JPH01218370A - Superconducting actuator - Google Patents

Superconducting actuator

Info

Publication number
JPH01218370A
JPH01218370A JP4084488A JP4084488A JPH01218370A JP H01218370 A JPH01218370 A JP H01218370A JP 4084488 A JP4084488 A JP 4084488A JP 4084488 A JP4084488 A JP 4084488A JP H01218370 A JPH01218370 A JP H01218370A
Authority
JP
Japan
Prior art keywords
magnetic field
stator
superconductor
electromagnet
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4084488A
Other languages
Japanese (ja)
Inventor
Masatake Akaike
正剛 赤池
Fumio Kishi
岸 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4084488A priority Critical patent/JPH01218370A/en
Publication of JPH01218370A publication Critical patent/JPH01218370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To simplify the structure of a superconducting actuator by moving a movable element with respect to a stator by means of Meissner effect of a superconductor in a magnetic field generated from magnetic field generating means. CONSTITUTION:A superconducting actuator has a moving element 1 composed of a rectangular flat plate superconductor 4, and a permanent magnet 3 buried in circular through holes located in a matrix state on the flat surface of the superconductor 2. A stator 8 is also formed in a flat plate shape, and electromagnets 4 are disposed in a matrix state on the flat surface. Thus, a magnetic field generated by the synergistic action of the magnet 3 and the electromagnet 4 is formed in a distribution 5 of lines of magnetic force by means of Meissner effect of the superconductor 2 in the magnetic field. In this manner, the interval between the element 1 and the electromagnet 4 is held several tens mum by the repelling force therebetween due to the Meissner effect, and the element 1 is moved by the attracting force of the magnet 3 and the electromagnet 4.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超伝導アクチュエータに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to superconducting actuators.

[従来の技術1 アクチュエータの一形態として電動機があり、これは回
転子が固定子の中を回転して、回転力という形で動力を
発生する。
[Prior Art 1] One type of actuator is an electric motor, in which a rotor rotates within a stator to generate power in the form of rotational force.

一方、回転力によらないで動力を得られる電動機に、例
えばリニア千−夕がある。この電動機は一種の誘導電動
機であるが、通常の誘導電動機が固定子に三相巻線があ
り、この巻線によって回転磁界が発生して回転子が回転
する構造となっているのに対し、リニアモータにおいて
は、回転子(移動子)および固定子を直線状に延ばした
形にし1、固定子には回転磁界の代わりに直線的に平行
移動するわ動磁界が生ずるようになっている。
On the other hand, an example of an electric motor that can obtain power without relying on rotational force is the linear Chiyo. This motor is a type of induction motor, but whereas a normal induction motor has a three-phase winding on the stator, and this winding generates a rotating magnetic field, the rotor rotates. In a linear motor, a rotor (mover) and a stator are linearly extended 1, and instead of a rotating magnetic field, a linear magnetic field that moves in parallel is generated in the stator.

また、アクチュエータの他の形態として、静電力を動力
とする静電モータ等がある。このモータにあっては、ク
ーロン力による吸引力の効率な向上させるために固定子
と■3動子との距離を微少に保った構成となっている。
Further, as another form of actuator, there is an electrostatic motor powered by electrostatic force. This motor has a structure in which the distance between the stator and the three movers is kept very small in order to efficiently improve the suction force due to Coulomb force.

[発明が解決しようとする課題] しかしながら、これら電動機にあっては、回転子と固定
子との間の距離は機械的に保持されるものであり、従っ
て回転子の移動に伴なう何らかの機械的接触に起因する
摩擦力の発生は阻止し難いものであった。
[Problems to be Solved by the Invention] However, in these electric motors, the distance between the rotor and the stator is maintained mechanically, and therefore some mechanical damage occurs due to the movement of the rotor. It was difficult to prevent the generation of frictional force due to physical contact.

また、静電モータにあっては、固定子と移動子との間の
微少な間隙に、静電気によって塵埃等が付着し、その結
果、固定子と移動子との間に多大な摩擦力を生じさせる
という問題点があった。
In addition, in an electrostatic motor, dust and the like adhere to the minute gap between the stator and the mover due to static electricity, which results in a large amount of frictional force between the stator and the mover. There was a problem with letting it work.

ところで、上述した固定子と移動子間の微少な距離の機
械的な接触を排した保持という観点において、超伝導現
象の一つの特性であるマイスナー効果の利用は着目すべ
き事柄であった。しかし超伝導状態は極低温で生じるも
のであったため、極低温を実現する冷媒、例えば液体ヘ
リウムの稀少性および冷却のための装置構成の多大さに
よってマイスナー効果の利用は阻害されていた。
Incidentally, from the viewpoint of maintaining the minute distance between the stator and the moving element without mechanical contact, the use of the Meissner effect, which is one of the characteristics of superconductivity, is noteworthy. However, since the superconducting state occurs at extremely low temperatures, the use of the Meissner effect has been hindered by the rarity of coolants that can achieve extremely low temperatures, such as liquid helium, and by the large number of equipment configurations required for cooling.

しかしながら、最近の酸化物高温超伝導体の出現によっ
て、冷媒として、液体ヘリウムに代わって液体窒素を使
用できるようになり、マイスナー効果を利用した機器の
実現が可能なものとなってきた。
However, with the recent appearance of oxide high-temperature superconductors, it has become possible to use liquid nitrogen instead of liquid helium as a coolant, making it possible to realize devices that utilize the Meissner effect.

本発明は上述した観点に鑑みてなされたものであり、そ
の目的とするところは固定子と移動子との間隔を微少に
し、かつ機械的な接触を排した超伝導アクチュエータを
提供することにある。
The present invention has been made in view of the above-mentioned viewpoints, and its purpose is to provide a superconducting actuator that minimizes the distance between the stator and the mover and eliminates mechanical contact. .

[課題を解決するための手段] そのために本発明では、超伝導体からなり、複数の永久
磁石が配置された移動子と、複数の永久磁石の各々との
間で選択的に吸引力を発生させる磁場発生手段を有し、
移動子の少なくとも一側面に対向した固定子とを具えた
ことを特徴とする。
[Means for Solving the Problems] To achieve this, the present invention selectively generates an attractive force between a mover made of a superconductor and provided with a plurality of permanent magnets, and each of the plurality of permanent magnets. It has a magnetic field generating means that causes
It is characterized by comprising a stator facing at least one side of the mover.

[作 用J 以上の構成によれば、磁場発生手段の発生する磁場中に
ある超伝導体のマイスナー効果によって、移動子と固定
子間の距離が微少に、かつ非接触な状態で保持され、磁
場発生手段と永久磁石との相互作用による吸引力によっ
て移動子が固定子に相対して移動することができる。
[Operation J] According to the above configuration, due to the Meissner effect of the superconductor in the magnetic field generated by the magnetic field generating means, the distance between the mover and the stator is kept small and in a non-contact state, The movable element can be moved relative to the stator by the attractive force generated by the interaction between the magnetic field generating means and the permanent magnet.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示し、移動子および固定子
の部分拡大された側断面図である。図において、1は移
動子を示し、移動子1は、後述されるように矩形の平板
をなす超伝導体2と、超伝導体2の平面上においてマト
リクス状に位置する円形の貫通孔に埋設された永久磁石
3とからなる。
FIG. 1 shows an embodiment of the present invention, and is a partially enlarged side sectional view of a mover and a stator. In the figure, 1 indicates a mover, and the mover 1 is embedded in a superconductor 2 forming a rectangular flat plate and circular through holes located in a matrix on the plane of the superconductor 2, as described later. It consists of a permanent magnet 3.

8はAl1.エポキシ樹脂等の非磁性体で形成される固
定子であり、固定子8も平板の形状をなす。4は固定子
8の平面にマトリクス状に配設された電磁石であり、不
図示の制御回路によって励磁パルス6がON10 F 
Fされ、図に示されるような磁力線分布5の発生および
消滅が行なわれる。
8 is Al1. The stator is made of a non-magnetic material such as epoxy resin, and the stator 8 also has a flat plate shape. Reference numeral 4 designates electromagnets arranged in a matrix on the plane of the stator 8, and the excitation pulse 6 is turned ON10F by a control circuit (not shown).
F, and a magnetic field line distribution 5 as shown in the figure occurs and disappears.

すなわち、永久磁石3および電磁石4の相互作用によっ
て発生する磁場は、磁場中における超伝導体2のマイス
ナー効果によって磁力線分布5を形成する。これにより
、移動子1と電磁石4との間隔はマイスナー効果による
反発力によって数lOμmに保持され、かつ永久磁石3
と電磁石4との吸引力によって移動子1の図中矢印方向
への移動が可能となる。
That is, the magnetic field generated by the interaction between the permanent magnet 3 and the electromagnet 4 forms a magnetic field line distribution 5 due to the Meissner effect of the superconductor 2 in the magnetic field. As a result, the distance between the mover 1 and the electromagnet 4 is maintained at several lOμm by the repulsive force due to the Meissner effect, and the distance between the permanent magnet 3
The attractive force between the electromagnet 4 and the electromagnet 4 allows the mover 1 to move in the direction of the arrow in the figure.

しかも、この移動子1を穆勅させる吸引力は、永久磁石
3と電磁石4との距離の逆数の3乗に比例するため、マ
イスナー効果によって実現される移動子1と固定子8と
の微少間隔は、吸引力の作用をより効果的にする。
Moreover, since the attractive force that makes the mover 1 move is proportional to the cube of the reciprocal of the distance between the permanent magnet 3 and the electromagnet 4, the minute distance between the mover 1 and the stator 8 realized by the Meissner effect is makes the action of suction more effective.

また、移動子1全体が固定子8から浮上した状態で、そ
の位置保持および移動を行なうため、移動子1と固定子
8との間隔を保持するための何らかの機械的接触を排す
ることが可能となる。
Furthermore, since the position of the mover 1 is maintained and moved while the entire mover 1 is floating above the stator 8, it is possible to eliminate any kind of mechanical contact to maintain the distance between the mover 1 and the stator 8. becomes.

なお、永久磁石3の電磁石4に対向する磁極は、Nある
いはSのいずれか一方であり、電磁石4との間で吸引力
を発生するように励磁パルス6が定められる。また、永
久磁石3の形状は円筒形に限られないのは勿論である。
The magnetic pole of the permanent magnet 3 facing the electromagnet 4 is either N or S, and the excitation pulse 6 is determined so as to generate an attractive force with the electromagnet 4. Moreover, the shape of the permanent magnet 3 is of course not limited to a cylindrical shape.

第2図および第3図は移動子1の移動の様子を説明する
ためのそれぞれ側断面図および上面図である。
FIGS. 2 and 3 are a side sectional view and a top view, respectively, for explaining how the mover 1 moves.

移動子1は第3図に示すように矩形平板をなし、X方向
およびY方向に移動するものであり、第2図においてX
方向の移動を例にとって説明するために第2図を第3図
におけるA−A矢視図とする。もちろん、Y方向の移動
を説明する場合は、第2図を第3図におけるB−B矢視
図とすることができる。
As shown in FIG. 3, the mover 1 is a rectangular flat plate that moves in the X direction and the Y direction.
In order to explain the movement in the direction as an example, FIG. 2 is taken as a view taken along the line A--A in FIG. 3. Of course, when explaining movement in the Y direction, FIG. 2 can be used as a BB arrow view in FIG. 3.

第2図(a)は移動子1が所定の位置に停止した状態を
示し、このとき図中(イ)で示す位置(この位置は図か
ら明らかなように複数あるが、図においては1ケ所のみ
に参照記号を付す。以下同様)の電磁石4が励磁されて
おり、永久磁石3.電磁石4および磁力線分布5の位置
関係は対称になっている。
FIG. 2(a) shows a state in which the mover 1 has stopped at a predetermined position, and at this time, the position shown in (a) in the figure (there are multiple positions as shown in the figure, but only one position is shown in the figure). The electromagnet 4 (hereinafter the same applies) is energized, and the permanent magnet 3. The positional relationship between the electromagnet 4 and the magnetic field line distribution 5 is symmetrical.

次に、第2図(b)に示す状態となり、図中(イ)の隣
り(ロ)で示す位置の電磁石4が励磁され始め、(イ)
の位置にある電磁石4の励磁パルスは消勢し始め第2図
(C)に示す状態となる。この間、移動子1は所定の距
!IX、たけ移動する。
Next, the state shown in FIG. 2(b) is reached, and the electromagnet 4 located at the position indicated by (b) next to (a) in the figure begins to be excited, and (a)
The excitation pulse of the electromagnet 4 at the position begins to deenergize, resulting in the state shown in FIG. 2(C). During this time, mover 1 moves at a predetermined distance! IX, move a lot.

以下、第2図(a)〜(C)で示した過程を繰り返して
第2図の(C)から(d)へ、(d)からte)へ、(
e)から(f)へ状態が順次変化し、それぞれ所定は、
例えばCPUを構成要素とする不図示の制御装置によっ
て行なわれる。
Hereinafter, the process shown in Fig. 2 (a) to (C) is repeated to move from (C) to (d), from (d) to te), (
The state changes sequentially from e) to (f), and each predetermined state is as follows.
For example, this is performed by a control device (not shown) including a CPU as a component.

第4図および第5図は、第2図および第3図に示した移
動と逆方向の移動の態様を示したものであり、第2図お
よび第3図において説明したのと同様の原理で移動を行
なう。また、第4図および第5図で示す移動においても
、Y方向の逆方向への移動は同様に説明される。
Figures 4 and 5 show modes of movement in the opposite direction to the movement shown in Figures 2 and 3, and are based on the same principle as explained in Figures 2 and 3. Make a move. Furthermore, in the movements shown in FIGS. 4 and 5, movement in the opposite direction of the Y direction will be similarly explained.

なお、第2図(a)〜(c)で示した操作を時系列的に
逆に行なえば、移動子lの移動中におけるブレーキ作用
となる。
Incidentally, if the operations shown in FIGS. 2(a) to 2(c) are performed in reverse chronological order, a braking action will be performed while the mover l is moving.

また、XおよびY方向の合成された方向への移動は、ま
ずX方向の移動を行ない、しかる後にY方向への移動を
行なって所望の方向および位置への移動を行なうように
するが、永久磁石3および電磁石4の配置および互いの
位置関係を適切なものとすれば、合成された方向への直
接的な移動も可能となる。
Also, when moving in a direction that is a combination of the X and Y directions, first move in the X direction, then move in the Y direction to move to the desired direction and position. If the arrangement of the magnet 3 and the electromagnet 4 and their mutual positional relationship are appropriate, direct movement in the combined direction is also possible.

さらに、固定子8を移動子1の両側に配置して移動子1
の移動を行なうようにすればより効率的になる。
Further, the stator 8 is arranged on both sides of the mover 1, and the mover 1 is
It will be more efficient if you move the

【発明の効果] 以上の説明から明らかなように、本発明によれば磁場発
生手段の発生する磁場中にある超伝導体のマイスナー効
果によって、移動子と固定子間の距離が微少に、かつ非
接触な状態で保持され、磁場発生手段と永久磁石との相
互作用による吸引力によって移動子が固定子に相対して
移動することができる。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, due to the Meissner effect of the superconductor in the magnetic field generated by the magnetic field generating means, the distance between the mover and the stator can be made minute and The movable element is held in a non-contact state, and the movable element can be moved relative to the stator by the attraction force generated by the interaction between the magnetic field generating means and the permanent magnet.

この結果、摩擦による熱発生がなく、構造の簡単なアク
チュエータを実現することができた。
As a result, we were able to create an actuator with a simple structure that does not generate heat due to friction.

また、構造が簡単なことによって小さなアクチュエータ
の制作も可能となった。
Furthermore, the simple structure makes it possible to produce small actuators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すアクチュエータの部分
拡大された側断面図、 第2図および第3図は移動子の移動の様子を説 ・明す
るた′めのそれぞれ側断面図および上面図、第4図およ
び第5図は同様に移動子の移動の様子を説明するための
それぞれ側断面図および上面図である。 1・・・移動子、 2・・・超伝導体、 3・・・永久磁石、 4・・・電磁石、 5・・・磁力線分布、 6・・・励磁パルス、 8・・・固定子。 第1図
FIG. 1 is a partially enlarged side sectional view of an actuator showing an embodiment of the present invention, and FIGS. Similarly, the top view, FIG. 4, and FIG. 5 are a side sectional view and a top view, respectively, for explaining how the mover moves. DESCRIPTION OF SYMBOLS 1... Mover, 2... Superconductor, 3... Permanent magnet, 4... Electromagnet, 5... Magnetic field line distribution, 6... Excitation pulse, 8... Stator. Figure 1

Claims (1)

【特許請求の範囲】 1)超伝導体からなり、複数の永久磁石が配置された移
動子と、 前記複数の永久磁石の各々との間で選択的に吸引力を発
生させる磁場発生手段を有し、前記移動子の少なくとも
一側面に対向した固定子と を具えたことを特徴とする超伝導アクチュエータ。
[Claims] 1) A movable element made of a superconductor and having a plurality of permanent magnets arranged thereon, and a magnetic field generating means for selectively generating an attractive force between each of the plurality of permanent magnets. A superconducting actuator comprising: a stator facing at least one side of the movable element.
JP4084488A 1988-02-25 1988-02-25 Superconducting actuator Pending JPH01218370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4084488A JPH01218370A (en) 1988-02-25 1988-02-25 Superconducting actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4084488A JPH01218370A (en) 1988-02-25 1988-02-25 Superconducting actuator

Publications (1)

Publication Number Publication Date
JPH01218370A true JPH01218370A (en) 1989-08-31

Family

ID=12591903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4084488A Pending JPH01218370A (en) 1988-02-25 1988-02-25 Superconducting actuator

Country Status (1)

Country Link
JP (1) JPH01218370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287984A (en) * 1988-09-26 1990-03-28 Agency Of Ind Science & Technol Method and device for moving object under cryogenic environment
EP0695026A2 (en) * 1991-06-28 1996-01-31 Hitachi, Ltd. Composite superconductor body and magnetic levitation system
DE102015222673A1 (en) * 2015-11-17 2017-05-18 Festo Ag & Co. Kg mover

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287984A (en) * 1988-09-26 1990-03-28 Agency Of Ind Science & Technol Method and device for moving object under cryogenic environment
EP0695026A2 (en) * 1991-06-28 1996-01-31 Hitachi, Ltd. Composite superconductor body and magnetic levitation system
EP0695026A3 (en) * 1991-06-28 1997-03-26 Hitachi Ltd Composite superconductor body and magnetic levitation system
DE102015222673A1 (en) * 2015-11-17 2017-05-18 Festo Ag & Co. Kg mover

Similar Documents

Publication Publication Date Title
JPH0574305B2 (en)
JP3961032B2 (en) Magnetic bearing device for rotor shaft
CN113192718B (en) Method and apparatus for generating a magnetic field
JP2019525722A (en) Coaxial electromagnetic device
JPH0549191A (en) Power storage system
US5341055A (en) Combination reciprocating motor and inverter
JPH01218370A (en) Superconducting actuator
JPS6281970A (en) Spherical motor
US3277322A (en) Method and apparatus for magnetic flux accumulation and current generation
TW200415840A (en) Linear driving device, its controlling method, and XY table
US6770994B2 (en) Super conductive bearing
JPH0511788U (en) Magnetic rotation device
US5804901A (en) Energy conversion device using permanent magnets
WO2013149088A1 (en) System and method for a programmable electric converter
JPH02246762A (en) Linear motor
US9934897B1 (en) Polarity-switching magnet diode
JP4064081B2 (en) Load reducing device
JP2019161834A (en) Plane motor
JP4831719B2 (en) Magnetically levitated XY surface linear synchronous motor
JP2011097815A (en) Magnetic driving engine
JP2782260B2 (en) Linear step motor and its excitation method
JPH01177864A (en) Actuator
JPH10243625A (en) Rotator using permanent magnet
JPS58224553A (en) Magnetic force rotary machine
JPH074076B2 (en) Magnetic levitation device