JPH0287984A - Method and device for moving object under cryogenic environment - Google Patents

Method and device for moving object under cryogenic environment

Info

Publication number
JPH0287984A
JPH0287984A JP63240319A JP24031988A JPH0287984A JP H0287984 A JPH0287984 A JP H0287984A JP 63240319 A JP63240319 A JP 63240319A JP 24031988 A JP24031988 A JP 24031988A JP H0287984 A JPH0287984 A JP H0287984A
Authority
JP
Japan
Prior art keywords
magnetic
region
area
moving
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63240319A
Other languages
Japanese (ja)
Other versions
JPH0734664B2 (en
Inventor
Noriji Tamada
紀治 玉田
Makoto Okano
真 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63240319A priority Critical patent/JPH0734664B2/en
Publication of JPH0287984A publication Critical patent/JPH0287984A/en
Publication of JPH0734664B2 publication Critical patent/JPH0734664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To move an object reliably and accurately by making transition from superconducting phase to normal conducting phase only in the driven zone of a moving board for supporting the object through application of external control field or control current. CONSTITUTION:An object moving device 10 is placed in a container 11 and used while being immersed into cryogenic refrigerant 12. A moving board 14 for supporting an object 13 is made of superconducting material, where the driven zones 15, 15 of the moving board 14 being subjected to lateral driving force through magnetic force are floated in the direction of an arrow fL in the refrigerant 12 through magnetic levitation mechanisms 19, 19, based on Meissner effect, such that mechanical friction is minimized for the motion in X direction. The moving board 14 can be moved to the right or left by a predetermined distance in X direction by means of the driving flux fD produced in the drive mechanism 16.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、特に極低温環境下に置いた観測対象物や加工
対象物を当該観測域ないし加工域で位置決めるため、そ
うした対象物を精度良く移動させるための方法及び装置
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is particularly useful for positioning objects to be observed or processed in an extremely low temperature environment in the observation area or processing area. The present invention relates to a method and apparatus for moving well.

〈従来の技術〉 超電導が生起するような極低温状態は、熱擾乱や熱振動
が少なく、したがって物質のミクロな状態を観測するの
に適していたり、あるいはまた物質の超極微高蹟度加工
に適している。
<Prior art> The extremely low temperature state where superconductivity occurs has little thermal disturbance or thermal vibration, and is therefore suitable for observing the microscopic state of materials, or for ultra-fine, high-temperature processing of materials. Are suitable.

しかし、こうした観測や加工を実現するためには、観測
対象物ないし加工対象物を高錆度で移動できるような装
置が必要となるが、従来、極低温環境下においても使用
可能なこの種の装置は提供されていない。
However, in order to realize such observation and processing, a device that can move the object to be observed or processed with a high degree of rust is required. No equipment provided.

例えば常温環境下ならば、精度の高い移動装置として、
半導体装置の作成等に用いるリソグラフィ用ステッパ等
があるか、これは極低温環境下では使用できない。
For example, in a normal temperature environment, it can be used as a highly accurate moving device.
There are steppers for lithography used in the production of semiconductor devices, etc., but these cannot be used in extremely low temperature environments.

〈発明が解決しようとする問題点〉 上記のように、極低温環境下でも満足に機能する対象物
移動装置は、従来5提供されたことがなく、あえて探し
ても、電歪効果や磁歪効果を利用した、いわゆるウォー
カ機構の援用か考えられる程度であった。
<Problems to be Solved by the Invention> As mentioned above, an object moving device that functions satisfactorily even in an extremely low temperature environment has never been provided5, and even if one dares to look for it, it is difficult to find an object moving device that can function satisfactorily even in an extremely low temperature environment. It could be considered that the so-called Walker mechanism was used.

しかし、このウォーカ機構の場合、生起するとf想され
る問題として、常温環境下での特性と極低温環境下での
特性か大きく異なることから、その温度補償をどうする
かということがある。
However, in the case of this walker mechanism, a problem that is expected to occur is how to compensate for the temperature, since the characteristics under a room temperature environment are significantly different from those under an extremely low temperature environment.

この解決は到底、容易とは思えないし、粒度上も十分な
信頼性が得られるとは思えない。
I don't think this solution is easy at all, and I don't think it would be possible to obtain sufficient reliability in terms of granularity.

また、もし仮に、こうした障害を克服し得たとしても、
原理的にこの種のウォーカ機構では、対象物を長い距離
に亙り、−跳びに移動させるということはできない。
Furthermore, even if these obstacles could be overcome,
In principle, this type of walker mechanism cannot move an object over a long distance in a jumping motion.

本発明はこうした従来の実情に鑑み、極低温環境下でも
十分に信頼性高く動作し、精度も良く、要すれば対象物
を長距踵に互って一度に移動も可能な移動機構を提供せ
んとするものである。
In view of these conventional circumstances, the present invention provides a moving mechanism that operates with high reliability even in an extremely low temperature environment, has good accuracy, and can move objects over long distances at once if necessary. This is what I am trying to do.

く問題点を解決するための手段) 本発明は上記目的を達成するため、極低温環境下で超電
導相となっている物体は、いわゆるマイスナ効果として
知られているように完全反磁性現象を呈するが、極低温
環境下で仮に意図的にその超電導相を崩し、常電導相に
遷移させれば、当該常電導相に遷移した部分を介しては
磁束が通過し得るという原理を利用する。
In order to achieve the above-mentioned object, the present invention provides a method in which an object that is in a superconducting phase in an extremely low temperature environment exhibits a completely diamagnetic phenomenon known as the so-called Meissner effect. However, if the superconducting phase is intentionally broken in an extremely low temperature environment and the transition is made to the normal conducting phase, magnetic flux can pass through the part that has transitioned to the normal conducting phase.

そしてまた、一対の磁極間を■る磁束は、そわが最も磁
気抵抗の小さな磁路を通るときに安定し、相対的に磁気
抵抗の大きい磁路を経由しているときには、他に磁気抵
抗の小さな磁路を採り得る場合、当該磁気抵抗の小さな
磁路を経由すべく、物体に対して移動駆動力を与え得る
という原理をも利用する。
Also, the magnetic flux between a pair of magnetic poles is stable when it passes through a magnetic path with the lowest magnetic resistance, and when it passes through a magnetic path with a relatively large magnetic resistance, it becomes stable when it passes through a magnetic path with a relatively large magnetic resistance. When a small magnetic path can be taken, the principle that a moving driving force can be applied to an object through the magnetic path with small magnetic resistance is also utilized.

すなわち本発明では、まず極低温環境下における対象物
の移動方法として、対象物を支持する移動板を設け、こ
の移動板の所定の平面領域を被駆動領域として、この被
駆動領域中の所定の面積領域のみを、外部制御磁界の印
加または制御電流の印加により、当該極低温環境−ドに
おいても超電導相から常電導相に遷移させる。
That is, in the present invention, as a method for moving an object in an extremely low temperature environment, a moving plate that supports the object is provided, a predetermined planar area of this moving plate is set as a driven area, and a predetermined area in this driven area is Only the area region is caused to transition from the superconducting phase to the normal conducting phase even in the cryogenic environment by applying an external control magnetic field or a control current.

その一方、被駆動領域の上下(一般には当該被駆動領域
の7面とは直交する方向)から駆動磁界を印加し、これ
に伴う駆動磁束が1記のように局部的に常電導相に遷移
させた面積領域中を介してのみ、被駆動領域ないし移動
板の表裏方向に抜けるようにし、かくして当該駆動磁束
がその磁束分布において安定な状態になろうとする力で
移動板を移動させる。
On the other hand, a driving magnetic field is applied from above and below the driven region (generally in a direction perpendicular to the seven sides of the driven region), and the accompanying driving magnetic flux locally transitions to the normal conductive phase as shown in 1. The driving magnetic flux is allowed to pass through the driven area or the front and back directions of the moving plate only through the area area where the driving magnetic flux is generated, and the moving plate is moved with a force that causes the driving magnetic flux to become stable in its magnetic flux distribution.

本発明はまた、装置構成としての定義も可能で、その場
合には次のような構成子群を設ける。
The present invention can also be defined as a device configuration, in which case the following constructor group is provided.

■:移動させるべき対象物を支持する移動板。■: A moving plate that supports the object to be moved.

■二藷移動板の上記対象物を支持している以外の領域の
一部である被駆動領域中において、移動板の移動方向に
互いに間隔を置いて複数個並設され、それぞれ外部制御
磁界の印加または制御電流の印加により、極低温環境下
でも超電導相から常電導相に遷移可能な磁気シャッタ領
域。
■In the driven area of the moving plate, which is a part of the area other than the area supporting the object, a plurality of pieces are arranged in parallel at intervals in the moving direction of the moving plate, each of which receives an external control magnetic field. A magnetic shutter region that can transition from a superconducting phase to a normal conducting phase even in an extremely low temperature environment by applying an applied or controlled current.

■二上記の被駆動領域に対し、その上下方向から駆動磁
界を印加可能な一対の磁極。
(2) A pair of magnetic poles capable of applying a driving magnetic field from above and below to the above driven region.

■二上記複数の磁気シャッタ領域の中、そのときどきで
選択した一つ以上の磁気シャッタ領域を極低温環境下で
も常電導相に遷移させるため、上記外部制御磁界または
上記制御電流を選択的に印加する選択回路手段。
(ii) Selectively applying the external control magnetic field or the control current in order to transition one or more magnetic shutter regions selected from among the plurality of magnetic shutter regions to the normal conducting phase even in an extremely low temperature environment. Selection circuit means.

このような構成子を設けることにより、上記の対の1i
Vi間に亙る駆動磁束が選択回路手段により選択されて
常電導相に遷移した暖気シャッタ領域を介してのみ、移
動板を表裏方向に抜けるに伴い、その磁束分布が安定す
る方向に、移動板に対しての横方向駆動力を発生する。
By providing such a constructor, the above pair 1i
As the driving magnetic flux extending between Vi passes through the movable plate in the front and back direction only through the warm shutter region where it has been selected by the selection circuit means and has transitioned to the normal conducting phase, the magnetic flux distribution is stabilized in the direction of the movable plate. generates a lateral driving force against the

この場合、上記の一対の磁極の先端はそれぞれ尖鋭化し
て、それらの間に亙る駆動磁束の密度を高めても良いし
、またこれに代えて、またはこわと共に、一対の磁極間
にあって移動板に平行にさらに固定板を設け、この固定
板には、上記移動板の移動方向に沿う所定の位置に、あ
らかじめ固定的に、常に磁束を通過させ得る磁束通過可
能領域を形成し、詠磁束通道領域を除く固定板部分は極
低温環境下で超電導相としても良い。
In this case, the tips of the above-mentioned pair of magnetic poles may be sharpened to increase the density of the driving magnetic flux passing between them, or alternatively, or in addition to stiffness, the tips of the pair of magnetic poles may be made sharp to increase the density of the driving magnetic flux between them. A fixed plate is further provided in parallel, and on this fixed plate, a magnetic flux passage area is fixedly formed in advance at a predetermined position along the moving direction of the movable plate, and a magnetic flux passage area through which magnetic flux can always pass is formed. The fixed plate portion except for may be made into a superconducting phase in an extremely low temperature environment.

特にこのように固定板に固定的にあらかじめ磁束通過領
域を設ける場合には、この領域は当該固定板を上下に抜
けるように穿たれた透孔で構成しても良い。この透孔は
、後述する実施例に見られるように、実際には固定板の
幅方向に渡る細長いスリット形状とすることができる。
In particular, when a magnetic flux passing region is fixedly provided in advance on the fixed plate in this manner, this region may be constituted by a through hole bored vertically through the fixed plate. This through hole can actually be in the form of an elongated slit extending across the width of the fixing plate, as seen in the embodiments described below.

方、固定板に設ける磁束通過領域も、選択的に磁束が通
過可能となるように、先に移動板の磁気シャッタ領域に
関して述べたと同様、この固定板の磁束通過領域にも、
そうした磁気シャッタ構成を採用しても良い。
On the other hand, in order to selectively allow the magnetic flux to pass through the magnetic flux passing area provided on the fixed plate, the magnetic flux passing area of this fixed plate is also provided with, as described above regarding the magnetic shutter area of the moving plate.
Such a magnetic shutter configuration may also be adopted.

さらに、このように固定板に設ける磁気シャッタ領域も
、その数は一つに限らない。
Furthermore, the number of magnetic shutter regions provided on the fixed plate is not limited to one.

つまり、固定板に設ける磁気シャッタも、移動板の移動
方向に沿って互いに間隔を置いて複数個並設し、これに
応じ、それら固定板に設けられた複数の磁気シャッタ領
域の中、そのときどきで選択した一つ以上の磁気シャッ
タ領域を常電導相に遷移させるために、上記外部制御磁
界または」二記制御電流を選択的に印加する回路手段を
設けても良い。
In other words, a plurality of magnetic shutters provided on the fixed plate are also arranged side by side at intervals along the moving direction of the movable plate, and accordingly, from time to time, in the plurality of magnetic shutter areas provided on the fixed plate. Circuit means may be provided for selectively applying the external control magnetic field or the control current described above in order to transition one or more selected magnetic shutter regions to the normal conducting phase.

方、上記のように、移動板の被駆動領域中に設りられる
磁気シャッタ領域を具体的に実現するに際しては、次の
ような構成が考えられる。
On the other hand, when specifically realizing the magnetic shutter area provided in the driven area of the moving plate as described above, the following configuration can be considered.

つには、移動板や固定板に形成された溝内に埋設され、
周囲に対しては電気的に絶縁された超電導体でこの磁気
シャッタ領域を構成し、この超電導体の常電導相への遷
移は、これに直接に制御電流を流して行なう。
It is buried in a groove formed in the movable plate or fixed plate.
This magnetic shutter region is made of a superconductor that is electrically insulated from the surroundings, and the transition of this superconductor to the normal conducting phase is performed by directly passing a control current through it.

第二には、磁気シャッタ領域以外の移動板部分と当該磁
気シャッタ領域とを、材質的にも幾何的にも特に区別さ
れる領域とはせず、当該移動板の表面に臨み、該移動板
移動方向とは直交する方向に伸びる制御電流線に制御電
流を印加した際に生ずる制御磁界により、局部的に超電
導相を壊して常電導相に遷移させる領域として定義する
Second, the movable plate portion other than the magnetic shutter area and the magnetic shutter area are not particularly distinguished in terms of material or geometry, but are faced to the surface of the movable plate, and the movable plate It is defined as a region where the superconducting phase is locally broken and transitioned to the normal conducting phase by the control magnetic field generated when a control current is applied to a control current line extending in a direction perpendicular to the direction of movement.

さらに三つ目の構成としては、弱ジョゼフソン接合を形
成し得る領域としてこの磁気シャッタ領域を構成する。
Furthermore, as a third configuration, this magnetic shutter region is configured as a region where a weak Josephson junction can be formed.

この場合にも、当該弱ジョゼフソン接合領域に臨み、上
記移動板移動方向に直交する方向に伸びる制御電流線に
一制御電流を印加した際に発生する制御磁界により、当
該弱ジョゼフソン接合領域を常電導相に遷移させること
ができる。
In this case, the weak Josephson junction area is also controlled by the control magnetic field generated when a control current is applied to a control current line facing the weak Josephson junction area and extending in a direction perpendicular to the moving direction of the moving plate. It can be made to transition to the normal conducting phase.

こうした磁気シャッタ構成はまた、既述のように、固定
板にも同種の磁気シャッタを設ける場合に適用すること
かできる。その場合、移動板と固定板とで磁気シャッタ
として採用されている構成が、上記三つの構成の中から
選ばれてはいるが、互いには異なっていても良い。
Such a magnetic shutter configuration can also be applied to the case where the fixed plate is also provided with the same type of magnetic shutter, as described above. In that case, the structure adopted as a magnetic shutter by the movable plate and the fixed plate is selected from the above three structures, but may be different from each other.

もちろん、移動板の移動時の機械的な摩擦抵抗を低減す
るか殆どなくすためには、−・対の磁極の各々と移動板
との間に互いに触れ合うことのないように間隙を形成す
ると良く、同様の理由により、移動板と固定板との間に
も、それらが互いに触れ合わないように、間隙を形成す
ると良い。
Of course, in order to reduce or almost eliminate the mechanical frictional resistance during movement of the moving plate, it is preferable to form a gap between each pair of magnetic poles and the moving plate so that they do not touch each other, For the same reason, it is preferable to form a gap between the movable plate and the fixed plate so that they do not touch each other.

そして特に、このように相対的に移動板を磁極や固定板
に触れさせないようにするためには、機械的に構成され
た適当な案内手段を採用しても良いが、極低温環境下で
本装置は使用されるのであるから、これをマイスナ磁気
軸受と同様の原理により、例えば極低温環境形成のため
に装置全体を液体ヘリウム等の極低温冷媒中に浸漬した
場合にも、当該冷媒中で移動板が磁極や固定板に対して
安定に浮トした位置を確保し、かつまた横方向には平滑
に動き得るように、一般に超電導電磁石として構成して
良い磁界発生手段を移動板に臨ませると良い。
In particular, in order to prevent the movable plate from touching the magnetic pole or the fixed plate, an appropriate mechanical guide means may be used, but it is difficult to use this method in an extremely low temperature environment. Since the device is used, it can be used on the same principle as the Meisner magnetic bearing, even if the entire device is immersed in a cryogenic refrigerant such as liquid helium to create a cryogenic environment. In order to ensure that the movable plate is in a stable floating position relative to the magnetic poles and fixed plate, and also to be able to move smoothly in the lateral direction, magnetic field generating means, which may generally be configured as a superconducting electromagnet, is placed facing the movable plate. Good.

ただしもちろん、その場合には、移動板にあって少なく
とも浮1−用磁界発生手段に臨む部分は極低温環境下で
完全反磁性を示す超電導材料から構成され”Cいる必要
がある。もっとも、局部的に移動板の一部をそうした超
電導材料から作ることはむしろ手間であり、普通には移
動板の全体を適当なる超電導材料から構成することが多
いと思われる。
However, in that case, at least the part of the moving plate facing the magnetic field generating means for the float 1 must be made of a superconducting material that exhibits complete diamagnetic properties in an extremely low temperature environment. Generally speaking, it is rather troublesome to make a part of the moving plate from such a superconducting material, and it is thought that the entire moving plate is usually constructed from a suitable superconducting material.

したがって、既述した磁気シャッタ領域を構成するのに
、同様に移動板の溝内に埋設され、周囲に対しては電気
的に絶縁された適当なる超電導体を用いる場合には、当
該移動板を構成する超′准導材料よりも臨界磁界の小さ
な材料でこれを構成すると良い。
Therefore, if a suitable superconductor, which is similarly buried in the groove of the moving plate and is electrically insulated from the surroundings, is used to construct the magnetic shutter area described above, the moving plate is It is preferable to construct this using a material with a smaller critical magnetic field than the superconducting material that constitutes it.

例えば移動板をニオブで作成した場合、これに絶縁性を
保ちながら埋設する磁気シャッタ領域構成部材には、鉛
を選ぶことができる。
For example, if the movable plate is made of niobium, lead can be selected as the magnetic shutter region constituent member buried therein while maintaining insulation.

また、一般に移動板に形成する溝は、該移動板の移動方
向に沿う幅かかなり狭く、移動方向と直交する方向に長
さを有する細いスリット状に構成し、この中に線状の異
種超電導体を埋設するようにして磁気シャッタ領域を構
成するのが最も簡単と思われるが、そうした場合には、
当該線状超電導体にあらかじめ絶縁皮膜を施して置けば
良い。
In addition, the grooves formed in the moving plate are generally formed into thin slits that are quite narrow in width along the moving direction of the moving plate and have a length in the direction orthogonal to the moving direction. It seems easiest to configure the magnetic shutter area by burying the body, but in such a case,
An insulating film may be applied to the linear superconductor in advance.

〈作用および効果〉 対の磁極間に磁界を発生させたとき、当該磁極間に生ず
る磁束は、最も磁気抵抗が小さく、磁気ポテンシャルも
小さくて、最も安定な磁路を採ろうとする。したがって
、一対の磁極間に磁気的な障害物がない場合、当該一対
の磁極間に亙る磁束はそれら一対の磁極間を幾何的な意
味でも文字通り直線距離で結ぶ磁路を通る。
<Functions and Effects> When a magnetic field is generated between a pair of magnetic poles, the magnetic flux generated between the magnetic poles tries to take the most stable magnetic path with the lowest magnetic resistance and the lowest magnetic potential. Therefore, when there is no magnetic obstacle between the pair of magnetic poles, the magnetic flux between the pair of magnetic poles passes through a magnetic path that literally connects the pair of magnetic poles with a straight line distance, even in a geometrical sense.

これに対し、上記のように一対のMi磁極間直線距離に
対し、磁束が横方向に迂回した磁路を通らなければなら
ない場合には、当該磁束はその迂回を受けた方向と逆方
向に物理的な力を発生する。
On the other hand, if the magnetic flux has to pass through a magnetic path that is detoured in the lateral direction with respect to the straight line distance between a pair of Mi magnetic poles as described above, the magnetic flux will physically move in the opposite direction to the direction in which it was detoured. generate force.

本発明では、最も基本的にはこの原理を用いており、当
該意図的な磁束迂回路を局部的に形成することにより、
その迂回の程度、すなわち一対の磁極間を直線距離で結
ぶ位置に対し、意図的に形成した磁路部分が横方向にず
れている程度に応じ、当該迂回路を通過する磁束が発生
する横方向駆動トルクにより、当該意図的な磁束迂回路
を形成している移動板を移動させ、移動板に支持されて
いる対象物を移動させる。
The present invention most fundamentally uses this principle, and by locally forming the intentional magnetic flux detour,
Depending on the extent of the detour, that is, the degree to which the intentionally formed magnetic path is deviated in the lateral direction with respect to the position connecting the pair of magnetic poles in a straight line, the lateral direction in which the magnetic flux passing through the detour is generated. The drive torque moves the moving plate forming the intentional magnetic flux detour, thereby moving the object supported by the moving plate.

すなわち、移動板の被駆動領域の上下(限定的ではなく
、場合により斜め方向からでも良いが、一般には垂直方
向)から駆動磁界が印加されたとき、該被駆動回路中に
あって、0図的に常電導相に遷移させる局部的な面積領
域の位置を、上記のように一対の磁極間に亙る最も磁気
抵抗の小さくなる位置に対して横方向にずらして置けば
、被駆動領域の他の領域部分か超電導相であって完全反
磁性を示すがために当該常電導相に遷移した面積領域を
通過するしかない駆動磁束は、その常電導相に遷移した
面積領域が横方向にずれている程度に応したトルクでそ
のずれを解消させる方向に移動板を移動させる。
In other words, when a driving magnetic field is applied from above and below the driven area of the moving plate (not limited to this, it may be from an oblique direction depending on the case, but generally from a vertical direction), the 0 If the position of the local area area that is to be transitioned to the normal conductive phase is shifted laterally from the position where the magnetic resistance is the smallest between the pair of magnetic poles as described above, it is possible to Because the region is in the superconducting phase and exhibits complete diamagnetism, the driving magnetic flux has no choice but to pass through the area that has transitioned to the normal conducting phase, because the area that has transitioned to the normal conducting phase is shifted laterally. The movable plate is moved in a direction that eliminates the misalignment using a torque corresponding to the degree of misalignment.

そして、この横方向駆動トルクは、移動板の移動に伴っ
て当該常電導相遷移領域が一対の磁極間にあって最も磁
気抵抗の小さくなる位置に近付くに従い弱まり、最終的
には駆動磁束が最も安定な状態となったとき、つまりは
常電導相遷移領域の横方向位置が一対の磁極間における
最も磁気抵抗の小さな磁路の位置に幾何的に整合したと
きに原則として零となり、移動板はその位置で停止する
As the moving plate moves, this lateral drive torque weakens as the normally conducting phase transition region approaches the position between the pair of magnetic poles where the magnetic resistance is the lowest, and eventually the drive magnetic flux becomes the most stable. In principle, it becomes zero when the lateral position of the normally conducting phase transition region is geometrically aligned with the position of the magnetic path with the lowest magnetic resistance between the pair of magnetic poles, and the moving plate moves to that position. Stop at.

これを換言すれば、当該移動の基本移動ピッチは、最初
に磁束迂回路が横方向にずれていた距離に相当し、逆に
言えば、駆動磁界の影響を受は得る範囲内で最初に常電
導相に遷移される領域の横方向位置を選択することによ
り、このピッチを可変可能なことが分かる。
In other words, the basic movement pitch of the movement corresponds to the distance by which the magnetic flux detour was initially shifted in the lateral direction; It will be appreciated that this pitch can be varied by selecting the lateral position of the region transitioned to the conductive phase.

例えば、選択的、局部的に常電導相に遷移することによ
って形成される磁束迂回路として、移動板の移動方向に
互いに間隔を置いて並設された複数の磁気シャッタ領域
を用いる場合、どの磁気シャッタ領域を常電導相に遷移
させるかにより、その移動ピッチを変えることができる
For example, if a plurality of magnetic shutter regions arranged in parallel at intervals in the moving direction of the moving plate are used as magnetic flux detours formed by selectively and locally transitioning to the normal conducting phase, which magnetic The movement pitch can be changed depending on whether the shutter region is transitioned to the normal conducting phase.

こむに関し、もう少し具体的に、本発明方法ないし装置
の動作例を簡単なモデルに即して述べてみると、今、一
対の磁極の中心位置を結び、最も磁気抵抗の小さな電路
が通る移動板トの位置に第の常電導相遷移可能領域(磁
気シャッタ領域)があり、それから左方向にピッチPつ
つずれて、第二、第三の常電導相遷移可能領域があった
とする。
To be more specific about this, let us describe an example of the operation of the method or device of the present invention based on a simple model. It is assumed that there is a first normal conductive phase transition possible region (magnetic shutter region) at the position 1, and there are second and third normal conductive phase transition possible regions shifted to the left by a pitch P.

ここでもし、第一の常電導相遷移可能領域を常電導相に
遷移させた状態で、一対の磁極間に磁界を発生させても
、移動板は移動しない。当該第の常電導相遷移可能領域
を透過する磁束は、最も磁気抵抗の小さな電路を通り、
最も安定な状態となるからである。
Here, even if a magnetic field is generated between the pair of magnetic poles in a state where the first normal conductive phase transition possible region is transitioned to the normal conductive phase, the moving plate will not move. The magnetic flux that passes through the region where the normal conductive phase transition is possible passes through the electrical path with the lowest magnetic resistance,
This is because it is the most stable state.

これに対し、第二の常電導相遷移可能領域をのみ常電導
相に遷移させ、一対の磁極間に磁界を発生させると、発
生磁束はピッチPたけ左にずれて設けられているこの第
二常電導相領域を介1ノてしか、一対の磁極間に通じ得
なくなるから、ずれを解消するべく、当該第二常電導相
領域ひいては移動板を右方向に移動させる駆動トルクを
発生し、実際に移動板を右方向に移動させる。
On the other hand, when only the second normal conductive phase transition possible region is made to transition to the normal conductive phase and a magnetic field is generated between a pair of magnetic poles, the generated magnetic flux is shifted to the left by the pitch P. Since communication between a pair of magnetic poles is only possible through the normal conductive phase region, a driving torque is generated to move the second normal conductive phase region and the moving plate to the right in order to eliminate the misalignment. Move the moving plate to the right.

この移動の停止は、当該第二の常電導相領域が最初に第
一常電導相遷移可能領域の占めていた位置に達したとき
である。
This movement stops when the second normal conductive phase region reaches the position initially occupied by the first normal conductive phase transition possible region.

移動板が停止したならば、常電導相領域が帯磁するのを
防ぐため、駆動磁界を速やかに低減、消滅させ、また第
二常電導相遷移可能領域を常電導相に遷移させていた状
態も解消させて、元の超電導相に戻せば良い。
When the moving plate stops, in order to prevent the normal conducting phase region from becoming magnetized, the driving magnetic field is quickly reduced and eliminated, and the state in which the second normal conducting phase transition possible region is changed to the normal conducting phase is also changed. All you have to do is resolve it and return to the original superconducting phase.

その後、再度、移動板を上記単位ピッチとしてのピッチ
Pだけ、さらに右に移動させたい場合には、上記におい
て今度は、一対の磁極間の真下に来ている第二の常電導
相遷移可能領域を最初の第常電導相遷移可能領域に相当
する領域と考え、これからさらに左に距1lIPを置い
てずれている第三の常電導相遷移可能領域を先の第二常
電導相遷移可能領域に相当するとして考えると明らかな
ように、第三常電導相遷移可能領域を当該常電導相に遷
移させ、駆動磁界を再度印加すれば良く、以下、同様の
動作を繰返すことにより、上記ピッチPに従う移動板の
ステップ送りが可能となる。
After that, if you want to move the moving plate again to the right by the pitch P as the unit pitch, in the above case, this time, move to the second normal conductive phase transition area that is directly below between the pair of magnetic poles. is considered to be a region corresponding to the first normal conductive phase transition possible region, and the third normal conductive phase transition possible region, which is further shifted to the left by a distance of 1lIP, is the second normal conductive phase transition possible region. As is clear when considered as equivalent, it is sufficient to transition the third normal conductive phase transition possible region to the normal conductive phase and apply the driving magnetic field again, and from then on, by repeating the same operation, the above pitch P is followed. Step feeding of the moving plate is possible.

なお、このような基本動作にのみ即する場合には、一対
の磁極間に発生させる磁束は十分に収束されている方か
強い駆動トルクを得られ、また最小移動分解能としての
最小移動ピッチも十分に短くし得るので、その意味から
は当該一対の磁極の先端は十分に尖鋭化して置くのが良
い。
In addition, when complying only with such basic operation, the magnetic flux generated between a pair of magnetic poles must be sufficiently converged to obtain a strong driving torque, and the minimum movement pitch as the minimum movement resolution must be sufficient. In this sense, the tips of the pair of magnetic poles should be sufficiently sharpened.

同様に、上記の最小移動分解能は常電導相遷移可能領域
ないし磁気シャッタ領域の移動方向の幅寸法によフても
影響され、磁束が通過14能な晃囲でこれを狭めれば、
最小位相可能ピッチはこれに応じて短くすることが、で
きる。もちろん、それら常電専用遷移iiJ能領域の並
設間隔は、直接に?林位のピッチPに関係する。
Similarly, the above-mentioned minimum movement resolution is also affected by the width dimension in the movement direction of the normally conductive phase transition possible region or the magnetic shutter region, and if this is narrowed to a range where magnetic flux can pass through,
The minimum phaseable pitch can be shortened accordingly. Of course, the spacing between these normal voltage-only transition IIJ function areas is directly? It is related to Hayashi's pitch P.

こうしたことからすれば、限定的ではないものの、そう
した常電導相遷移可能領域ないし磁気シャッタ領域は、
移動板の移動方向に沿って狭い幅を有し、当該幅方向と
直交する方向にはある程度以−Fの長さを有する細長い
領域として形成されていることが望ましく、また、その
ようにすると、後述もするように、製作上も簡単になる
Considering this, although not limited to, such a normally conductive phase transition possible region or magnetic shutter region is
It is desirable that the area is formed as an elongated area having a narrow width along the moving direction of the moving plate and having a length of more than -F to a certain extent in the direction perpendicular to the width direction. As will be described later, manufacturing is also simplified.

もちろん、上記のメカニズムからすれば、逆方向に移動
板を駆動し得ることも明らかであるし、また、最初の状
態において第二常電導相遷移可能領域を常電導相に遷移
させたのに代え、いきなり第三常電導相遷移可能領域を
常電導相に遷移させれば、一対の磁極間に発生させるべ
き駆動磁界がこの第三常電導相領域に届く程に適当な強
さを持っている限り、移動板は最小分解能であるビッチ
Pの二倍の+JI!離(2XP)を−挙に動くことにな
る。
Of course, from the above mechanism, it is clear that the moving plate can be driven in the opposite direction, and it is also possible to drive the moving plate in the opposite direction. , if the third normal conductive phase transition possible region suddenly transitions to the normal conductive phase, the driving magnetic field to be generated between the pair of magnetic poles will have appropriate strength to reach this third normal conductive phase region. As long as the moving plate is +JI which is twice the bit P which is the minimum resolution! It will move quickly (2XP).

これから推して、−数的に展開すると、駆動磁界が適当
な強さである限り、本発明の方法ないし装置によれば、
常電導相遷移可能領域の並設に係る基本ピッチPを最小
分解能とする移動板の微動に加え、nを1以トの整数と
して当該Pのn倍の距離を一挙に動かす粗動も可能であ
ることが分かる。l、7たがっで、対象物を観測域や加
工域の近くまでとりあえず持ってくるには粗動を利用し
て迅速に、これを行ない、近<i7来たら微動を利用し
て精度を高めるという使い分けを合理的になすことがで
きる。
Inferring from this - numerically developed, as long as the driving magnetic field is of suitable strength, according to the method or apparatus of the present invention:
In addition to fine movement of the moving plate with the minimum resolution being the basic pitch P related to the parallel arrangement of normally conductive phase transition possible regions, coarse movement is also possible where n is an integer greater than or equal to 1 and the distance is n times the P. I understand that there is something. In order to bring the object close to the observation area or processing area, coarse movement is used to quickly do this, and when the object is brought close to the observation area or processing area, fine movement is used to increase accuracy. It is possible to use them rationally.

こうし・た効果は、本発明装置構成として要旨構成に記
された種々の装置構成を採用しても、基本的に得ること
のできる効果である。ただし、ピッチPは必ずしも各隣
接する常電導相遷移可能領域間で−・定である必要はな
く、異なっていても良い。例えば最初の粗動のためにあ
らかじめピッチPとしても粗く採フてあり、微動に入る
頃の移動板位置状態では、一対の磁極間近傍の常電導相
遷移領域間ピッチがより細かくなっている等して良い。
These effects can basically be obtained even if various device configurations described in the summary are adopted as the device configuration of the present invention. However, the pitch P does not necessarily have to be constant between adjacent normal conductive phase transition possible regions, and may be different. For example, for the first coarse movement, the pitch P is set coarsely in advance, and when the moving plate is in position when it enters fine movement, the pitch between the normal conductive phase transition regions near the pair of magnetic poles becomes finer. It's okay to do that.

また、極低温環境下でも選択された磁気シャッタのみを
常電導相に遷移させるために外部制′@磁界や制御電流
を印加する回路手段は、通常のこの峠ル装置は、 −”5ものとなる。
In addition, the circuit means for applying an external control field or control current in order to transition only selected magnetic shutters to the normal conducting phase even in an extremely low temperature environment is as follows. Become.

制御性や操作性においても優わ、た さらに、本発明を装置構成として見た場合、駆動電界を
印加した際に意図的に磁気抵抗の高い迂回路を形成する
ためには、移動板との間に1丁方向に間隙を置くにしろ
そうでないにしろ、)F面投影的に見た場合には移動板
(特にその被駆動領域)と重ね合せの関係になる固定板
をさらに設け、その所定位置に磁束透過可能な領域を形
成しても上記の動作は満足することができる。
It is superior in controllability and operability.Furthermore, when looking at the present invention as a device configuration, in order to intentionally form a detour with high magnetic resistance when a driving electric field is applied, it is necessary to Regardless of whether a gap is provided between them in the direction of one direction or not, a fixed plate is further provided which overlaps the movable plate (particularly its driven area) when viewed from the F plane projection. The above operation can be satisfied even if a magnetic flux permeable region is formed at a predetermined position.

例えばこの固定板を超電導材料で作り、その部にのみ、
移動板に設ける常電導相遷移可能領域と同程度の寸法の
スリット等、適当なる形状の透孔を穿って置けば、一対
の!!極間に亙る駆動磁束は、移動板において選択され
た常電導相遷移可能領域と、この固定板に穿たれた透孔
を介してのみ、通過し得るるので、同様に移動板にて常
電導相に遷移させるべき領域を選択することにより、駆
動トルクを発生でき、それら常電導相遷移領域と透孔と
が平面投影的に重なった所で当該移動を停(ヒさせるこ
とかできる。
For example, if this fixed plate is made of superconducting material, only that part
By making a hole of an appropriate shape, such as a slit with the same size as the normally conductive phase transition area provided in the moving plate, a pair of! ! The driving magnetic flux between the poles can pass only through the selected normal conductive phase transition area on the moving plate and the through hole drilled in this fixed plate. By selecting the region to be transitioned to a phase, a driving torque can be generated, and the movement can be stopped at a place where the normally conductive phase transition region and the through hole overlap in plan projection.

しかるに、固定板に設ける透孔の意味は、一つには@i
磁極先端尖鋭化するにも加工的に限界がある場合に、こ
うした透孔の加工技術によれば十分に磁束通過領域を絞
り得るため、特に各磁極先端が尖鋭化されておらず、通
常のコア構造に見られるように、平面的な磁極となって
いても、十分に駆動磁束を絞って高い駆動トルクを得ら
れるということの他、通過させるべき磁束の位置の特定
をこの透孔の位置によっても行ない得るという作用があ
るので、移動板の移動に関し、より子細な制御か行なえ
る。
However, the meaning of the through holes provided in the fixed plate is, in part, @i
In cases where there is a processing limit to sharpening the tips of the magnetic poles, this through-hole processing technology can sufficiently narrow down the magnetic flux passage area. As seen in the structure, even though the magnetic poles are flat, it is possible to sufficiently narrow down the driving magnetic flux and obtain high driving torque.In addition, the position of the through hole can be used to specify the position of the magnetic flux that should pass through. Since the movement of the moving plate can be controlled more precisely, the movement of the moving plate can be controlled more precisely.

特に、上記のような透孔ないしスリットに代えて、この
固定板に設ける磁束通過可能領域も、移動板に設けられ
る磁気シャッタ領域と同様の構成を採用すると、移動板
を駆動しようとする必要時にのみ、この部分を介して磁
束を透過可能としても良い外、さらに進んで、こわら磁
気シャッタ領域の数も所定のピッチまたは各人なるピッ
チで並設された複数にすることで、そのどきどきで最適
な駆動トルクが得られる電路を選択したり、さらに複雑
な移動ステップの可変操作がなし得たりして望ましい。
In particular, if instead of the above-mentioned through-holes or slits, the area through which magnetic flux is allowed to pass through is provided on the fixed plate, and the structure is similar to that of the magnetic shutter area provided on the moving plate, when it is necessary to drive the moving plate, In addition to making it possible for the magnetic flux to pass through this part, it is possible to go further and increase the number of stiff magnetic shutter areas at a given pitch or at different pitches at any given time. It is desirable to be able to select an electric path that provides the optimum drive torque, and to be able to perform variable operations for more complex movement steps.

例えば、ある意味では特殊な場合となるかも知れないが
、移動板に形成する磁気シャッタ群の基本ピッチPに対
し、固定板に設ける磁気シャッタの基本ピッチを例えば
(P+α)等、異ならせて置くと、各基本ピッチPや(
P+α)に相当する距離を91位移動距離として移動板
をステップ移動させ得る他、それらのずれ量に相当する
極めて微細な距離αだけ、移動板を極微動させることも
できるので、対象物の微細加工等には最適なものとなる
For example, although this may be a special case in some sense, the basic pitch P of the magnetic shutters formed on the movable plate is different from the basic pitch of the magnetic shutters formed on the fixed plate, such as (P+α). and each basic pitch P and (
In addition to moving the moving plate in steps by setting the distance corresponding to It is ideal for processing, etc.

また、本装置は、液体ヘリウム等、各部に超電導状態を
生起するに必要な冷媒に浸漬した状態下で使うことが一
般的であるが、そうした冷媒内においても移動板の移動
時の機械的な摩擦抵抗を最小にするには、既知のマイス
ナ軸受構造を援用して、当該移動板を浮上させ、各磁極
や固定板と機械的に接触しないように図ると良い。
In addition, this device is generally used while being immersed in a refrigerant such as liquid helium that is necessary to create a superconducting state in each part, but even in such a refrigerant, the mechanical In order to minimize the frictional resistance, it is preferable to use the known Meissner bearing structure to levitate the movable plate so that it does not come into mechanical contact with each magnetic pole or fixed plate.

いずれにしても、本発明によれば、従来、極低温環境下
での対象物の観測や加工に必要とされていた対象物の横
方向(−次元)移動機構として、十分に実用的であり、
しかも簡単な機構の割に高精度を保ち得る、信頼性の高
い移動装置を提供することができる。
In any case, according to the present invention, it is sufficiently practical as a mechanism for moving objects in the lateral direction (-dimensional), which has conventionally been required for observing and processing objects in cryogenic environments. ,
Moreover, it is possible to provide a highly reliable moving device that maintains high accuracy despite its simple mechanism.

もちろん、本発明は二次元移動機構にも簡単に展開する
ことができる。移動板に設ける複数の常電導相遷移可能
領域ない°し磁気シャッタの群の並設方向が互いに直交
する二組の群を設け、これに対応するように、それぞれ
に駆動磁界を印加すれば良い。
Of course, the present invention can be easily extended to a two-dimensional movement mechanism. It is sufficient to provide a plurality of normally conductive phase transition possible regions or magnetic shutters provided on the moving plate, and to provide two groups in which the parallel directions of the groups are orthogonal to each other, and to apply a driving magnetic field to each group in a corresponding manner. .

〈実 施 例〉 第1図には本発明に従って構成される極低温環境下での
対象物移動装置10の全体的な概念構造が示されている
<Embodiment> FIG. 1 shows the overall conceptual structure of an object moving device 10 in a cryogenic environment constructed according to the present invention.

本移動装置10は容器11内にあって液体ヘリウム等の
適当なる極低温用冷媒12中に浸漬して用いられる。た
だし後述するように、本装置IO中においてM電導相状
態を必要とする各領域にのみ、選択的に極低温までの冷
却を施すようにしても良く、現にそのような部分冷却も
、既存の技術をして実現可能である。
The moving device 10 is used by being placed in a container 11 and immersed in a suitable cryogenic refrigerant 12 such as liquid helium. However, as will be described later, it is also possible to selectively cool down to extremely low temperatures only in each area in the IO of this device that requires the M conduction phase state, and in fact, such partial cooling is also possible in the existing method. It is possible to achieve this by using technology.

本装置10は、まず、観測ないし加工の対象とする対象
物13を支持する移動板14を有し、図面横方向x−X
に長さを持っていて、このx−X方向が移動板移動方向
となる。
This device 10 first has a moving plate 14 that supports an object 13 to be observed or processed, and has a moving plate 14 that supports an object 13 to be observed or processed.
It has a length of , and this x-x direction is the moving direction of the moving plate.

ここに説明する実施例では、一応、当該移動板14は全
体として超電導材料から構成されているものとし、好ま
しくはニオブ系の材料製を想定するが、図面中で斜線を
付した移動板両端部分におけるある程度の長さ領域15
.15は、本図では単に仮想線の枠で囲った後述する駆
動機構16.16により、磁気力によって横方向の駆動
力を受ける被駆動領域15 、15となる。
In the embodiment described here, it is assumed that the movable plate 14 is made of a superconducting material as a whole, preferably a niobium-based material, but both ends of the movable plate are shaded in the drawing. A certain length region 15 in
.. Reference numeral 15 is a driven region 15, 15 which receives a horizontal driving force by a magnetic force by a drive mechanism 16.16, which will be described later and is simply surrounded by a frame of imaginary lines in this figure.

ただし、磁気力を発生するため、上下から被駆動領域1
5を挾む一対の磁極17 、17や、これらの間に選択
的に生ずる磁束fDは、この仮想線の枠16゜16内に
おいても、簡単にではあるが示されている。
However, since magnetic force is generated, the driven area 1
The pair of magnetic poles 17 and 17 sandwiching the magnetic pole 5 and the magnetic flux fD selectively generated between them are also shown within this imaginary line frame 16° 16, albeit briefly.

移動板14の各被駆動領域15.15はまた、各磁極1
7 、17や、後述するように実施例によっては用いら
れることのある固定板18.18と直接に接触すること
がなく、X方向の移動に際して機械的な摩擦力を最小限
に抑え得るように、既知のマイスナ効果を利用する等し
た磁気浮上機構19.19により、冷媒12中で矢印f
L力方向浮上させられている。
Each driven region 15.15 of the moving plate 14 also corresponds to each magnetic pole 1.
7, 17, and the fixing plate 18, 18 that may be used in some embodiments as described later, so that mechanical frictional force can be minimized during movement in the X direction. , by a magnetic levitation mechanism 19.19 that utilizes the known Meissner effect, the arrow f in the refrigerant 12 is
It is being levitated in the direction of the L force.

例えばこの磁気浮上機構19としては、第9図に示すよ
うな簡単な構造のものがあり、コイル20の発生する磁
界は、図示の場合、E型コア21の中央脚22と両端部
23 、23の端部に渡る磁力線を伴うものとなるが、
移動板14が超電導状態を保っていて、かつ十分にコア
端に近接した位置にあるときには、3Q、 KA磁力線
は完全反磁性を示している移動板目内に入り込めないた
め、その反力として、移動板14を矢印fL力方向適宜
距離、浮上させる力を発生ずる。
For example, this magnetic levitation mechanism 19 has a simple structure as shown in FIG. It is accompanied by lines of magnetic force across the edges of
When the movable plate 14 maintains a superconducting state and is located sufficiently close to the core end, the 3Q and KA magnetic lines of force cannot enter the grain of the movable plate, which exhibits complete diamagnetic properties, so the reaction force is , generates a force to levitate the movable plate 14 by an appropriate distance in the force direction of arrow fL.

もっともこの構成は、既に述べたように、公知のマイス
ナ軸受の構造と原理的に同一であり、換言すれば、公知
既存のこの種の磁気浮上構造を本発明の装置系にも任意
に援用することができる。
However, as already mentioned, this configuration is basically the same as the structure of the known Meissner bearing, and in other words, the known existing magnetic levitation structure of this type can be arbitrarily used in the device system of the present invention. be able to.

もちろん、こうした浮上用磁界発生手段19を用いるに
際しては、その数や配置位置は任意の問題である。第1
図中では移動板14の移動方向X−xに適宜な距離を置
いて二つ示しているが、これは全くにして説明のための
一例に過ぎない。
Of course, when using such levitation magnetic field generating means 19, the number and arrangement position thereof are arbitrary. 1st
In the figure, two are shown spaced apart by an appropriate distance in the moving direction X-x of the moving plate 14, but this is merely an example for explanation.

第一、こうした磁気浮上機構19を設けること自体、本
発明にとって必須ではない。その方が機械的な摩擦抵抗
が少なく、精度もより出し易いことから望ましいものの
、場合によっては移動板14が各磁極17や、必要に応
じて用いられる固定板18と機械的に接触した状態で移
動しても良い。接触させないようにするにも、逆に機械
的な案内手段を採用し、移動板のガタ付きを防ぐ働きを
これに兼ねさせる等しても良い。ただ、後述する各実施
例においては、この浮上機構19をいずれも関連する図
面中に図示はして置く。
First, the provision of such a magnetic levitation mechanism 19 itself is not essential to the present invention. Although this is preferable because it has less mechanical frictional resistance and is easier to achieve accuracy, in some cases the movable plate 14 may be in mechanical contact with each magnetic pole 17 or the fixed plate 18 used as necessary. You may move. Alternatively, a mechanical guide means may be used to prevent the movable plate from rattling. However, in each embodiment described later, this floating mechanism 19 is not shown in the related drawings.

しかるに、第1図示のような本移動装置IOの概念構成
において、さらに以下に述べるように、各磁極17の形
状構成とか被駆動領域15の構成、さらには固定板18
に与えられる特殊な構成等を採用すると、駆動機構16
内にて発生させる駆動磁束f。により、これと直交する
X方向に所定の距離分、移動板14を左右いずれも望む
方向に移動させることができ。
However, in the conceptual configuration of the present moving device IO as shown in the first diagram, as will be described below, the shape and configuration of each magnetic pole 17, the configuration of the driven region 15, and even the fixed plate 18
If a special configuration etc. given to the drive mechanism 16 is adopted, the drive mechanism 16
The drive magnetic flux f generated within. Therefore, the movable plate 14 can be moved in any desired direction by a predetermined distance in the X direction perpendicular to this.

第2図は第1図示の概念構成をもう少し詳しく示した本
発明の一実施例を示しており、ただし極低温環境を生起
するための冷媒12や容器11等は省略している。
FIG. 2 shows an embodiment of the present invention in which the conceptual configuration shown in FIG. 1 is shown in more detail, but the refrigerant 12, container 11, etc. for creating a cryogenic environment are omitted.

この実施例に示されているように、第1図では移動板1
4の両端の被駆動領域15に対し、横方向駆動力を発生
するべく観念的に示された駆動機構16は、それぞれ、
被駆動領域15の長さ方向端部を渡し越すC型コア24
と、このコア24の中間部に巻回されたコイル25とを
有する電磁石26を存しており、この実施例の場合、C
型コア24の対向端部、すなわち一対の磁極17 、1
7は、移動板14の被駆動領域15をそれらで士下から
挟み込むように、互いに移動板平面に対し直交する方向
から向かい合っており、また十分に尖鋭化されて、それ
らの間に亙る磁束密度を高め得るようになっている。
As shown in this embodiment, in FIG.
The driving mechanisms 16 conceptually shown to generate lateral driving forces for the driven regions 15 at both ends of the
C-shaped core 24 passing over the longitudinal end of the driven region 15
and a coil 25 wound around the middle part of this core 24. In this embodiment, C
Opposite ends of the mold core 24, i.e. a pair of magnetic poles 17,1
7 face each other in a direction perpendicular to the plane of the moving plate so as to sandwich the driven region 15 of the moving plate 14 between them, and are sufficiently sharpened to reduce the magnetic flux density extending between them. It is now possible to increase the

もっとも、この電磁石26は、折角の極低温環境下にあ
るとは言え、超電導電磁石としてコイル25に流れる永
久環電流により定常的に磁界を発生するものではなく、
意図的にコイル25に電流を供給したときにのみ、磁界
を発生し得るように、換言すれば意図的に発生している
磁界を消滅させることもできるようになっていることか
望ましい。
However, although this electromagnet 26 is in an extremely low temperature environment, it is not a superconducting electromagnet that constantly generates a magnetic field due to the permanent ring current flowing through the coil 25.
It is desirable that a magnetic field can be generated only when a current is intentionally supplied to the coil 25, or in other words, a magnetic field that is intentionally generated can be extinguished.

移動板14の移動を頻繁に行なうような場合には特に、
永久環電流をコイル25に対し選択的に発生させたるた
めに当該コイル25に関して閉ループを選択的に形成し
たり、逆に閉ループを解いて永久環電流をコイル25か
ら流し去ったりするような、超電導電磁石構成のために
必要な回路手段はむしろ無い方が簡単である。ただし、
コイル線材としては超電導材料を用い、電流損失を低減
して良いことは当然である。
Especially when moving the moving plate 14 frequently,
A superconductor that selectively forms a closed loop with respect to the coil 25 in order to selectively generate a permanent ring current in the coil 25, or conversely releases the closed loop and causes the permanent ring current to flow away from the coil 25. Rather, it is simpler to eliminate the circuit means necessary for the electromagnet configuration. however,
It goes without saying that a superconducting material may be used as the coil wire material to reduce current loss.

さて、このような電磁石26の一対の磁極17 、17
の間に挟まれるようにして望んでいる移動板14の被駆
動領域15.15は、例えば第3図(^)や第4図に示
されるような磁気シャッタ領域を有するように構成され
る。
Now, a pair of magnetic poles 17, 17 of such an electromagnet 26
The driven region 15.15 of the movable plate 14 which is desired to be sandwiched therebetween is configured to have a magnetic shutter region as shown in FIGS. 3 and 4, for example.

すなわち、移動板14にはその移動方向Xに沿う方向に
細い幅を有し、これに直交する方向に長さを有する溝が
複数個、移動板14の移動方向Xに沿って所定のピッチ
Pで穿たれ、これらの溝の各々の中には、例えば表面が
絶縁皮膜で覆われる等することにより、移動板14に対
しても、また互いにも、電気的に絶縁された細長い超電
導体30・・・・・・が埋設されている。したがって当
然、これら複数の超電導体30・・・・・・の埋設ピッ
チも、この場合、距Hpとなっている。
That is, the movable plate 14 has a plurality of grooves having a narrow width in the direction along the moving direction Inside each of these grooves is an elongated superconductor 30 that is electrically insulated both from the moving plate 14 and from each other, for example by having the surface covered with an insulating film. ... is buried. Therefore, naturally, the embedding pitch of these plurality of superconductors 30 is also the distance Hp in this case.

しかるに、先に少し述べたように、移動板14の材質と
してニオブ系を選んだときには、これよりも常電導相に
遷移する臨界磁界ないし臨界電流の小さなM電導材料と
して、鉛系の材料をこの超電導体30の材質として選ぶ
と望ましく、また実質的には、この超電導体30は、外
周に絶縁皮膜の施された超電導線材を適宜長さに裁断す
る等して得ることができる。その場合、図中では矩形断
面でこの領域30が示されているが、円形断面等に変更
になることもある。
However, as mentioned earlier, when a niobium-based material is selected as the material for the moving plate 14, a lead-based material is used as an M conductive material with a smaller critical magnetic field or critical current that transitions to the normal conducting phase. It is desirable to select the material for the superconductor 30, and in practice, the superconductor 30 can be obtained by cutting a superconducting wire having an insulating film on the outer periphery into an appropriate length. In that case, although this region 30 is shown with a rectangular cross section in the figure, it may be changed to a circular cross section or the like.

いずれにしてもこの細長い領域30が、この実施例にお
ける局部的な常電導相遷移可能領域ないし磁気シャッタ
領域30となり、これを選択的に常電導相に遷移させる
回路装置構造は次のようになっている。
In any case, this elongated region 30 becomes the local normal conductive phase transition possible region or magnetic shutter region 30 in this embodiment, and the circuit device structure for selectively transitioning this to the normal conductive phase is as follows. ing.

第4図示の場合、ピッチPで移動板移動方向に各埋設さ
れた超電導体30には、全て、その長さ方向に選択的に
臨界電流値以−トの制御電流を流し得るように、それぞ
れに移動板上に絶縁膜を介してパターニング形成される
等した電流線路31が付属しており、これらの電流線路
31には、制御信号線路32を介しての選択用制御信号
の印加の下、電流線路選択用スイッチング装置33の電
流線路切換え動作により、図示しない外部電流源から電
流リード34 、34を介して供給される制御電流1g
を選択的に受けるよ・)になっている。
In the case shown in Fig. 4, all of the superconductors 30 buried in the moving direction of the moving plate at a pitch P are connected to each other so that a control current higher than the critical current value can be selectively passed in the length direction. The current lines 31 are patterned and formed on the moving plate through an insulating film, and these current lines 31 are subjected to selection control signals via control signal lines 32. By the current line switching operation of the current line selection switching device 33, a control current of 1 g is supplied from an external current source (not shown) via the current leads 34, 34.
I will receive it selectively).

したがって、当該制御電流Igを受clだ超電導体ない
し磁気シャッタ領域30のみが常電導相に遷移すること
ができ、超電導相時には完全反磁性を示していたのが崩
ね、磁束を透過し・得るようになる。このように外部か
らの制御により、当該細長い領域30を、磁束に関し、
それを透過させたりさせなかったりするシャッタとして
機能させ得ることから、逆にそうした領域30か電気ツ
ヤツタ領域30ど呼ばれるのである。
Therefore, only the superconductor or magnetic shutter region 30 that receives the control current Ig can transition to the normal conductive phase, and the completely diamagnetic state during the superconducting phase is broken and the magnetic flux is transmitted and obtained. It becomes like this. In this way, by controlling from the outside, the elongated region 30 can be controlled with respect to the magnetic flux.
Since it can function as a shutter that allows or prevents light from passing through, it is called such a region 30 or an electric gloss region 30.

なお、上記のような制御電流1)?に関する経路選択用
のスイッチング構成は、当業者であれば既存の技術をし
て簡単に組むことができ、例えば制御信号線路32には
、使用する超電導領域ないし磁気シャッタ領域30の個
数に応じたビット数のバイナリ・データを与え、当該−
二値データにより特定される超電導領域30に対応シ、
・た電流線路パターン3Iにたけ、電流リード34.:
14を介して外部から供給される制御電流1gが流され
、その領域の磁気シャッタのみが開<(磁束を透過させ
る)ように構成することかできる。
In addition, the control current 1) as mentioned above? A switching configuration for path selection can be easily assembled by a person skilled in the art using existing techniques. For example, the control signal line 32 includes bits corresponding to the number of superconducting regions or magnetic shutter regions 30 to be used. Given the binary data of the number, the −
A sheet corresponding to the superconducting region 30 specified by binary data,
- Connect the current lead 34 to the current line pattern 3I. :
A control current 1g supplied from the outside via 14 is applied, and only the magnetic shutter in that area is opened (allowing magnetic flux to pass through).

また図示の場合、各超電導領域30の両端にτそれぞれ
一つあて、ル1一対のスイッチング装置33 、33を
用いているが、原理的には一個で良く、各超電導領域3
0の一端側は全ての超電導領域:(l]に共通の電流線
路パターン31を介し・てそのまま電流リー )・34
の一力に接続し、他端の側にのみ、こうしたスイッチン
グ装置33を設りて、線路32に載ってくる選択化号釘
より、他方のリート34と各線路パターン31との接続
関係を換えるように1.て良い、。
In addition, in the case shown in the figure, one pair of switching devices 33 and 33 are used, with one τ at both ends of each superconducting region 30, but in principle only one switching device is sufficient, and each superconducting region 3
One end side of 0 is a current line that passes through a common current line pattern 31 to all superconducting regions: (l) ) 34
A switching device 33 is provided only on the other end of the line, and the connection relationship between the other lead 34 and each track pattern 31 is changed using the selection number nail placed on the track 32. Like 1. That's good.

ただ、図示のように超電導領域30の両端の側に共にス
イッチング装置33を設けると、第1.2図示のような
両端に駆動機構16を設ける構成においては、いずれの
スイッチング装置33にも外部IIJ御信呼信号線路を
着脱可能に接続できる端子やコネクタ毛段を設けて置く
だけで、移動板14は左右の方向性なく用い得る利点か
生まれる。
However, if the switching devices 33 are provided at both ends of the superconducting region 30 as shown in the figure, in a configuration in which the drive mechanisms 16 are provided at both ends as shown in FIG. By simply providing terminals and connectors to which the signal line can be detachably connected, the movable plate 14 has the advantage of being able to be used without left-right directionality.

実際上、この種のシステムを構築した場合、対象物13
の皐り出し時や移動板14、駆動機構16の保守点検時
等に、結構頻繁に移動板14を取外すことも考えられ、
そうした作業の後には、左石に気を使わずに移動板14
を装置系内に再挿入できることは、作業−ト、極めて便
利である。
In practice, when building this type of system, the object 13
It is conceivable that the movable plate 14 will be removed quite frequently, such as when removing the rust or during maintenance and inspection of the movable plate 14 and the drive mechanism 16.
After such work, move the moving board 14 without paying attention to the left stone.
The ability to reinsert the device into the equipment system is extremely convenient.

第4図中においてはまた、移動板14にあって図小され
ている被駆動領域15の下に、平面投影的に市ね合せの
関係で平行に設けられる固定板18も併小されているが
、最初に説明する第2,3A図示の実施例ではこうした
固定板18は使わない。
In FIG. 4, there is also a fixed plate 18, which is provided parallel to the driven area 15 of the movable plate 14 and is arranged in parallel in a plane projection, and is also reduced in size. However, such a fixing plate 18 is not used in the embodiments illustrated in the second and third A, which will be described first.

このような駆動機構構造を採る本実施例の移動装置10
の動作につき、第3各図に即して説明すると、第3図(
A)は、上記のように装置の静的な説明に用いたように
、本移動装置10が移動動作を生起していないとき、な
いし面回の移動動作が終了した時点での断面端面構成を
示しており、当該被駆動領域15を上下に挟む尖鋭化さ
れた一対の磁極17.17間にも磁界は発生しておらず
、各超電導領域15.:10も極低温環境下にあって超
電導相のままである。
The moving device 10 of this embodiment employing such a drive mechanism structure
To explain the operation in accordance with each figure in Figure 3, Figure 3 (
As used in the static description of the device as described above, A) represents the cross-sectional end face configuration when the present moving device 10 is not performing a moving operation or at the time when the moving operation of the surface rotation is completed. No magnetic field is generated between the pair of sharpened magnetic poles 17.17 that sandwich the driven region 15 above and below, and each superconducting region 15. :10 also remains in the superconducting phase in an extremely low temperature environment.

説明の便′[1,のため、第3図において小されている
複数の超電導領域ないし磁気シャッタ領域:1oに左側
から順K”I 、 ’2. ’3・・・・・・と番号付
Gi“を1−ると、第3図(A)において一対の磁極1
7.17を直線で結ぶイ装置にある磁気シャッタ領域3
oには番号113が付けられる。
For convenience of explanation, a plurality of superconducting regions or magnetic shutter regions are reduced in size in FIG. When Gi" is 1-, a pair of magnetic poles 1 in FIG. 3(A)
7. Magnetic shutter area 3 in the A device connecting 17 with a straight line
The number 113 is attached to o.

しかるに今、この#3領域に対し、ピッチ2分だけ左に
位置している磁気シャッタ領域#2にのみ、先に説明し
た制御電流を流し、ここの超電導相を崩して常電導相に
遷移させながら、一対の磁極17.17間に所定の大き
さの駆動磁界を発生させると、当詠一対の磁極17.1
7間に亙る駆動磁束fDは、第3図(B)に示されてい
るように、唯一=−1常電導相に遷移している磁気シャ
ッタ領域12を介する磁路しか採ることができない。他
の超電導相となっている領域は完全反磁性を星するから
である。
However, now, the control current explained earlier is applied only to the magnetic shutter region #2, which is located two pitches to the left of this #3 region, to break the superconducting phase here and transition to the normal conductive phase. However, when a driving magnetic field of a predetermined magnitude is generated between the pair of magnetic poles 17.17, the magnetic poles 17.1 of the pair of magnetic poles 17.1
As shown in FIG. 3(B), the driving magnetic flux fD over the period of 7 can only take a magnetic path through the magnetic shutter region 12 which is transitioning to the =-1 normal conduction phase. This is because the regions that are in other superconducting phases exhibit complete diamagnetism.

しかるに、この磁路は、明らかに意図的に形成された磁
気的な迂回路であり、磁気ポテンシャルの高い磁路であ
るから、あたかもゴム紐か伸ばされているときの状態の
ように、その伸びを縮めようとする力、すなわち、より
磁気抵抗を下げようとする方向に駆動力が発生し、被駆
動領域15ないし移動板14は図面ト、右方向Xに動か
される。
However, this magnetic path is clearly an intentionally formed magnetic detour, and is a magnetic path with a high magnetic potential, so its elongation is similar to that of a stretched rubber string. A driving force is generated in the direction of reducing the magnetic resistance, that is, a driving force is generated in the direction of further lowering the magnetic resistance, and the driven region 15 or moving plate 14 is moved in the right direction X in the drawing.

しかし、この動きを生じている横方向駆動力は、駆動磁
束f。に関し、それが安定な状態に近くなる程、つまり
は一対の磁極17.17間にあって最も磁気抵抗の小さ
な経路に近付く程に弱まり、当該常電導相に遷移した磁
気シャッタ82が第3図((:) I、:i小されてい
るように、−・対の磁極17 、17を結ぶ直線トに幾
何的に整合したときに、当該駆動磁束fDに伴う横方向
駆動力は原則として零になって、そこで移動板14は停
止する。
However, the lateral driving force causing this movement is the driving magnetic flux f. Regarding this, the closer it gets to a stable state, that is, the closer it gets to the path with the lowest magnetic resistance between the pair of magnetic poles 17. :) I, :iAs shown in the figure, when geometrically aligned with the straight line connecting the pair of magnetic poles 17 and 17, the lateral driving force associated with the driving magnetic flux fD becomes zero in principle. Then, the moving plate 14 stops there.

このようにして、移動板14はm位ステップPだけ、右
方向に動かされたことになるが、移動板14の当該所定
ステップPの移動動作が終わったならば、速やかに一対
の磁極間に印加1ノだ磁界を除去し、常電導相となって
いる磁気シャッタ#2か帯磁するのを防ぐと共に、当該
磁気シャッタ#2を常電導相に遷移させていた;ti制
御電流1gを除去し、超電導相に戻して=・m位操作の
終了と′1−る。
In this way, the moving plate 14 has been moved to the right by m steps P, but once the moving operation of the moving plate 14 for the predetermined step P is finished, the moving plate 14 is immediately moved between the pair of magnetic poles. The applied magnetic field of 1 g was removed to prevent magnetic shutter #2, which is in the normal conducting phase, from becoming magnetized, and the magnetic shutter #2 was made to transition to the normal conducting phase; 1 g of the ti control current was removed. , returns to the superconducting phase and ends the operation at =·m position.

なお、磁気シャ9夕30の帯磁を防ぐため、−m位ステ
ップの動作終了後、常電導相に遷移させていた磁気シャ
ッタ領域を超電導相に戻す而、または各単位ステップの
動作開始に光電γっでどれかの磁気シャッタ領域30を
常電導相に遷移させてから一対の磁極17.17間に駆
動磁界を印加する前に、当該一対のm棒に消磁用の高周
波バイアス磁界を生しさせるようにしても良い。
In order to prevent magnetization of the magnetic shutter 30, the magnetic shutter region that had been transitioned to the normal conducting phase after the operation of the -m step is returned to the superconducting phase, or the photoelectric γ is turned on at the start of each unit step. After transitioning one of the magnetic shutter regions 30 to the normal conduction phase and before applying a driving magnetic field between the pair of magnetic poles 17 and 17, a high frequency bias magnetic field for demagnetization is generated in the pair of m rods. You can do it like this.

もちろん、上記の移動板駆動動作は、引き続いて移動板
14をさらに順にピッチPづつ右送りし得ることをも自
明の理として示している外、当然、左送りも可能なこと
を示している。
Of course, the above-mentioned moving plate driving operation not only shows as a truism that the moving plate 14 can be sequentially further moved to the right by the pitch P, but also shows that it is also possible to move the moving plate 14 to the left.

例えば第3図(八)の状態から磁気シャッタ領域#4に
のみ、制御電流1gを印加し、これを常電導相に遷移さ
せて一対の磁極17.17間に駆動磁界を印加すれば、
駆動磁束f0の通る位置か先の場合の磁気シャッタ領域
#2から磁気シャッタ領域#4に変わるだけで、メカニ
ズムとしては上記したと全く同様の原理により、移動板
14は左方向に移動するべき横方向駆動力を受け、最終
的に第3図(C)において一対の&tA棒17.17を
結ぶ直線上に位置している磁気シャッタ領域#2を磁気
シャッタ領域#4と読み換えれば良いように、当該左方
向に単位ピッチPに即した移動板の移動を図ることがで
きる。・のみならず、この実施例は、最小移動分解能で
あるfit、 (ffピッチPに対し、その整数倍の距
離に汀り、移動板14を−・挙に移動可能なことも示す
ものとなっている。例えば第3図(B)において、磁気
シャッタ領域#2に代え、図中で最も左端にある磁束領
域#1が選択されて、■制御電流1gがこれのみに印加
され、常電導相に遷移したとしよう。
For example, if a control current of 1 g is applied only to the magnetic shutter area #4 from the state shown in FIG.
The only difference is that the magnetic shutter area #2 in the case where the drive magnetic flux f0 passes through changes from the magnetic shutter area #4 to the magnetic shutter area #4, and the mechanism is exactly the same as that described above, and the moving plate 14 is moved horizontally to the left. The magnetic shutter area #2, which receives the directional driving force and is ultimately located on the straight line connecting the pair of &tA rods 17 and 17 in FIG. 3(C), can be read as the magnetic shutter area #4. , it is possible to move the movable plate in the left direction according to the unit pitch P. In addition to this, this embodiment also shows that the minimum movement resolution is fit, (ff), and the moving plate 14 can be moved at a distance that is an integral multiple of the pitch P. For example, in Fig. 3(B), instead of magnetic shutter area #2, magnetic flux area #1, which is the farthest left in the figure, is selected, and 1g of control current is applied only to this, and the normal conducting phase is Let's assume that it transitions to .

すると、一対の磁極17.17間に印加した駆動磁界が
この磁気シャッタ領域月にまで影響を及ぼし得る程に強
いものであるならば、駆動磁束fDがこの磁気シャッタ
領域月のみを通ることにより、移動板14は右方向に先
と同様に駆動力を受けて動き出し、この磁気シャッタ領
域#lか第3図(C)における磁気シャッタ領域#2に
見られるように、一対の磁極17.17間を結ぶ直線上
に位置した時点で停止する。
Then, if the driving magnetic field applied between the pair of magnetic poles 17.17 is strong enough to affect this magnetic shutter region moon, then the driving magnetic flux fD passes only through this magnetic shutter region moon. The movable plate 14 starts to move rightward in response to the driving force in the same way as before, and as seen in this magnetic shutter area #l or magnetic shutter area #2 in FIG. It will stop when it is located on the straight line connecting.

こねは結局5−足跳びに移動板14を最小分解能ピッチ
Pの二倍、移動し得たことを、0味する。
Kone realizes that she was able to move the moving plate 14 by twice the minimum resolution pitch P in the 5-foot jump.

全く同様に、第3図(八)中に示されている磁気シャッ
タ領域J13から三つ目、四−) Llというように、
より離れた磁気シャッタ領域を選択的に常電導相に遷移
させた状態を考えれば、一対の電極17.17間に発生
させる駆動磁界がそれら離れた磁気シャッタ領域にまで
影響を及ぼし得る程に強いものである限り、さらに長い
距離に亙り、−挙に移動板14を移動し得ることになる
In exactly the same way, the third magnetic shutter area J13, 4-) Ll shown in FIG. 3(8),
Considering the state in which the more distant magnetic shutter regions are selectively transitioned to the normal conducting phase, the driving magnetic field generated between the pair of electrodes 17.17 is strong enough to affect even those distant magnetic shutter regions. This means that the moving plate 14 can be moved over a longer distance at once.

こうしたことを総合すると、本発明の方法ないし装置に
よれば、移動板I4を粗動も微動もさせ得ることを、α
味し、これは極めて便利に使うことかできる。
Taking all these things together, it can be said that according to the method or apparatus of the present invention, the movable plate I4 can be moved both coarsely and finely.
You can taste this and use it very conveniently.

例えば対象物+3(第1.2図)を観測ないし加圧位置
の近くにまで持ってくるときには最小分解能Pの整数倍
の粗動を利用し、観測ないし加工位置近傍から厳密に当
該観測ないし加工位置に位置決めるときには最小分解能
Pに従う微動を利用することができ、もフて処理の迅速
性と位置決め精度の高さを双方共に満たすことができる
For example, when bringing the object +3 (Fig. 1.2) close to the observation or pressurizing position, coarse movement of an integral multiple of the minimum resolution P is used to accurately observe or process the object from near the observation or processing position. When positioning, fine movement according to the minimum resolution P can be used, and both the speed of the blanking process and the high positioning accuracy can be satisfied.

なお、実際には上記の最小分解能をミリ・オーダには容
易にし得、サブ・ミリ・オーダからさらにはミクロン・
オーダ程度にまでも本発明の原理でこわを構築すること
ができる。
In reality, the above-mentioned minimum resolution can be easily reduced to the millimeter order, and even further from the sub-millimeter order to the micron order.
It is possible to construct stiffness up to an order of magnitude using the principles of the present invention.

ただしその場合、各磁極17の尖鋭化する一Lで加工限
界が生ずることもあり得る。
However, in that case, there may be a processing limit at 1 L of sharpening of each magnetic pole 17.

第5図はさらにそのような恐れも少なく、特には[Mi
17の先端を尖鋭化しなくても良い場合として、本発明
に従って構成さjた対象物移動装置IOの他の実施例を
示しており、この実施例では第1図、第4図にて示され
ていた固定板18を用いる。
Figure 5 shows that there is even less of such a fear, especially [Mi
Another embodiment of the object moving device IO constructed according to the present invention is shown as a case in which the tip of 17 does not need to be sharpened. Use the fixed plate 18 that was previously installed.

実際上、第2図示実施例の概念構成と図面上で異なるの
は、各Mi棒17の先端が通常の通り、単にNV−坦に
形成されていること、そして移動板14の被駆動領域1
5と一方の磁極17の間に固定板18か挿入されている
ことである。したがって通計Hλば、以下特に説明する
部分を除き、他の部分については既に第一の実施例に関
して述べた各説明や種々の配慮を援用することかできる
Actually, the difference between the conceptual structure of the second illustrated embodiment and the drawing is that the tip of each Mi rod 17 is simply formed into a NV-flat shape as usual, and the driven region 1 of the movable plate 14
A fixing plate 18 is inserted between the magnetic pole 17 and one of the magnetic poles 17. Therefore, for the total Hλ, except for the parts specifically explained below, the explanations and various considerations already given regarding the first embodiment can be used for other parts.

第6 ’A (A)は、この第5図示実施例に従って構
成された駆動機構16の一例を示しており、一対の磁極
17 、17は、上記のように端面が平坦となっている
外、図中で一ト方に位置するMi棒17と移動板14な
いしその被駆動領域15との間に固定板18が介在jノ
、かつ、この固定板1Bと被駆動領域15の間には、望
ましくは先に説明シ2・た磁気浮」−用i界発生り段1
9により移動板14を浮トさせるごとにより、例えば1
0μm程度の隙間か開けられている、国定板18は、こ
の実施例の場合、適当なる超電導材料で作らむ、ただし
7、その一部、どの場合は対の磁極!7.17のほぼ横
方向中央近傍を結ぶ位置1.に、定常的に磁束を透過1
1能な所定開口面積の透孔40が磁束通過可能領域とし
て設けられている。
No. 6'A (A) shows an example of the drive mechanism 16 configured according to the fifth illustrated embodiment, and the pair of magnetic poles 17, 17 have flat end faces as described above. A fixed plate 18 is interposed between the Mi rod 17 located on one side in the figure and the movable plate 14 or its driven region 15, and between the fixed plate 1B and the driven region 15, Preferably, the explanation is given first.
For example, each time the movable plate 14 is floated by 9, 1
In this embodiment, the nationally designated plate 18, which has a gap of about 0 μm, is made of a suitable superconducting material. 7. Position 1 that connects the vicinity of the horizontal center of 17. The magnetic flux is constantly transmitted through 1
A through hole 40 having a predetermined opening area is provided as a region through which magnetic flux can pass.

移動板目の被駆動領域15虹は、第2,3図示実施例と
同様、第4図示のような制御’ltE流Igの選択印加
構成により、それぞれ選択されたものが常電導相に遷移
可能な磁気シャッタ領域30が所定のピッチPで設りら
れており、便宜的にこわらにも、図中、左側から順番に
番号#l 、 #2.・・・・・・を付して置く。
Similarly to the embodiments shown in the second and third figures, the driven area 15 of the moving plate can be selectively applied to the control 'ltE style Ig as shown in the fourth figure, so that each selected one can transition to the normal conductive phase. Magnetic shutter areas 30 are provided at a predetermined pitch P, and for convenience, they are numbered #l, #2, #2, etc. in order from the left side in the figure. ...... is attached.

この実施例の対象物移動装置10は、次のような動作を
生む。
The object moving device 10 of this embodiment produces the following operations.

透孔40の部分を除きMi電導相にある固定板18の当
該透孔40を通り、一対の磁8i17.17間に亙る直
線Fに位置する磁気シャッタ領域#4に対し、左方向に
所定ピッチPたけ離れた磁気シャッタ領域町にのみ、第
4図示の構成を介して制御電流1gを印加し、これを常
電導相に遷移させると共に、一対の磁極17.17間に
駆動磁界を発生させると、当該対の1ftJ417.+
7間に亙る磁束f。は第6図(B)に示されるように、
磁気シャッタ領域#3と固定板18に空けられている透
孔40を介する磁路に沿ってしか通り得す、したがって
やはり、この電路は意図的にねじ曲げられているため、
一対の磁極17.17間に真直ぐに亙ろうとすへく、移
動板14に対し、横方向Xに物理的な駆動力を発生ずる
。固定板I8は文字通り固定であって動き得す、したが
って透孔40も動き得ないから、被駆動領域15中に設
けた磁気シャッタ領域門がこの透孔40のF方にまで、
動いて来なければならないのである。
Excluding the through hole 40 part, the magnetic shutter area #4 passes through the through hole 40 of the fixed plate 18 in the Mi conductive phase and is located on the straight line F extending between the pair of magnetic fields 8i17.17, at a predetermined pitch in the left direction. When a control current of 1 g is applied only to the magnetic shutter area separated by a distance of P through the configuration shown in Figure 4, this is caused to transition to the normal conducting phase, and a driving magnetic field is generated between the pair of magnetic poles 17 and 17. , the pair of 1ftJ417. +
7 magnetic flux f. As shown in Figure 6(B),
It can only pass along the magnetic path through the through hole 40 made in the magnetic shutter area #3 and the fixing plate 18, so again this path is intentionally twisted, so
As it extends straight between the pair of magnetic poles 17, 17, a physical driving force is generated in the lateral direction X to the moving plate 14. The fixed plate I8 is literally fixed and can move, so the through hole 40 also cannot move, so the magnetic shutter area gate provided in the driven area 15 extends to the F side of this through hole 40.
It has to move.

その結果か第6図(C)に示されており、固定板18の
透孔40と常電導相に唯一遷移している磁気シャッタ領
域月とが一対の磁極17.17間でF下に直線的に整合
したときに、移動板14に対する横方向駆動力は失われ
、移動板14はその位置で停止する。その後は既に説明
したように、駆動磁界を除去し、制御電流1gも除去し
て、常電導相に遷移させていた磁気シャッタ領域を超電
導相に戻せば良い。
The result is shown in FIG. 6(C), where the through hole 40 of the fixed plate 18 and the magnetic shutter region moon, which is the only one transitioning to the normal conducting phase, are aligned in a straight line below F between the pair of magnetic poles 17 and 17. When the position is aligned, the lateral driving force on the moving plate 14 is lost and the moving plate 14 stops at that position. After that, as already explained, the drive magnetic field is removed, the control current 1g is also removed, and the magnetic shutter region, which had been transitioned to the normal conductive phase, is returned to the superconducting phase.

しかるに、この実施例でも、先に述べた通り、左右いず
れも所望の方向に移動板14を動かし得る外、最小分解
能Pの整数倍に狂って一挙に移動板を14を動かすこと
も可能なことが理解される。
However, in this embodiment as well, as mentioned above, in addition to being able to move the movable plate 14 in any desired direction on either the left or right side, it is also possible to move the movable plate 14 all at once in an integer multiple of the minimum resolution P. is understood.

特に、−一対の@Vi17.17は機械加工によって尖
説化しなくても、固定板18の透孔40のみを透過可能
とすることにより、必要な磁束の集中効果は当該透孔4
0の面積的な大きさ等によって設計的な段階から部分に
得ることができ、しかも、固定板18のどの位置に透孔
40を穿つかを選択することにより、最適な磁束分布位
置を求めることも可能となる。
In particular, by making the pair of @Vi17.17 permeable through only the through-hole 40 of the fixing plate 18 without having to sharpen it by machining, the necessary magnetic flux concentration effect can be achieved through the through-hole 40 of the fixed plate 18.
The optimal magnetic flux distribution position can be obtained from the design stage by determining the area size of the magnetic flux 0, etc., and by selecting where on the fixed plate 18 the through holes 40 are to be bored. is also possible.

ただし、磁極先端を尖鋭化しないことが本質的に必須な
のではなく、尖鋭化しなくても良いという意味もあり、
使用の実際下にあって、必要に応じ、第一具体実施例と
同様に、磁極構造による磁束の集中下が必要とされる場
合には、適度に磁極先端を尖鋭化して用いて良い。その
場合にも、固定板18の側に厳密に面積を規定可能な磁
束通過可能領域40があるので、その磁極先端側の加工
精度に関してはかなり楽になる。
However, it is not essential that the tip of the magnetic pole is not sharpened, and there is also a sense that it is not necessary to sharpen the tip of the magnetic pole.
In actual use, if it is necessary to concentrate the magnetic flux by the magnetic pole structure as in the first embodiment, the tip of the magnetic pole may be appropriately sharpened. Even in this case, since there is a magnetic flux passage area 40 whose area can be strictly defined on the fixed plate 18 side, the machining accuracy on the magnetic pole tip side is considerably facilitated.

また、透孔40の実際的な形状としては、限定的ではな
いか、移動板14の移動方向Xに沿う方向に細い幅を有
し、それと直交する方向に長さを有するスリット形状と
することが最も一般的であり、製造容易な外、設計のた
めの各種定数等も求め易い。
In addition, the actual shape of the through hole 40 is not limited, but may be a slit shape having a narrow width in the direction along the moving direction X of the moving plate 14 and a length in the direction orthogonal thereto. is the most common, and not only is it easy to manufacture, but it is also easy to obtain various constants for design.

さらに、固定板18に設ける磁束通過可能領域40の機
能が、=一対の磁極17 、17間に派生する駆動磁束
f11をその領域にのみ、選択的に通す機能であること
に鑑みると、先に移動板14の被駆動領域15中に設け
られていた磁気シャッタ領域30と同様の構成をこの透
孔40のある部分に設け、外部制御電流を選択に流すこ
とにより、定常的に、ないし移動板を移動させるべき必
要時にのみ、この固定板付設の磁気シャッタ領Lli4
0をのみ、常電導相に遷移させることも考えられる。
Furthermore, considering that the function of the magnetic flux passage area 40 provided on the fixed plate 18 is to selectively pass the drive magnetic flux f11 derived between the pair of magnetic poles 17, 17 only to that area, A structure similar to the magnetic shutter area 30 provided in the driven area 15 of the moving plate 14 is provided in a portion of the through hole 40, and by selectively passing an external control current, the moving plate can be fixedly or continuously operated. Only when it is necessary to move the magnetic shutter area Lli4 with this fixed plate
It is also conceivable to transition only 0 to the normal conducting phase.

これを更に推し進めると、第7図示のように、固定板1
8に設ける磁束通過l+J能領域40としての磁気シャ
ッタ領域40を、所定のピッチPで移動板14の長さ方
向に沿い、複数個、互いに絶縁状態を保たせたまま、並
設する構成に至る。
If we push this further, as shown in Figure 7, the fixing plate 1
A plurality of magnetic shutter regions 40 as magnetic flux passing L+J function regions 40 provided at 8 are arranged in parallel along the length direction of the movable plate 14 at a predetermined pitch P while being insulated from each other. .

そして、この固定板18に設ける磁気シャッタ領域40
・・・・・・に関しても、第4図示の移動板14に設け
る磁気シャッタ領域30の選択制御と同様の選択回路手
段を設け、どれか一つまたは複数個を常電導相に遷移可
能とさせる。
A magnetic shutter area 40 provided on this fixed plate 18
Regarding ......, a selection circuit means similar to the selection control of the magnetic shutter area 30 provided on the moving plate 14 shown in the fourth figure is provided to enable one or more of them to transition to the normal conduction phase. .

この第7図にあっても、移動板14の側と固定板18の
側の双方において、各磁気シャッタ領域30゜40に図
中、左側から順番に各々番号sl 、 s2.・・・・
を付して説明すると、当該第7図示の状態では、被駆動
領域15側の磁気シャッタ領域#4と固定板18側の磁
気シャッタ領域#3とが一対の磁極17.17間でそれ
らifi極の横方向のほぼ中央相互を結ぶ直線上に位置
している。
Also in FIG. 7, numbers sl, s2, .・・・・・・
To explain with reference to FIG. 7, in the state shown in FIG. It is located on a straight line connecting approximately the horizontal centers of the two.

ここで例えば、第4図示のような選択回路手段の構成に
より、被駆動領域15側の磁気シャッタ領域#3と、固
定板18側の磁気シャッタ領域#3とをのみ、選択的に
常電導相に遷移させ、その状態で一対の&ii極17,
17間に駆動磁界を印加したとすると、それに伴って発
生する駆動磁束は、本第7図中には示していないが既に
述べた実施例から理解されるように、被駆動領域15中
の磁気シャッタ領域#3と固定板18中の磁気シャッタ
領域町とを通るしかなく、これは意図的にねし曲げられ
た磁気ボデンシャルの高い磁路となるので、固定板1B
中の磁気シャッタ領域63に対してその真上に当該被駆
動領域15の側の磁気シャッタ領域#3が来る方向、す
なわち図中で右方向に被駆動領域15ひいては移動板1
4を移動させる駆動力が発生する。
Here, for example, by using the configuration of the selection circuit means as shown in FIG. In that state, a pair of &ii poles 17,
Assuming that a driving magnetic field is applied between 17 and 17, the driving magnetic flux generated accordingly is not shown in FIG. There is no choice but to pass through the shutter area #3 and the magnetic shutter area in the fixed plate 18, and this becomes a high magnetic path of the intentionally bent magnetic body, so the fixed plate 1B
The driven area 15 and the movable plate 1 move in the direction in which the magnetic shutter area #3 on the driven area 15 side is directly above the magnetic shutter area 63 in the middle, that is, in the right direction in the figure.
A driving force is generated to move 4.

しかるに、この右方向への最小分解能Pに従う移動板1
4の移動駆動は、この実施例の場合、上記被駆動領域側
の磁気シャッタ領域#3と固定板側の磁気シャッタ領域
#3の組合せのみならず、被駆動領域側の磁気シャッタ
領域月と固定板側の磁気シャッタ領域1′4の組合せや
、被駆動領域側の磁気シャッタ領域#2と固定板側の磁
気シャッタ領域#2の組合せによっても実現し得ること
が分かる。
However, the moving plate 1 according to the minimum resolution P in the right direction
In this embodiment, the moving drive of No. 4 is not only a combination of the magnetic shutter region #3 on the driven region side and the magnetic shutter region #3 on the fixed plate side, but also a combination of the magnetic shutter region #3 on the driven region side and the fixed plate. It can be seen that this can be realized by a combination of the magnetic shutter regions 1'4 on the plate side, or a combination of the magnetic shutter region #2 on the driven region side and the magnetic shutter region #2 on the fixed plate side.

これを逆に言うと、このように複数の組合せを採り得る
ように構成することで、そのときどきで必要とする移動
板移動方向や移動距離に応じ、磁気シャッタ領域相互に
最適な組合せ関係を選択できることが分かる。もちろん
、最小移動分解能Pの整数倍に亙り、移動板14を−跳
びに移動させ得ることは最早理解されよう。
In other words, by configuring the system so that multiple combinations can be taken, the optimal combination relationship between the magnetic shutter areas can be selected depending on the movement direction and movement distance of the moving plate that are required at any given time. I know what I can do. Of course, it will be understood that the moving plate 14 can be moved in jumps over an integral multiple of the minimum movement resolution P.

さらに言うなら、例えば一対の磁極17.17が移動板
14や固定板18に設ける磁気シャッタ領域の寸法やそ
のピッチPに対し、横方向に十分に大きな相対中法とな
る大きさであるような場合には、例えば第7図において
固定板18中の磁気シャッタ領域#+、#5を共に常電
導相に遷移させ、一方で被駆動領域15の側においても
磁気シャッタ領域#l 、 #5を常電導相に遷移させ
れば、当該各領域n1 、 n5間が距離的にも十分離
れており、互いに磁気的な影響は受けないか、受けても
問題となる干渉を生じない場合には、それら゛ニケ所の
部分において駆動i束fDによる横方向駆動力を得るこ
とができ、移動板駆動トルクを実質的に増すことができ
る。
Furthermore, for example, the size of the pair of magnetic poles 17, 17 is such that the size is sufficiently large in the lateral direction with respect to the dimensions and pitch P of the magnetic shutter area provided on the movable plate 14 and the fixed plate 18. In this case, for example, in FIG. 7, the magnetic shutter regions #+ and #5 in the fixed plate 18 are both transitioned to the normal conductive phase, while the magnetic shutter regions #l and #5 are also changed to the driven region 15 side. If the transition is made to the normal conducting phase, the respective regions n1 and n5 are sufficiently far apart in terms of distance and will not be magnetically influenced by each other, or will not cause any problem of interference even if they are influenced by each other, then A lateral driving force can be obtained from the drive i-flux fD at these points, and the driving torque of the moving plate can be substantially increased.

このように、一対の磁極17 、17間にあって複数の
磁気シャッタ領域の組合せで駆動トルクを増し得ること
か理解されるが、当然、駆動機構16そのものの数を増
やして良いことも考えられる。
As described above, it is understood that the driving torque can be increased by combining a plurality of magnetic shutter areas between the pair of magnetic poles 17, 17, but it is of course possible to increase the number of driving mechanisms 16 themselves.

例えば第1.2.5図中では移動板の14の両端に設け
た被駆動領域15.15に対し、それぞれに駆動機構+
6.+6Vを設けているが、それらの間の移動板長さ方
向途中の部分にさらに被駆動領域15とその駆動機構1
6を増設しても良い。逆に、十分な駆動トルクが得られ
るのであるならば、駆動領域16は図示の場合に代え、
−・方の移動板端部または移動板長さ方向の適当な一ケ
所にのみ設けた一つで済ましても良い。
For example, in Fig. 1.2.5, each drive mechanism +
6. +6V is provided, but a driven region 15 and its drive mechanism 1 are further provided in the middle of the moving plate in the length direction between them.
6 may be added. Conversely, if sufficient drive torque can be obtained, the drive region 16 can be replaced with the case shown in the figure,
It may be sufficient to provide only one at the end of the moving plate on the - side or at an appropriate location in the longitudinal direction of the moving plate.

固定板18の方にも第7図示のように複数の磁気シャッ
タ領域40・・・・・・を設ける場合、例えば第8図示
のように、移動板側の被駆動領域I5に設ける磁気シャ
ッタ領域30・・・・・・のピッチPに対し、当該固定
板側の磁気シャッタ領域40・−・・・・の並設ピッチ
を巽ならせると、さらにiト位動作あたりの移動板移動
距離に関し、異なるステップt1が得られる。
When a plurality of magnetic shutter areas 40 are provided on the fixed plate 18 as shown in the seventh figure, for example, as shown in the eighth figure, a magnetic shutter area provided in the driven area I5 on the movable plate side is provided. If the pitch P of the magnetic shutter regions 40 on the fixed plate side is made to vary with respect to the pitch P of 30..., the moving distance of the movable plate per position i movement will be further reduced. , different steps t1 are obtained.

第8図示の例においては、固定板18の側に並設する電
気シャッタ領域40・・・・・・・・の+4位ピッチは
くP+α)となっている。
In the example shown in FIG. 8, the pitch of the electric shutter areas 40 arranged in parallel on the side of the fixed plate 18 is +4 (P+α).

このような場合、この第8図でも被駆動領域15と固定
板18の各側において設けられている各磁気シャッタ領
域30.40に図中、左側から順番に番号#1 、 #
2・・・・・・を付すと、例えば一対の磁!Jj+7.
17間に駆動磁界を発生させる際、固定板側の磁気シャ
ッタ領域#3を先に第4図に即して説明したような回路
装置により常電導相に遷移させながら、被駆動領域15
側の磁気シャッタ領域町を同時に常電導相に遷移させる
と、既述したメカニズムにより、これら両磁気シャッタ
領域$3 、 J13が平面的に整合して被駆動領域の
移動か停止するまでに当該移動板が右方向に動く距離は
、被駆動領域側の磁気シャッタ領域の並設ピッチPに等
しくなる。
In such a case, in FIG. 8 as well, the magnetic shutter regions 30 and 40 provided on each side of the driven region 15 and the fixed plate 18 are numbered #1 and # in order from the left side in the figure.
If you add 2..., for example, a pair of magnets! Jj+7.
When generating a driving magnetic field between the driven areas 15 and 17, the magnetic shutter area #3 on the fixed plate side is made to transition to the normal conducting phase by the circuit device as previously explained with reference to FIG.
When the side magnetic shutter regions are simultaneously transitioned to the normal conducting phase, by the mechanism described above, these two magnetic shutter regions $3 and J13 are aligned in a plane, and the movement of the driven region is stopped until it stops. The distance that the plate moves to the right is equal to the pitch P of juxtaposition of the magnetic shutter areas on the driven area side.

これに対し、固定板側の磁気シャッタ領域#4と被駆動
領域15の側の磁気シャッタ領域#4とをのみ、共に常
電導相に遷移させて一対の磁極17.17間に駆動磁界
を発生すると、それら両磁気シャッタ領域#4 、 #
4が平面的に整合するまでに移動板14が右方向に移動
する距離は、固定板側の磁気シャッタ領域並設ピッチ(
P+α)となる。
In contrast, only the magnetic shutter region #4 on the fixed plate side and the magnetic shutter region #4 on the driven region 15 side are both transitioned to the normal conducting phase to generate a driving magnetic field between the pair of magnetic poles 17 and 17. Then, both magnetic shutter areas #4 and #
The distance that the movable plate 14 moves in the right direction until the movable plate 14 aligns with the two planes is determined by the magnetic shutter area juxtaposition pitch on the fixed plate side (
P+α).

さらに例えば、固定板側の磁気シャッタ領域84と被駆
動領域側の磁気シャッタ領域門とをのみ、共に常電導相
に遷移させて駆動磁界を印加すると、それら両頭域が平
面的に制動するまでに移動板I4かむ方向に移動する距
離は、両ピッチの差αになる。
Furthermore, for example, if only the magnetic shutter region 84 on the fixed plate side and the magnetic shutter region gate on the driven region side are both made to transition to the normal conductive phase and a driving magnetic field is applied, the two-headed regions will be braked in a plane. The distance that the moving plate I4 moves in the biting direction is the difference α between both pitches.

このように1ノで、基本的に中1位回あたり三種類の移
動距離を選択することかでき、もちろん、左方向にも上
記玉袖類のステップ量の移動を生起する磁気シャッタ領
域30.40相ηの組合せを見い出すことかできる。
In this way, you can basically select three types of movement distance per middle 1st turn, and of course, the magnetic shutter area 30. It is possible to find a combination of 40 phases η.

結局、このようなピッチ関係によれば、単位ステップ1
jt自体を幾種類かに増すことができ、制御性や操作性
は一層高められることになり、これに先に説明した一つ
飛ばし、二つ飛ばしの駆動を加味すれば、本装置による
対象物の移動制御はより多彩なものとなる。行って戻す
二重の移動を単位ステップとして採用すれば、移動量(
P−α)も実現できる。にもかかわらず、上記メカニズ
ムからして明らかなように、とのステップ量を選択して
も、移動粘度が何等犠牲にならない点で優れている。
After all, according to this pitch relationship, the unit step 1
jt itself can be increased to several types, and controllability and operability are further improved.If you add to this the drive of skipping one or two as described earlier, this device can easily control the target object. movement control becomes more versatile. If the double movement of going and returning is adopted as a unit step, the amount of movement (
P-α) can also be realized. Nevertheless, as is clear from the above mechanism, selecting the step amount is advantageous in that the transfer viscosity is not sacrificed in any way.

もっとも、図示された実施例装置では、移動板の移動停
止に際し、特にはタンピング機構を付していない。実際
には、本装置の全体を液体ヘリウム等、極低温環境生成
用の溶液に浸漬して用いる場合には、そつした液体の持
つ粘性が適度なダンピング効果を発揮したり、また、移
動板は急激に停止するのではなく、磁気駆動力が漸減す
ることにより、時間軸を拡大して見れば結構、徐々に停
止するので、上記のようなダンピング機構をあえて別途
に設ける必要はないことが多い。
However, in the illustrated embodiment, no tamping mechanism is provided for stopping the movement of the moving plate. In reality, when the entire device is immersed in a solution for creating a cryogenic environment, such as liquid helium, the viscosity of the evaporated liquid exerts an appropriate damping effect, and the moving plate is Rather than stopping suddenly, the magnetic driving force gradually decreases, and if you zoom in on the time axis, it will stop gradually, so there is often no need to provide a separate damping mechanism like the one above. .

しかし、あえてそうしたダンピング機構が要求された場
合には、移動板の適当個所に銅板等を貼り付け、駆動磁
気力の影響等により、その内部に生ずる渦電流損で適度
なダンピング力を得るような構成を採っても良い。
However, if such a damping mechanism is required, it is possible to attach a copper plate, etc. to an appropriate location on the moving plate, and obtain an appropriate damping force using the eddy current loss generated inside the moving plate due to the influence of the driving magnetic force. You may choose a configuration.

ところで、こむまで述べた実施例では、いずれも、選択
的に常電導相に遷移可能な領域として、白身に流される
;しj御電流により、極低温環境下でも超電導相から常
電導相に遷移する所定の面積を有する超電導体による磁
気シャッタ領域30.40シか例示しなかったが、被駆
動領域15や、実施例によっては固定板18に備えられ
る常電導相遷移可能領域(磁束通Ia’ijr能領域)
としては、例えば第10.11図示のような構成による
ものを採用オることもできる。
By the way, in all of the embodiments described so far, the current is passed through the body as a region where it can selectively transition to the normal conductive phase; however, the current allows the transition from the superconducting phase to the normal conducting phase even in an extremely low temperature environment. The magnetic shutter region 30 or 40 made of a superconductor having a predetermined area to ijr noh area)
For example, a configuration as shown in Figure 10.11 may be adopted.

第10図示の場合、常電導相状態に遷移I2ていないと
きには、特に本発明で呂−つ所定面積の常電導相遷移可
能領域30は、移動板14の超電導材質そのもの、つま
り5被駆動領域15としても特に他と[メ別すべき物的
、幾何的な構成はないものどなっているが、当該被駆動
領域15の上方を移動板移動方向と直交する方向に渡る
制御電流線51が移動板移動)f向に沿い、適宜間隔を
置いて複数本、並設さ打ている。
In the case shown in FIG. 10, when there is no transition I2 to the normal conductive phase state, the normal conductive phase transition possible region 30 of a predetermined area, which is especially important in the present invention, is made of the superconducting material of the movable plate 14 itself, that is, the 5 driven regions 15 However, the control current line 51 moves above the driven region 15 in a direction perpendicular to the direction of movement of the moving plate, although there is no physical or geometrical configuration to be distinguished from others. Plate movement) Along the f direction, multiple pieces are placed in parallel at appropriate intervals.

こうした制御線群51・・・・・・の中、選択した制御
線51にのみ、所定11以」−の制御電流を流せば、そ
の周囲に発生する外部制御磁界f(、は、そのドの被駆
動領域15中、所定の面積領域のみをその厚味の全J’
(に亙り、極低温環境−トでも常電導相に遷移させるこ
とかできる。したかって、逆に言えば、1′1謹制御電
流線51に流される制御電流により発生する外部制御磁
界[3,の影響を受は得る面積部分として、常電導相遷
移可能領域30を特定することができる。この場合、上
記において動作の説明に用いたピッチは、当該制御電流
i!1151の並設間隔として定義することができる。
If a predetermined control current of 11 or more is applied to only the selected control line 51 among the control line group 51, an external control magnetic field f (, is the In the driven region 15, only a predetermined area is covered with its entire thickness J'
(Thus, it is possible to make a transition to the normal conducting phase even in an extremely low temperature environment.Conversely speaking, the external control magnetic field [3, The normal conductive phase transition possible region 30 can be specified as the area affected by can do.

第11図に示される構成の場合は、常電導相遷移可能領
域30として弱ジョゼフソン接合を利用したもので、被
駆動領域15の長さ方向に所定の間隔で幅方向に亙る細
幅の溝52を形成したもので、当該溝52の幅を一般に
数十ないし数画オングストローム・オーダで形成すれば
、仮に図示のような溝52ではなく、底がなくてスリッ
ト状になっていても、その部分は弱ジョゼフソン接合領
域と看做すことができる。
In the case of the configuration shown in FIG. 11, a weak Josephson junction is used as the normally conducting phase transition possible region 30, and narrow grooves extending in the width direction are formed at predetermined intervals in the length direction of the driven region 15. 52, and if the width of the groove 52 is generally on the order of several tens or several angstroms, even if the groove 52 is not like the one shown in the figure but has a slit shape without a bottom, The region can be considered a weak Josephson junction region.

したがって、同様に各弱ジョゼフソン接合領域の上方に
制御電流線51を渡らせ、これに選択的に制御電流を流
して外部磁界を発生させれば、当該弱ジョゼフソン接合
領域を常電導相に遷移させることができる。
Therefore, if the control current line 51 is similarly passed above each weak Josephson junction region and a control current is selectively passed through it to generate an external magnetic field, the weak Josephson junction region can be brought into the normal conducting phase. can be transitioned.

このような構成により、各常電導相遷移可能領域を形成
した場合には、上記動作の説明におけるビッヂは溝52
の並設間隔ないし制御電流!51の並設間隔として定義
し得る。
With such a configuration, when each normally conducting phase transition possible region is formed, the bits in the above operation description are the grooves 52.
Parallel spacing or control current! It may be defined as a juxtaposition spacing of 51.

もちろん、第5〜8図示実施例のように、移動板の被駆
動領域15と固定板18の双方に常電導相遷移i目1ヒ
領域を設ける場合、固定板側の磁束通A可能領域ないし
磁気シャッタ領域40に第H)、II図小構成を選択的
に採用して良い外、被駆動領域15の側と固定板18の
側で異なる構成の磁気シャッタ領域30.40を採用し
ても良い。
Of course, as in the fifth to eighth illustrated embodiments, when the normal conductive phase transition area is provided in both the driven area 15 of the movable plate and the fixed plate 18, the magnetic flux passing area on the fixed plate side or the In addition to selectively employing the small configurations shown in Figures H) and II for the magnetic shutter region 40, it is also possible to employ magnetic shutter regions 30 and 40 with different configurations on the driven region 15 side and the fixed plate 18 side. good.

もっとも、常電導相に遷移させるべき領域に対し、外部
III御磁界を印加するという第10.I+図示構成は
、当該外部i制御磁界の強さを一般的にはある程度以上
、強めねばならないため、駆動磁界に対するモ渉も多め
となることも予想されるので5その意味では第4図示の
直接電流印加方式に−[lの長がある。
However, in the 10th step, an external III control magnetic field is applied to the region to be transitioned to the normal conducting phase. In the I+ configuration shown in the figure, the strength of the external i control magnetic field must generally be increased beyond a certain level, so it is expected that there will be more interference with the drive magnetic field.5 In that sense, the direct The current application method has a length of -[l.

なお、あらかじめ述へたが、上記各実施例においては、
いずれも、常電導相遷移可能領域ないし磁気シャッタ領
域は、平面形状的には細長い形状をのみ示したものの、
これに限定されることなく、円形形状その他、適当な形
状を採用することができる。
As previously mentioned, in each of the above embodiments,
In both cases, the normally conductive phase transition possible region or the magnetic shutter region only shows an elongated shape in plan view;
The shape is not limited to this, and other suitable shapes such as a circular shape can be adopted.

移動板14に設ける被駆動領域15についても、移動板
と一連、同一の部分であフて良いことは勿論、別に作ら
れて組立てられた関係にあっても良い。
The driven region 15 provided on the movable plate 14 may of course be the same part as the movable plate, or may be made separately and assembled.

また、上記実施例は、移動板14の移動に関し、次元平
面内で一次元方向Xについてのみの説明であったが、理
解されるように、駆動機構を図示実施例と直交する方向
に別に設ければ、二次元X−Y方向のいずれにも移動板
14を移動させ得るシステムに容易に展開させることが
できる。
Further, in the above embodiment, the movement of the moving plate 14 was explained only in the one-dimensional direction If so, it can be easily developed into a system that can move the moving plate 14 in any of the two-dimensional X-Y directions.

場合によってはさらに、装置全体がある程度の浮力を受
は得る極低温環境生成用の液体浸漬環境下で用いられる
ことを考えると、駆動磁界を強めに採り、図示した平面
内装置構成の全体をさらに高さ方向に移動させる場合に
も、本方法を採用することすら考えられ、その場合には
三次元移動システムを構築することができる。
Furthermore, in some cases, considering that the entire device is used in a liquid immersion environment for generating a cryogenic environment where the entire device receives a certain degree of buoyancy, the driving magnetic field is strengthened, and the entire in-plane device configuration shown in the figure is further improved. It is even conceivable to adopt this method when moving in the height direction, and in that case, a three-dimensional movement system can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は極低温環境下での対象物移動装置として、本発
明の方法を適用した装置構成例の概略構成図 第2図は第1図示装置構成に従った具体的な実施例装置
の概略構成図。 第3図は第2図示装置の動作説明図。 第4図は本発明装置で用いる常電導相遷移iT能領領域
いし磁気シャッタ領域の一構成例の概略構成図。 第5図は第1図示装置構成に従った具体的な他の実施例
装置の概略構成図。 第6図は第5図示装置の動作説明図。 第7図は駆動機構改変例の要部概略構成図。 第8図は駆動機構のさらなる改変例の要部概略構成図。 第9図は移動板を浮上させるに用いるマイスナ磁気軸受
構造の一例の説明図。 第1O図は常電導相遷移可能領域の他の構成例の概略構
成図。 第11図は常電導相遷移可能領域のさらに他の構成例の
概略構成図。 である。 図中、10は本発明に従って構成された全体としての対
象物移動装置、12は極低温環境生成用の冷媒、13は
対象物、I4は移動板、15は移動板に備えられる被駆
動領域、16は横方向駆動機構、17は磁極、18は固
定板、19は移動板を浮上させるための磁界発生手段、
25は電磁石、30は常電導相遷移可能領域ないし磁気
シャッタ領域、31は各磁気シャッタ領域に制御電流を
選択的に流す制御電流線、33は電流線路選択用のスイ
ッチング装置、40は固定板に設けられる磁束通過可能
領域ないし磁気シャッタ領域、51は外部制御磁界を発
生するための制御電流線、52は弱ジョゼフソン接合を
形成するだめの溝またはスリット、である。 第5図 第9図 誠) 第7図 第8図 U z
FIG. 1 is a schematic configuration diagram of an example of a device configuration to which the method of the present invention is applied as an object moving device in a cryogenic environment. FIG. 2 is a schematic diagram of a specific example device according to the device configuration shown in the first diagram. Diagram. FIG. 3 is an explanatory diagram of the operation of the second illustrated device. FIG. 4 is a schematic configuration diagram of an example of the configuration of a normally conductive phase transition iT function region or a magnetic shutter region used in the device of the present invention. FIG. 5 is a schematic configuration diagram of another specific example device according to the configuration of the device shown in the first figure. FIG. 6 is an explanatory diagram of the operation of the fifth illustrated device. FIG. 7 is a schematic diagram of the main parts of a modified example of the drive mechanism. FIG. 8 is a schematic configuration diagram of main parts of a further modified example of the drive mechanism. FIG. 9 is an explanatory diagram of an example of a Meissner magnetic bearing structure used to levitate the moving plate. FIG. 1O is a schematic configuration diagram of another configuration example of the normally conductive phase transition possible region. FIG. 11 is a schematic configuration diagram of still another configuration example of the normally conductive phase transition possible region. It is. In the figure, 10 is the entire object moving device configured according to the present invention, 12 is a refrigerant for generating a cryogenic environment, 13 is an object, I4 is a moving plate, 15 is a driven region provided on the moving plate, 16 is a lateral drive mechanism, 17 is a magnetic pole, 18 is a fixed plate, 19 is a magnetic field generating means for floating the moving plate,
25 is an electromagnet, 30 is a normally conductive phase transition possible region or a magnetic shutter region, 31 is a control current line that selectively flows a control current to each magnetic shutter region, 33 is a switching device for selecting a current line, and 40 is a fixed plate. A magnetic flux permeable region or a magnetic shutter region is provided, 51 is a control current line for generating an external control magnetic field, and 52 is a groove or slit for forming a weak Josephson junction. Fig. 5 Fig. 9 Makoto) Fig. 7 Fig. 8 U z

Claims (13)

【特許請求の範囲】[Claims] (1)極低温環境下で移動させるべき対象物を支持する
移動板を設け; 該移動板の一部の平面領域は、これを被駆動領域として
、その上下から駆動磁界を印加すると共に; 該被駆動領域中、所定の面積領域のみを外部制御磁界の
印加または制御電流の印加により、上記極低温環境下で
も局部的に超電導相から常電導相に遷移させ; もって上記駆動磁界により発生させた駆動磁束が、上記
被駆動領域中にあって上記局部的に常電導相に遷移した
面積領域中を介してのみ、該被駆動領域をその表裏方向
に抜けるに伴い、その磁束分布が安定な状態になろうと
する力で上記移動板を移動させること; を特徴とする極低温環境下の対象物移動方法。
(1) A moving plate is provided to support an object to be moved in an extremely low temperature environment; a part of the planar area of the moving plate is used as a driven area, and a driving magnetic field is applied from above and below; In the driven region, only a predetermined area is applied with an external control magnetic field or a control current to locally transition from the superconducting phase to the normal conducting phase even in the cryogenic environment; A state in which the magnetic flux distribution is stable as the driving magnetic flux passes through the driven region in the front and back directions only through the area region that is in the driven region and locally transitions to the normal conducting phase. A method for moving an object in a cryogenic environment, characterized by: moving the moving plate with a force that causes the moving plate to move.
(2)極低温環境下で移動させるべき対象物を支持する
移動板と; 該移動板の上記対象物を支持している以外の領域の一部
である被駆動領域中において、該移動板の移動方向に互
いに間隔を置きながら複数個並設され、それぞれ外部制
御磁界の印加または制御電流の印加により、上記極低温
環境下でも超電導相から常電導相に遷移可能な磁気シャ
ッタ領域と; 上記被駆動領域に対し、その上下方向から駆動磁界を印
加可能な一対の磁極と; 上記複数の磁気シャッタ領域の中、そのときどきで選択
した一つ以上の磁気シャッタ領域を上記極低温環境下で
も上記常電導相に遷移させるため、該選択した磁気シャ
ッタ領域にのみ、上記外部制御磁界または上記制御電流
を選択的に印加する選択回路手段と; を有して成り、上記一対の磁極間に亙る駆動磁束が、上
記選択回路手段により選択されて上記常電導相に遷移し
た磁気シャッタ領域を介してのみ、上記被駆動領域を表
裏方向に抜けるに伴い、その磁束分布が安定する方向に
上記移動板に対する横方向駆動力を発生すること; を特徴とする極低温環境下の対象物移動装置。
(2) A moving plate that supports an object to be moved in an extremely low temperature environment; a plurality of magnetic shutter regions arranged in parallel at intervals in a moving direction and capable of transitioning from a superconducting phase to a normal conducting phase even in the cryogenic environment by applying an external control magnetic field or a control current; a pair of magnetic poles capable of applying a driving magnetic field from above and below to the driving region; selection circuit means for selectively applying the external control magnetic field or the control current only to the selected magnetic shutter region in order to make the transition to the conductive phase; However, as the magnetic flux passes through the driven region in the front and back directions only through the magnetic shutter region which has been selected by the selection circuit means and has transitioned to the normal conduction phase, the magnetic flux distribution is lateral to the moving plate in a direction in which the magnetic flux distribution is stabilized. A device for moving an object in a cryogenic environment, characterized by: generating a directional driving force;
(3)一対の磁極の先端はそれぞれ尖鋭化され、駆動磁
束密度を高め得ること; を特徴とする請求項2に記載の装置。
The device according to claim 2, characterized in that: (3) the tips of the pair of magnetic poles are each sharpened to increase the driving magnetic flux density;
(4)一対の磁極間にあって移動板の被駆動領域に平行
に設けられた固定板をさらに有し; 該固定板には、上記移動板の移動方向に沿う所定の位置
に、あらかじめ固定的に、極低温環境下でも常に磁束を
通過させ得る局部的な磁束通過可能領域が形成され、該
磁束通過可能領域を除く固定板部分は、上記極低温環境
下で超電導相となる材料で作られていること; を特徴とする請求項2または3に記載の装置。
(4) A fixed plate is provided between the pair of magnetic poles and parallel to the driven region of the movable plate. , a local magnetic flux-permeable region is formed that allows magnetic flux to pass through even in an extremely low-temperature environment, and the fixed plate portion excluding the magnetic flux-permeable region is made of a material that becomes a superconducting phase in the above-mentioned extremely low-temperature environment. The device according to claim 2 or 3, characterized in that:
(5)固定板の所定位置に固定的に形成される磁束通過
可能領域は、該固定板に穿たれ、該固定板を上下に抜け
る透孔であること; を特徴とする請求項4に記載の装置。
(5) The magnetic flux permeable region fixedly formed at a predetermined position of the fixing plate is a through hole bored in the fixing plate and passing through the fixing plate vertically. equipment.
(6)一対の磁極間にあって移動板の被騒動領域に平行
に設けられた固定板をさらに有し; 該固定板の所定の位置には、所定の面積を有し、外部制
御磁界の印加または制御電流の印加により、その部分の
みが選択的に超電導相から常電導相に遷移可能な磁気シ
ャッタ領域が設けられ、該磁気シャッタ領域を除く固定
板部分は、上記極低温環境下で超電導相となる材料で作
られていること; を特徴とする請求項2または3に記載の装置。
(6) further comprising a fixed plate disposed between the pair of magnetic poles and parallel to the disturbed area of the movable plate; a fixed plate having a predetermined area at a predetermined position and configured to apply an external control magnetic field or A magnetic shutter region is provided in which only that portion can selectively transition from a superconducting phase to a normal conducting phase by applying a control current, and the fixed plate portion other than the magnetic shutter region changes into a superconducting phase in the above-mentioned cryogenic environment. 4. A device according to claim 2 or 3, characterized in that it is made of a material of:
(7)固定板に設けられる磁気シャッタ領域も、上記移
動板の移動方向に沿って互いに間隔を置きながら複数個
並設され; これに応じ、それら固定板に設けられた複数の磁気シャ
ッタ領域の中、そのときどきで選択した一つ以上の磁気
シャッタ領域を上記常電導相に遷移させるため、上記外
部制御磁界または上記制御電流を選択的に印加する選択
回路手段を有すること; を特徴とする請求項6に記載の装置。
(7) A plurality of magnetic shutter regions provided on the fixed plate are also arranged in parallel at intervals along the moving direction of the movable plate; a selection circuit means for selectively applying the external control magnetic field or the control current to transition one or more selected magnetic shutter regions to the normal conducting phase; The device according to item 6.
(8)移動板に設けられる磁気シャッタ領域は、該移動
板に形成された溝内に埋設され、互いに電気的に絶縁さ
れた超電導体で構成され、該超電導体の常電導相への遷
移は、該超電導体に直接に制御電流を流し行なわれるこ
と; を特徴とする請求項2から7までのいずれか一つに記載
の装置。
(8) The magnetic shutter area provided in the moving plate is embedded in a groove formed in the moving plate and is composed of superconductors electrically insulated from each other, and the transition of the superconductors to the normal conductive phase is The apparatus according to any one of claims 2 to 7, characterized in that the control current is applied directly to the superconductor.
(9)移動板に設けられる磁気シャッタ領域は、該磁気
シャッタ以外の移動板部分と材質的にも幾何的にも特に
区別される領域ではなく、該移動板の表面に臨み、該移
動板移動方向とは直交する方向に伸びる制御電流線に制
御電流を印加した際に生ずる制御磁界により、局部的に
常電導相に遷移する領域であること; を特徴とする請求項2から7までのいずれか一つに記載
の装置。
(9) The magnetic shutter area provided on the movable plate is not a region that is materially or geometrically distinct from the movable plate portion other than the magnetic shutter, but faces the surface of the movable plate, and Any one of claims 2 to 7, characterized in that the area is a region that locally transitions to a normal conducting phase due to a control magnetic field generated when a control current is applied to a control current line extending in a direction perpendicular to the direction. The device described in one of the following.
(10)移動板に設けられる磁気シャッタ領域は、弱ジ
ョゼフソン接合を形成し得る領域であり、該領域に臨み
上記移動板移動方向に直交する方向に伸びる制御電流線
に制御電流を印加した際に発生する制御磁界により、該
弱ジョゼフソン接合領域が常電導相に遷移すること; を特徴とする請求項2から7までのいずれか一つに記載
の装置。
(10) The magnetic shutter area provided on the moving plate is an area where a weak Josephson junction can be formed, and when a control current is applied to a control current line facing the area and extending in a direction perpendicular to the moving direction of the moving plate. 8. The device according to claim 2, wherein the weak Josephson junction region transitions to a normally conducting phase due to a control magnetic field generated by the control magnetic field.
(11)一対の磁極の各々と移動板との間には互いに触
れ合うことのないように間隙が形成されていること; を特徴とする請求項2から10までのいずれか一つに記
載の装置。
(11) A gap is formed between each of the pair of magnetic poles and the moving plate so that they do not touch each other; .
(12)移動板と固定板との間には互いに触れ合うこと
のないように間隙が形成されていること;を特徴とする
請求項4から11までのいずれか一つに記載の装置。
(12) The device according to any one of claims 4 to 11, characterized in that a gap is formed between the movable plate and the fixed plate so that they do not touch each other.
(13)移動板の全領域、または上記対象物支持部と上
記被駆動領域を除く所定の領域は超電導体で形成され、
該超電導体で形成された部分に対し、マイスナ効果を利
用した移動板浮上用の磁界発生手段が臨んでいること; を特徴とする請求項2から12までのいずれか一つに記
載の装置。
(13) The entire area of the moving plate or a predetermined area excluding the object support part and the driven area is formed of a superconductor,
13. The device according to claim 2, wherein a magnetic field generating means for floating the moving plate using the Meissner effect faces the portion formed of the superconductor.
JP63240319A 1988-09-26 1988-09-26 Method and apparatus for moving an object under cryogenic environment Expired - Lifetime JPH0734664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240319A JPH0734664B2 (en) 1988-09-26 1988-09-26 Method and apparatus for moving an object under cryogenic environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240319A JPH0734664B2 (en) 1988-09-26 1988-09-26 Method and apparatus for moving an object under cryogenic environment

Publications (2)

Publication Number Publication Date
JPH0287984A true JPH0287984A (en) 1990-03-28
JPH0734664B2 JPH0734664B2 (en) 1995-04-12

Family

ID=17057699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240319A Expired - Lifetime JPH0734664B2 (en) 1988-09-26 1988-09-26 Method and apparatus for moving an object under cryogenic environment

Country Status (1)

Country Link
JP (1) JPH0734664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477527U (en) * 1990-11-21 1992-07-07

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114381A (en) * 1987-10-26 1989-05-08 Canon Inc Actuator
JPH01218370A (en) * 1988-02-25 1989-08-31 Canon Inc Superconducting actuator
JPH01146796U (en) * 1988-03-17 1989-10-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114381A (en) * 1987-10-26 1989-05-08 Canon Inc Actuator
JPH01218370A (en) * 1988-02-25 1989-08-31 Canon Inc Superconducting actuator
JPH01146796U (en) * 1988-03-17 1989-10-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477527U (en) * 1990-11-21 1992-07-07

Also Published As

Publication number Publication date
JPH0734664B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
KR100737992B1 (en) Magnetic logic elements
US7589600B2 (en) Spin oscillator device
IE54437B1 (en) Linear positioning system
KR950013270B1 (en) Linear motors
JP5562556B2 (en) Superconducting system
JP2509418B2 (en) Device and method for adjusting the position of a magnetic body on a surface
JP3224256B2 (en) Voice coil motor
Kim et al. A superconducting actuator using the Meissner effect
JPH0287984A (en) Method and device for moving object under cryogenic environment
US20040113732A1 (en) Bistable magnetic actuator
JP4594093B2 (en) Drive device
US3470461A (en) Cryogenic flux-gating magnetometer
JP3084132B2 (en) Magnetic levitation device
US3944842A (en) Magnetic domain logic device
JP2001203106A (en) Superconducting magnet for generating horizontal magnetic field
JP4940428B2 (en) Non-contact magnetic levitation method using magnetic material and non-contact magnetic levitation apparatus using the same
JP2010062531A (en) Local magnetic field generating device, magnetic field sensor, and magnetic head
EP0772747A1 (en) Thin film superconductor magnetic bearings
JPH08182116A (en) Magnetic track for running magnetic levitator and running method thereof
JP3185270B2 (en) Magnetic levitation device
JP2008021882A (en) Apparatus and method for controlling magnetization state
JPH0530328Y2 (en)
JPH0751971B2 (en) Bearing device
JPH04341632A (en) Magnetic damper device
JPS63274116A (en) High magnetic field generating device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term