JPH01114381A - Actuator - Google Patents

Actuator

Info

Publication number
JPH01114381A
JPH01114381A JP26826287A JP26826287A JPH01114381A JP H01114381 A JPH01114381 A JP H01114381A JP 26826287 A JP26826287 A JP 26826287A JP 26826287 A JP26826287 A JP 26826287A JP H01114381 A JPH01114381 A JP H01114381A
Authority
JP
Japan
Prior art keywords
superconductor
magnetic field
magnetic
case
movable part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26826287A
Other languages
Japanese (ja)
Inventor
Motoi Kato
基 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26826287A priority Critical patent/JPH01114381A/en
Publication of JPH01114381A publication Critical patent/JPH01114381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)

Abstract

PURPOSE:To simplify a device and miniaturize it, by forming the combined unit of a superconductor and a magnetic unit, and by performing double-throw position change with a single magnetic source. CONSTITUTION:An actuator is provided with a superconductor 1 and a ferromagnetic unit 2, and the peripheral surface of the ferromagnetic unit 2 is covered with the superconductor 1, and one combined unit is formed with both the units. Besides, a case 3 for containing the combined unit, and a coil 4 for applying a magnetic field to said combined unit from the external side are arranged, and the combined unit is contained double-throw-displaced in the case 3, and the superconductor 1 is set in a perfect diamagnetic state in the peripheral atmosphere of a device. As a result, by the coil 4 of a single magnetic source, the double-throw positional change can be performed and is applied for switch function, breaker function, and the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ケース内で可動部の位置を変位させることに
より所望の動作を行うアクチュエータに関し、特に、超
電導体を利用したアクチュエータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an actuator that performs a desired operation by displacing the position of a movable part within a case, and particularly relates to an actuator using a superconductor.

[開示の概要] 本明細書及び図面は、ケース内で可動部の位置を変位さ
せることにより所望の動作を行うアクチュエータにおい
て、完全反磁性と磁性との2つの性質間を転移可能でか
つ少なくとも1個の磁気源の磁場変化により変位する可
動部を備えることにより、単一の磁気源により双方向の
位置変化を行わせ、装置の簡易化、小型化を可能とする
技術を開示するものである。
[Summary of the Disclosure] The present specification and drawings describe an actuator that performs a desired operation by displacing the position of a movable part within a case, which is capable of transitioning between two properties of complete diamagnetism and magnetism, and which has at least one property. The present invention discloses a technology that enables bidirectional positional changes by a single magnetic source by providing a movable part that is displaced by changes in the magnetic field of individual magnetic sources, thereby making it possible to simplify and downsize the device. .

[従来の技術] 近年、超電導体の臨界温度を高温化する技術が急速に進
歩していて、一部では常温での超電導の可能性も報告さ
れている。この超電導体の最も重要な性質の1つに完全
反磁性を示すマイスナー効果があり、磁気浮上を初め様
々な応用が可能である。さて、超電導体で単一体又は微
粒子群を形成。
[Prior Art] In recent years, technology for increasing the critical temperature of superconductors has been rapidly progressing, and some reports have even reported the possibility of superconductivity at room temperature. One of the most important properties of this superconductor is the Meissner effect, which exhibits perfect diamagnetism, and can be used in various applications including magnetic levitation. Now, a superconductor forms a single body or a group of fine particles.

した場合、磁場中で完全反磁性を有するためには、粒子
径を表面の磁場侵入距離に比べて大きく設定する必要が
あるこ之は公知である。この超電導微粒子群の応用例と
しては、例えば画像形成装置の現像剤に使用する場合な
どが考えられ、マイスナー効果による現像剤の搬送や現
像が考えられる。
In this case, it is well known that in order to have complete diamagnetic properties in a magnetic field, the particle diameter must be set larger than the magnetic field penetration distance on the surface. An example of the application of this superconducting fine particle group is, for example, when it is used as a developer in an image forming apparatus, and developer transportation and development using the Meissner effect can be considered.

マイスナー効果による完全反磁性の保持は。Perfect diamagnetism is maintained by the Meissner effect.

臨界温度や磁束密度に上限が存在するために、逆にそれ
らのパラメータを変化させることで完全反磁性と常磁性
との変換を行うことが可能にもなる。
Since there are upper limits to the critical temperature and magnetic flux density, it is also possible to convert between complete diamagnetism and paramagnetism by changing these parameters.

[発明が解決しようとする問題点] 上記のように、超電導体微粒子及びそれを使用したアク
チュエータは様々な応用が可能である。
[Problems to be Solved by the Invention] As described above, superconductor fine particles and actuators using the same can be used in various applications.

しかしながら、磁気的性質としては磁界に対して反発す
るかしないかの違いに過ぎないから、例えば単一磁気源
により往復運動をさせるためには、重力、電気力、熱等
の他要素を必要とする。これを磁気力のみで行おうとす
れば、複数の磁気源を必要とし、構成が複雑化・大型化
してしまう。
However, since magnetic properties are simply the difference between being repelled by a magnetic field or not, other elements such as gravity, electric force, heat, etc. are required to create reciprocating motion using a single magnetic source. do. If this were to be done using magnetic force alone, multiple magnetic sources would be required, making the configuration complicated and large.

本発明は、このような問題点に鑑み創案されたもので、
超電導体と磁性体の結合体を形成することによって、単
一の磁気源により双方向の位置変化を行わせ、装置の簡
易化、小型化を計り、且つスイッチ、ヒユーズ、表示装
置など多くの応用が可能なアクチュエータを提供するこ
とを目的とする。
The present invention was devised in view of these problems.
By forming a combination of a superconductor and a magnetic material, bidirectional position change can be performed using a single magnetic source, simplifying and downsizing the device, and making it suitable for many applications such as switches, fuses, and display devices. The purpose is to provide an actuator that is capable of

[問題点を解決するための手段] 本発明において、上記の問題点を解決するための手段は
、ケースとこのケースに収納された可動部とで成り、可
動部のケース内位置を双方向へ変位させることにより所
望の動作を行うアクチュエータにおいて、完全反磁性と
磁性と2つの性質間を転移可能でかつ少なくとも1個の
磁気源の磁場変化により変位する可動部を備えることを
特徴とするアクチュエータとするものである。磁気源は
常時一定の静磁気源を備え、可動部は超電導体と強磁性
体との結合体で形成されるか、強磁性体の表面を超電導
体で被覆されて形成されるか、あるいは磁性超電導体又
は強磁性体と超電導体との混合成形体で形成されるかを
好適とし、また可動部は単一体でも、複合体でも、微粒
子群又はその成形体でも差支えなく、微粒子の場合、溶
液中に分散させてもよく、微粒子の表面又は全体に帯電
特性を備えさせてもよい。
[Means for solving the problem] In the present invention, the means for solving the above problem consists of a case and a movable part housed in the case, and the position of the movable part inside the case can be changed in both directions. An actuator that performs a desired operation by displacement, characterized by comprising a movable part that is capable of transitioning between two properties, complete diamagnetism and magnetism, and that is displaced by a change in the magnetic field of at least one magnetic source. It is something to do. The magnetic source has a constant static magnetic source, and the movable part is formed by a combination of a superconductor and a ferromagnetic material, the surface of a ferromagnetic material is coated with a superconductor, or a magnetic It is preferable to use a superconductor or a molded mixture of a ferromagnetic material and a superconductor, and the movable part can be a single body, a composite, a group of fine particles, or a molded body thereof. The particles may be dispersed in the particles, or the surface or the entire surface of the particles may be provided with charging characteristics.

[作 用] 本発明では、1粒子に磁性と完全反磁性の性質を共有さ
せることにより、単一の磁気源のみでも単一体あるいは
微粒子の双方向変位を可能とするような性質を持たせる
ことにしている。これは、例えば1粒子を強磁性体と超
電導体の結合体とすれば可能である。もちろん強磁性部
分の磁場は超電導体の臨界磁場以下であるとし、これら
の粒子をある領域内に封入しておいて、これに磁界を印
加すればよい、但しこのとき超電導体は臨界温度以下で
完全反磁性を示しているものとする。ここで超電導部分
体の反発力が強磁性部分への吸引力より強くなるような
割合で粒子を構成しておけば、粒子は磁気源と反対方向
の壁側に移動する。
[Function] In the present invention, by making one particle share the properties of magnetism and perfect diamagnetic property, it is possible to impart properties that enable bidirectional displacement of a single body or a fine particle even with only a single magnetic source. I have to. This is possible, for example, if one particle is a combination of a ferromagnetic material and a superconductor. Of course, assuming that the magnetic field of the ferromagnetic part is below the critical magnetic field of the superconductor, these particles can be enclosed within a certain area and a magnetic field applied to it.However, in this case, the superconductor is below the critical temperature. Assume that it exhibits perfect diamagnetism. If the particles are arranged in such a proportion that the repulsive force of the superconducting part is stronger than the attractive force towards the ferromagnetic part, the particles will move toward the wall in the opposite direction from the magnetic source.

そして、さらに印加磁場の強度を超電導体の臨界磁場以
上に増せば、超電導体は完全反磁性から常磁性状態に移
行するため粒子は強磁性部分に受ける磁気源よりの吸引
力により初期の位置に戻る。即ち、双方向の変位が可能
となる。ここで粒子の運動速度を上げ、効率を高めるた
めには、磁性体の表面を超電導体で被覆してしまえばよ
い。
If the strength of the applied magnetic field is further increased to exceed the critical magnetic field of the superconductor, the superconductor will transition from a completely diamagnetic state to a paramagnetic state, and the particles will return to their initial position due to the attractive force from the magnetic source exerted on the ferromagnetic part. return. That is, bidirectional displacement is possible. In order to increase the particle motion speed and improve efficiency, the surface of the magnetic material may be coated with a superconductor.

そうすれば臨界磁場より弱い磁場中においては表面の超
電導体で磁界ははじかれるために内部の磁性体に外部磁
場は働かず、超電導体の完全反磁性による反発力のみが
作用し、臨界磁場より大きな磁場中においては超電導体
は常磁性状態であるため磁場は内部に侵入し、粒子は磁
性体として動作する。この粒子の作成は、例えばフェラ
イト粒子の表面に溶剤に溶かしたセラミック系超電導体
の微粒子を塗布後熱処理すれば可能である。
In this way, in a magnetic field weaker than the critical magnetic field, the magnetic field is repelled by the superconductor on the surface, so no external magnetic field acts on the internal magnetic material, and only the repulsive force due to the perfect diamagnetism of the superconductor acts, making it stronger than the critical magnetic field. In a large magnetic field, the superconductor is in a paramagnetic state, so the magnetic field penetrates inside and the particles behave as a magnetic material. These particles can be produced, for example, by applying fine particles of a ceramic superconductor dissolved in a solvent to the surface of ferrite particles and then heat-treating them.

さらに現存しているセラミック系超電導材料に適量のフ
ェライト粉末を加えることにより磁性超電導材料として
使用してもよい。
Furthermore, existing ceramic superconducting materials may be used as magnetic superconducting materials by adding an appropriate amount of ferrite powder.

[実施例] 以下、本発明の実施例を図面と共に詳細に説明する。[Example] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明を実施したアクチュエータの一例を示
す構成図である。第1図において、1は超電導体、2は
強磁性体で、超電導体lは強磁性体2の周面を被覆し、
両者で1つの結合体を形成している。3はその結合体を
収納するケースで、4はケース3の外側から前記結合体
に磁場を印加するためのコイルである。超電導体1と強
磁性体2との結合体はケース3内に双方向へ変位可能に
収納され、その双方向におけるケース3の端部のうちコ
イル4の磁界の強い方を端部A(3a)とし、弱い方を
端部B (3b)とする、尚、ここで使用する超電導体
lは、装置の周辺雰囲気において完全反磁性の状態であ
るものとする。
FIG. 1 is a configuration diagram showing an example of an actuator embodying the present invention. In FIG. 1, 1 is a superconductor, 2 is a ferromagnetic material, and the superconductor l covers the circumferential surface of the ferromagnetic material 2,
The two form one combined body. Reference numeral 3 denotes a case that houses the combined body, and 4 denotes a coil for applying a magnetic field to the combined body from the outside of the case 3. The combination of the superconductor 1 and the ferromagnetic material 2 is housed in a case 3 so as to be movable in both directions, and the end A (3a ), and the weaker end is defined as end B (3b). It is assumed that the superconductor l used here is in a completely diamagnetic state in the surrounding atmosphere of the device.

第2図は、上記装置において、コイル4の磁場を徐々に
強めて行った場合の結合体の動作を示す説明図である。
FIG. 2 is an explanatory diagram showing the operation of the coupled body when the magnetic field of the coil 4 is gradually strengthened in the above device.

当初、前記結合体は、超電導体1のマイスナー効果によ
る完全反磁性で、図(a)に示すように、コイル4の磁
界に反発して端部B(3b)に到達する。しかし、更に
磁場を強め、結合体にかかる磁場が超電導体の臨界磁場
Hc以上となったとき、超電導体lの完全反磁性は常磁
性に転移するため、超電導体1はコイルからの磁気的反
発力を受けなくなり、内部にコイル磁場が侵入する。こ
の侵入磁場が内部の強磁性体2に作用し、結合体はコイ
ル側への引力を受け、図(b)に示すように、端部A 
(3a)に到達する。このように単一磁界の強度変化に
より、双方向への運動が可能である。もちろん超電導体
の厚さは完全反磁性における磁界の侵入深さより大きい
ことが必要である。
Initially, the combined body is completely diamagnetic due to the Meissner effect of the superconductor 1, and as shown in Figure (a), it repels the magnetic field of the coil 4 and reaches the end B (3b). However, when the magnetic field is further strengthened and the magnetic field applied to the coupled body exceeds the superconductor's critical magnetic field Hc, the perfect diamagnetism of the superconductor l transitions to paramagnetism, so the superconductor 1 experiences magnetic repulsion from the coil. It no longer receives force, and the coil magnetic field enters inside. This penetrating magnetic field acts on the internal ferromagnetic body 2, and the coupled body receives an attractive force toward the coil side, and as shown in Figure (b), the end A
(3a) is reached. Bidirectional movement is thus possible by changing the strength of a single magnetic field. Of course, the thickness of the superconductor must be greater than the penetration depth of the magnetic field in perfect diamagnetism.

さて結合体が端部Bに達したとき磁場をそのまま消去す
れば、結合体はそのまま端部Bにとどまる。また、端部
Aにおいても磁界を十分早くパルス的にON状態からO
FF状態へと変化させれば、結合体は端部Aにとどまる
。これは超電導体の常磁性が再び完全反磁性に移転する
には熱的遷移を必要とし、所要時間がかかるためである
。従って、第3図に示す如く、パルス磁界の強度Hが前
記臨界磁場Hc以下であれば端部B側、HがHa以上で
あれば端部A側と位置指定ができる。このパルスの巾は
、第4図に示す如く、結合体の前記相転移が追随不能の
短い巾であればよく、必ずしも常時コイルに電流を流し
ておく必要はない。
Now, if the magnetic field is simply erased when the bonded body reaches end B, the bonded body will remain at end B. Also, at the end A, the magnetic field is changed quickly from the ON state to the O state in a pulsed manner.
When changed to the FF state, the conjugate remains at end A. This is because a thermal transition is required for the superconductor's paramagnetism to become completely diamagnetic again, and it takes time. Therefore, as shown in FIG. 3, if the intensity H of the pulsed magnetic field is less than or equal to the critical magnetic field Hc, the position can be specified as the end B side, and if H is more than Ha, the position can be specified as the end A side. As shown in FIG. 4, the width of this pulse may be short enough that the phase transition of the combined body cannot be followed, and it is not necessarily necessary to keep the current flowing through the coil at all times.

しかし、電流を流さない場合にも端部Aか端部Bのいず
れかに結合体を確実に保持しておきたいのであれば、例
えば強磁性体の一部をわずかに結合体端面から露出させ
ておき、ケースの両端面に弱磁場を持たせておけばよい
、また結合体が微粒子形状であるならばケースの端面に
はファンデルワールスの力で付着しているので、位置を
そのまま保持できる。
However, if you want to reliably hold the bonded body at either end A or end B even when no current is applied, for example, a portion of the ferromagnetic material may be slightly exposed from the end face of the bonded body. All you need to do is to apply a weak magnetic field to both end faces of the case. Also, if the bond is in the form of fine particles, it will stick to the end face of the case with van der Waals force, so it can maintain its position. .

尚、結合体が微粒子である場合について述べると、第5
図に示す如く結合体微粒子2′を溶液中に分散させてお
いてもよいし、各微粒子表面に帯電特性を有する樹脂を
塗布しておき、その静電引力によりケース端部に保持す
るようにしてもよい。
Regarding the case where the conjugate is a fine particle, the fifth
As shown in the figure, the fine particles 2' of the binder may be dispersed in a solution, or the surface of each fine particle may be coated with a resin having charging properties, and held at the edge of the case by its electrostatic attraction. You can.

また、第6図に示す如く、・マグネット5による常に一
定のバイアス磁場を前記臨界磁場Hcよりも僅かに小さ
く保っておけば、弱エネルギーの制御が可能で、結合体
は常に一端に保持される。
In addition, as shown in Fig. 6, if the bias magnetic field generated by the magnet 5 is always kept slightly smaller than the critical magnetic field Hc, weak energy control is possible and the bonded body is always held at one end. .

第7図は、本発明の応用例を示す構成図であって、第1
図の構成例を複数差べて画像表示を行う例である。同図
において、ケースの端面3b’を半透性材料としておき
、結合体端部1bを有色とすると、磁界強度による結合
体と端面Bとの位置関係で表示を行うことができる。即
ち、結合体が磁場に反発されたときは結合体端部の色が
半透性を通して現れ、結合体が端面B側にないときは半
透性のため結合体の色は表示されない0通常このはたら
きを、従来のように磁性体のみに頼る場合には両端部に
コイルを必要とするが、本発明においては磁気源は単一
でよく、構成が非常に簡単になる。
FIG. 7 is a block diagram showing an application example of the present invention,
This is an example in which an image is displayed by differentiating a plurality of configuration examples of the diagram. In the figure, if the end surface 3b' of the case is made of a semipermeable material and the end portion 1b of the combined body is colored, it is possible to display the positional relationship between the combined body and the end surface B based on the magnetic field strength. In other words, when the bond is repelled by the magnetic field, the color of the bond at the end appears through the semi-permeability, and when the bond is not on the end face B side, the color of the bond is not displayed due to the semi-transparency. When the function relies only on magnetic material as in the past, coils are required at both ends, but in the present invention, only a single magnetic source is required, making the configuration extremely simple.

また、コイルを個々のユニットに取付けずに、磁気ヘッ
ト4′を各ユニットに対してスキャニングすれば、画像
の書込み・消去が可能である。
Furthermore, images can be written and erased by scanning each unit with the magnetic head 4' without attaching coils to each unit.

また、第8図に示すように、回路に一定以上の電流が流
れたとき、それによる磁場変化を検知して回路を遮断す
るスイッチもしくはブレーカとして応用することもでき
る。
Furthermore, as shown in FIG. 8, it can also be applied as a switch or breaker that detects changes in the magnetic field and interrupts the circuit when a current of a certain level or more flows through the circuit.

回路はコイル4及び1対の電極6を介してケース3内に
導入されていて、結合体は通常はコイル4の磁場により
反発され、電流は電極6間を超電導表面を介して流れて
いるが、過大電流が流れた場合、超電導体は常磁性に転
移し、結合体は他端に吸引され、回路は遮断される。尚
、結合体の一部をケース3外に伸ばし、押スィッチ7を
兼ねるようにすれば適時に回路を回復することができる
。結合体が完全反磁性に戻ったとしてもコイル4の磁場
は消えているので押スィッチ7を入れない限り、回路は
回復しないので安全である。この場合ケースの端面に電
極6を配設するものとする。また、本装置はメータの過
電流の保護装置として使うこともできる。
The circuit is introduced into the case 3 via a coil 4 and a pair of electrodes 6, where the coupled bodies are normally repelled by the magnetic field of the coil 4 and current flows between the electrodes 6 via the superconducting surface. , if an excessive current flows, the superconductor transitions to paramagnetism, the bond is attracted to the other end, and the circuit is broken. Incidentally, if a part of the combined body is extended outside the case 3 and is made to also serve as the push switch 7, the circuit can be restored in a timely manner. Even if the combined body returns to complete diamagnetism, the magnetic field of the coil 4 has disappeared and the circuit will not recover unless the push switch 7 is turned on, so it is safe. In this case, the electrode 6 is disposed on the end face of the case. This device can also be used as a meter overcurrent protection device.

このように、超電導体と強磁性体の結合体を形成するこ
とによって、単一の磁気源により双方向への位置的変化
をさせることが可能であり、スイッチ機能、ブレーカ機
能、画像表示機能などへの多くの応用が可能である。こ
の結合体は単一体あるいは微粒子及びその成形体のいず
れでもよい。
By forming a combination of a superconductor and a ferromagnetic material in this way, it is possible to change the position in both directions with a single magnetic source, and it is possible to perform switch functions, breaker functions, image display functions, etc. Many applications are possible. This combined body may be either a single body or fine particles and molded bodies thereof.

また、超電導体部と強磁性体部が結合体内部で゛   
領域分割されていてもよいし、混合していてもよい、ま
た、強磁性体を超電導体で被覆した場合には効率が大き
い。
In addition, the superconductor part and the ferromagnetic part are inside the combined body.
It may be divided into regions or may be mixed. Also, when a ferromagnetic material is coated with a superconductor, the efficiency is high.

[発明の効果] 以上説明したように、本発明によれば、超電導体と磁性
体の結合体を形成することによって、単一の磁気源によ
り双方向の位置変化を行わせることができ、装置の簡単
化、小型化を実現することができる。特に本発明はスイ
ッチ、ブレーカ、表示装置など多くの応用が可能である
[Effects of the Invention] As explained above, according to the present invention, by forming a combination of a superconductor and a magnetic material, bidirectional positional change can be performed by a single magnetic source, and the device simplification and miniaturization can be realized. In particular, the present invention can be applied to many applications such as switches, breakers, and display devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は実施例の
動作の説明図、第3図は結合体と磁場の位置関係の説明
図、第4図は磁性転移の説明図、第5図及び第6図は本
発明の各実施例の構成図、第7図は本発明の表示装置へ
の応用例の構成図、第8図は本発明のブレーカへの応用
例の構成図である。 l・・・超電導体、     2・・・強磁性体、3・
・・ケース、     3a・・・端部A、3b・・・
端部B、     4・・・コイル、5・・・マグネッ
ト、    6・・・電極。 7・・・押スィッチ。
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of the embodiment, Fig. 3 is an explanatory diagram of the positional relationship between the coupled body and the magnetic field, and Fig. 4 is an explanatory diagram of magnetic transition. , FIG. 5 and FIG. 6 are configuration diagrams of each embodiment of the present invention, FIG. 7 is a configuration diagram of an example of application of the present invention to a display device, and FIG. 8 is a configuration diagram of an example of application of the present invention to a breaker. It is a diagram. l...superconductor, 2...ferromagnetic material, 3...
...Case, 3a...End part A, 3b...
End B, 4... Coil, 5... Magnet, 6... Electrode. 7...Press switch.

Claims (8)

【特許請求の範囲】[Claims] (1)ケースと該ケースに収納された可動部とで成り、
可動部のケース内位置を双方向へ変位させることにより
所望の動作を行うアクチュエータにおいて、完全反磁性
と磁性との2つの性質間を転移可能でかつ少なくとも1
個の磁気源の磁場変化により変位する可動部を備えるこ
とを特徴とするアクチュエータ。
(1) Consisting of a case and a movable part housed in the case,
In an actuator that performs a desired operation by displacing the position of a movable part in a case in both directions, the actuator is capable of transitioning between the two properties of complete diamagnetism and magnetism, and has at least one
An actuator comprising a movable part that is displaced by a change in the magnetic field of a magnetic source.
(2)可動部が超電導体と強磁性体との結合体で形成さ
れることを特徴とする特許請求の範囲第1項に記載のア
クチュエータ。
(2) The actuator according to claim 1, wherein the movable part is formed of a combination of a superconductor and a ferromagnetic material.
(3)可動部が強磁性体の表面を超電導体で被覆されて
形成されることを特徴とする特許請求の範囲第1項に記
載のアクチュエータ。
(3) The actuator according to claim 1, wherein the movable part is formed by coating the surface of a ferromagnetic material with a superconductor.
(4)可動部が磁性超電導体又は強磁性体と超電導体と
の混合成形体で形成されることを特徴とする特許請求の
範囲第1項に記載のアクチュエータ。
(4) The actuator according to claim 1, wherein the movable part is formed of a magnetic superconductor or a mixed molded body of a ferromagnetic material and a superconductor.
(5)一定の静磁気源を備えることを特徴とする特許請
求の範囲第1項〜第4項のいずれか1項に記載のアクチ
ュエータ。
(5) The actuator according to any one of claims 1 to 4, characterized in that it includes a constant magnetostatic source.
(6)可動部が微粒子又はその成形体を有することを特
徴とする特許請求の範囲第1項〜第5項のいずれか1項
に記載のアクチュエータ。
(6) The actuator according to any one of claims 1 to 5, wherein the movable part has fine particles or a molded body thereof.
(7)微粒子を溶液中に分散させたことを特徴とする特
許請求の範囲第6項に記載のアクチュエータ。
(7) The actuator according to claim 6, characterized in that fine particles are dispersed in a solution.
(8)微粒子の表面又は全体に帯電特性を備えたことを
特徴とする特許請求の範囲第6項又は第7項に記載のア
クチュエータ。
(8) The actuator according to claim 6 or 7, characterized in that the surface or the entire part of the fine particles has a charging property.
JP26826287A 1987-10-26 1987-10-26 Actuator Pending JPH01114381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26826287A JPH01114381A (en) 1987-10-26 1987-10-26 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26826287A JPH01114381A (en) 1987-10-26 1987-10-26 Actuator

Publications (1)

Publication Number Publication Date
JPH01114381A true JPH01114381A (en) 1989-05-08

Family

ID=17456130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26826287A Pending JPH01114381A (en) 1987-10-26 1987-10-26 Actuator

Country Status (1)

Country Link
JP (1) JPH01114381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287984A (en) * 1988-09-26 1990-03-28 Agency Of Ind Science & Technol Method and device for moving object under cryogenic environment
WO2010090368A1 (en) * 2009-02-09 2010-08-12 Industry-Academic Cooperation Foundation, Yonsei University Superconductor switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287984A (en) * 1988-09-26 1990-03-28 Agency Of Ind Science & Technol Method and device for moving object under cryogenic environment
WO2010090368A1 (en) * 2009-02-09 2010-08-12 Industry-Academic Cooperation Foundation, Yonsei University Superconductor switch

Similar Documents

Publication Publication Date Title
EP1093141B1 (en) Non-volatile mems micro-relays using magnetic actuators
DE60215367T2 (en) MOBILE MAGNETIC CONTROL LINK
US5554961A (en) Energy efficient electromagnetic circuit
EP0179911A1 (en) Electromagnetic actuator apparatus
JPH01114381A (en) Actuator
CS213750B1 (en) Method of making the anizotropic permanent magnets
US4325042A (en) Thermo-magnetically operated switches having two different operating temperatures
Katori et al. Electric manipulation of spinless neutral atoms on a surface
JPH02161702A (en) Actuator actuating movable
US5095295A (en) Superconducting switching device
JP3492221B2 (en) Micro movement device
EP1676353A1 (en) Field force machine
JPH0533827A (en) Vibration isolation device
JPS63274116A (en) High magnetic field generating device
JP2646510B2 (en) Oxide superconducting magnet
US4109219A (en) Electromagnetic switching device
RU26282U1 (en) MICROPOSITIONER BASED ON HIGH-ENERGY CONSTANT FILM MAGNETS
SU746760A1 (en) Magnetically-operated contact
Li et al. Magnetic nonreciprocity in a hybrid device of asymmetric artificial spin-ice-superconductors
CN117642059A (en) Method for producing superconducting magnetic flux diode in artificial spin ice medium
JPH0412505A (en) Planar oxide base superconducting magnet
CN111986937A (en) Electromagnetic device with permanent magnet
JPS61220310A (en) Bilaterally shifting solenoid
SU1145372A1 (en) Circuit breaker
JPH01130443A (en) Circuit opening/closing device