate Si
is melted and impregnated into MoSi2 pre-sintered body to have a density of 5.
.. A sintered body having a porosity of 18 f//cm'' and a porosity of 196 or less was obtained.

この焼結体のMOSi2の含有率は73容量%で残部は
Siであり、組成はSt/Δl[0(原子比)−2,7
5である。そして、酸素含有量は10 ppmであった
The content of MOSi2 in this sintered body is 73% by volume, the remainder is Si, and the composition is St/Δl[0 (atomic ratio) -2,7
It is 5. And the oxygen content was 10 ppm.

同様にして、平均粒径4μmのWSi2粉(酸素含有量
: 6200 ppm )、同4pmのTa512粉C
酸素含有量: 5800 ppm )、同45pmのT
−i S i 2粉(酸素含有量: 2500 ppm
 )を用いて上記の方法を行なった結果を第7表に示す
Similarly, WSi2 powder (oxygen content: 6200 ppm) with an average particle size of 4 μm and Ta512 powder C with an average particle size of 4 pm were prepared.
Oxygen content: 5800 ppm), 45 pm T
-i S i 2 powder (oxygen content: 2500 ppm
Table 7 shows the results of carrying out the above method using

〔発明の総括的効果〕 この発明の製造法により、酸素含有量が20ppm以下
まで大巾に減少したターゲット材を製造することができ
るので、この発明の製造法で製造されたターゲット材を
スパッタリングを用いれば、@7表 酸素含有量がターゲット材と同程度の高融点金属珪化物
膜を形成することができる。この膜は前記のように酸集
金有′量が極めて低いので、膜抵抗が小さく、したがっ
て半導体の電極配線に好適に用いられる。
[Overall Effects of the Invention] By the production method of the present invention, it is possible to produce a target material whose oxygen content is significantly reduced to 20 ppm or less. If used, it is possible to form a high melting point metal silicide film with an oxygen content comparable to that of the target material. As mentioned above, this film has an extremely low amount of acid collection, and thus has a low film resistance, and is therefore suitable for use in semiconductor electrode wiring.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも1種の珪化物形成金属成分と珪素成分
を含有する仮焼結体に溶融珪素を含浸させて、金属珪化
物と珪素とを含有する酸素含有量の低減した焼結体を生
成させることを特徴とする半導体電極配線用の金属珪化
物膜を形成するための酸素含有量の低減したターゲット
材の製造法。
(1) A pre-sintered body containing at least one silicide-forming metal component and a silicon component is impregnated with molten silicon to produce a sintered body containing a metal silicide and silicon with a reduced oxygen content. 1. A method for producing a target material with reduced oxygen content for forming a metal silicide film for semiconductor electrode wiring.
(2)珪化物形成金属成分と珪素成分の全部又は一部が
、両元素からなる化合物を形成している特許請求の範囲
第1項記載の半導体電極配線用の金属珪化物膜を形成す
るための酸素含有量の低減したターゲット材の製造法。
(2) For forming a metal silicide film for semiconductor electrode wiring according to claim 1, in which all or part of the silicide-forming metal component and the silicon component form a compound consisting of both elements. A method for producing target materials with reduced oxygen content.
JP59230996A 1984-08-30 1984-11-01 Manufacture of material containing metallic silicide radical Pending JPS61108132A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59230996A JPS61108132A (en) 1984-11-01 1984-11-01 Manufacture of material containing metallic silicide radical
US06/769,935 US4619697A (en) 1984-08-30 1985-08-27 Sputtering target material and process for producing the same
DE19853531085 DE3531085A1 (en) 1984-08-30 1985-08-30 SPUTTER SOURCE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
GB08521604A GB2166160B (en) 1984-08-30 1985-08-30 Sputtering target material and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230996A JPS61108132A (en) 1984-11-01 1984-11-01 Manufacture of material containing metallic silicide radical

Publications (1)

Publication Number Publication Date
JPS61108132A true JPS61108132A (en) 1986-05-26

Family

ID=16916597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230996A Pending JPS61108132A (en) 1984-08-30 1984-11-01 Manufacture of material containing metallic silicide radical

Country Status (1)

Country Link
JP (1) JPS61108132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350468A (en) * 1986-08-20 1988-03-03 Mitsubishi Metal Corp Manufacture of target material for sputtering
JPS63238265A (en) * 1987-03-26 1988-10-04 Toshiba Corp High-melting point metal silicide target and its production
JPH0380542A (en) * 1989-08-23 1991-04-05 Nec Corp Semiconductor integrated circuit device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337072A (en) * 1986-07-29 1988-02-17 Erumu Kogyo Kk Tape feeding device in electric cutter apparatus for bonding tape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337072A (en) * 1986-07-29 1988-02-17 Erumu Kogyo Kk Tape feeding device in electric cutter apparatus for bonding tape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350468A (en) * 1986-08-20 1988-03-03 Mitsubishi Metal Corp Manufacture of target material for sputtering
JPS63238265A (en) * 1987-03-26 1988-10-04 Toshiba Corp High-melting point metal silicide target and its production
JPH0380542A (en) * 1989-08-23 1991-04-05 Nec Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US4619697A (en) Sputtering target material and process for producing the same
JPS6337072B2 (en)
JPS61108132A (en) Manufacture of material containing metallic silicide radical
JP3580778B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP3035615B1 (en) Metal short wire dispersed thermoelectric material and method for producing the same
JP4755342B2 (en) Manufacturing method of composite material and representative material of this composite material
JP2017019685A (en) Electric resistance material and method for producing the same
JPS6026621A (en) Manufacture of heat resistant molybdenum material
JPH03166368A (en) Production of pb-zr-ti oxide type target material
JP3492648B2 (en) TiN-Al2O3-based sintered body
JPH09111363A (en) Production of sintered alloy containing ta and si
JPH05155651A (en) Production of indium oxide-base sintered body and of oxide sintered body
JP2973390B2 (en) Method for producing metal in which fine particles of metal or metal oxide are dispersed
JPH0522670B2 (en)
JPS6176664A (en) Target for sputtering apparatus and its manufacture
JPH0729446A (en) Manufacture of electrode for vacuum interrupter
JPS604898B2 (en) Molybdenum-based alloy
JP2008091413A (en) Composite soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JPH06306513A (en) Production of high fatigue strength sintered titanium alloy
JP3471858B2 (en) Manufacturing method of metal sintered member
KR930006442B1 (en) Sintered fe-co type magnetic materials
JPH09255412A (en) Ceramic sintered compact and its production
JPS6158864A (en) Manufacture of high melting point metal disilicate base sintered body
JPS6158865A (en) Manufacture of high melting point metal silicate base sintered body
JP3684008B2 (en) Intermetallic compound composite and method for producing the same