JPH028773B2 - - Google Patents

Info

Publication number
JPH028773B2
JPH028773B2 JP56160064A JP16006481A JPH028773B2 JP H028773 B2 JPH028773 B2 JP H028773B2 JP 56160064 A JP56160064 A JP 56160064A JP 16006481 A JP16006481 A JP 16006481A JP H028773 B2 JPH028773 B2 JP H028773B2
Authority
JP
Japan
Prior art keywords
formula
ferromagnetic particles
group
solution
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56160064A
Other languages
Japanese (ja)
Other versions
JPS5861829A (en
Inventor
Masahiro Hatano
Mari Kawakami
Seiji Tai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP56160064A priority Critical patent/JPS5861829A/en
Publication of JPS5861829A publication Critical patent/JPS5861829A/en
Publication of JPH028773B2 publication Critical patent/JPH028773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • B01F23/511Methods thereof characterised by the composition of the liquids or solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soft Magnetic Materials (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Compounds Of Iron (AREA)
  • Colloid Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、水と混合しない疎水性液体を分散媒
とした磁性流体の製造法に関する。 〔従来の技術〕 磁性流体は、液相中にマグネタイトなどの強磁
性体の微細な紛末を安定に分散させたコロイド溶
液で、磁力、重力などによつて凝集、固液分離が
起らない溶液である。従来、これらの磁性流体
は、高級飽和炭化水素、高級不飽和炭化水素、ハ
ロゲン化炭化水素、芳香族炭化水素、脂肪族エス
テル、脂肪族あるいは芳香族のリン酸エステル、
水などを分散媒として用いている。 従来、これら磁性流体の製造法としては、分散
媒中にカルボン酸またはその金属塩、アミノエス
テル、アルキルベンゼンスルホン酸またはその金
属塩などの界面活性剤を溶解し、その溶液中で強
磁性体をボールミルなどを用いて粉砕し分散させ
る方法、湿式法による強磁性体粒子の表面に過剰
の高級脂肪族を吸着させ、強磁性体粒子をPH7以
下の酸性水溶液にて洗浄後、疎水性分散媒中に再
度分散させる方法、湿式法による強磁性体粒子の
分散液と高級脂肪酸の疎水溶媒液を加熱したもの
とを撹拌下に混合して水を加熱除去して製造する
方法などがある。界面活性剤を含有する分散媒中
で強磁性体をボールミルなどにて粉砕する方法
は、粉砕のために莫大なエネルギーと長時間とを
要し、その上微細な強磁性体粒子の収率が低いと
いう欠点があり、湿式法の強磁性体粒子に高級脂
肪酸を吸着させる方法はPH7以下の酸性水溶液中
では強磁性体粒子が凝集し、水を乾燥させた後、
再度疎水性分散媒中に分散させるのに長時間の加
熱と撹拌を要する欠点がある。また湿式法の強磁
性体粒子の分散液を直接加熱した高級脂肪酸の疎
水溶媒溶液に加えて撹拌し水を加熱除去する方法
は、水を蒸発するための莫大なエネルギーを要す
ることと、水溶液中に溶解した塩類が加熱により
分散飛散する性質のもの、例えばNH4CIなどで
あることが必要であり、強磁性体粒子の原料であ
るFe〓塩、Fe〓塩、中和アルカリ剤に特定の化合
物を必要とするために原料的な制約を受けること
との二重の欠点を有している。 〔発明が解決すべき課題〕 本発明は、これらの欠点を解決し、磁性流体を
簡単な操作で効率よく製造する方法を提供するも
のである。 〔課題を解決すべき手段〕 すなわち本発明は、強磁性体粒子の水分散液中
で該強磁性体粒子表面にシランカツプリング剤ま
たはチタンカツプリング剤を結合させた後、疎水
性溶媒中に分散させることを特徴とする磁性流体
の製造法を提供するものである。 以下に本発明を詳細に説明する。 強磁性体粒子は、通常湿式法、真空冶金法、粉
砕法などによつて調整される粒子径が30〜150Å
のものを用いるが、特に湿式法により調整される
ものが粒子径の分散度の面から好ましい。これら
の強磁性体粒子は、まずPH7程度に調製された水
中に分散させる。通常、マグネタイトなどの微粒
子は湿式法により調整するので、マグネタイトな
どの粒子の調製に用いた水溶液を苛性アルカリ、
鉱酸によつて、マグネタイトなどの粒子の存在の
ままPH7に調製すればよい。 本発明方法において使用するシランカツプリン
グ剤およびチタンカツプリング剤は、例えば次に
示す化学式を有する化合物である。 (RO)3SiR′、(R″)oTiR4-o ここでRは低級アルキル基、例えばメチル基、
エチル基、イソプロピル基を、R′は置換または
無置換のアルキル基、アルケニル基、アリル基、
例えば―CH2―CH2―CH2―NH2、―CH2―CH2
―CH2―SH、―CH2―CH2―CH2―NH―CH2
CH3、―CH2―CH2―CH2―NH―CH2―CH2
NH2、―CH=CH2
[Industrial Application Field] The present invention relates to a method for producing a magnetic fluid using a hydrophobic liquid that does not mix with water as a dispersion medium. [Prior technology] Magnetic fluid is a colloidal solution in which fine powder of ferromagnetic material such as magnetite is stably dispersed in a liquid phase, and does not cause aggregation or solid-liquid separation due to magnetic force, gravity, etc. It is a solution. Conventionally, these magnetic fluids are made of higher saturated hydrocarbons, higher unsaturated hydrocarbons, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic esters, aliphatic or aromatic phosphate esters,
Water etc. are used as a dispersion medium. Conventionally, these magnetic fluids have been produced by dissolving surfactants such as carboxylic acids or their metal salts, amino esters, alkylbenzenesulfonic acids or their metal salts in a dispersion medium, and ball milling the ferromagnetic material in the solution. Excess higher aliphatic is adsorbed onto the surface of ferromagnetic particles using a wet method, and after washing the ferromagnetic particles with an acidic aqueous solution with a pH of 7 or less, the particles are placed in a hydrophobic dispersion medium. There is a method of re-dispersing, and a method of manufacturing by mixing a dispersion of ferromagnetic particles by a wet method with a heated hydrophobic solvent solution of a higher fatty acid with stirring and removing water by heating. The method of pulverizing a ferromagnetic material using a ball mill or the like in a dispersion medium containing a surfactant requires a huge amount of energy and a long time for pulverization, and in addition, the yield of fine ferromagnetic particles is low. However, the wet method of adsorbing higher fatty acids onto ferromagnetic particles causes the ferromagnetic particles to aggregate in an acidic aqueous solution with a pH of 7 or less, and after drying the water,
It has the disadvantage that it requires long-term heating and stirring to redisperse it in a hydrophobic dispersion medium. In addition, the wet method, in which a dispersion of ferromagnetic particles is directly added to a heated hydrophobic solvent solution of higher fatty acids and stirred to remove water by heating, requires a huge amount of energy to evaporate the water, and It is necessary that the salts dissolved in the ferromagnetic particles disperse and scatter when heated, such as NH 4 CI. It has the double disadvantage of being subject to raw material constraints because it requires a compound. [Problems to be Solved by the Invention] The present invention solves these drawbacks and provides a method for efficiently producing magnetic fluid with simple operations. [Means to Solve the Problems] That is, the present invention involves bonding a silane coupling agent or a titanium coupling agent to the surface of ferromagnetic particles in an aqueous dispersion of the ferromagnetic particles, and then bonding the silane coupling agent or titanium coupling agent to the surface of the ferromagnetic particles in a hydrophobic solvent. The present invention provides a method for producing a magnetic fluid characterized by dispersion. The present invention will be explained in detail below. Ferromagnetic particles usually have a particle size of 30 to 150 Å, which is adjusted by wet methods, vacuum metallurgy, pulverization, etc.
Among these, those prepared by a wet method are particularly preferred from the viewpoint of particle size dispersion. These ferromagnetic particles are first dispersed in water adjusted to a pH of about 7. Normally, fine particles such as magnetite are prepared by a wet method, so the aqueous solution used to prepare particles such as magnetite is mixed with caustic alkali,
The pH can be adjusted to 7 using mineral acid while particles such as magnetite are still present. The silane coupling agent and titanium coupling agent used in the method of the present invention are, for example, compounds having the following chemical formula. (RO) 3 SiR′, (R″) o TiR 4-o where R is a lower alkyl group, such as a methyl group,
ethyl group, isopropyl group, R' is substituted or unsubstituted alkyl group, alkenyl group, allyl group,
For example, -CH 2 -CH 2 -CH 2 -NH 2 , -CH 2 -CH 2
―CH 2 ―SH, ―CH 2 ―CH 2 ―CH 2 ―NH―CH 2
CH 3 , ―CH 2 ―CH 2 ―CH 2 ―NH―CH 2 ―CH 2
NH 2 , -CH=CH 2 ,

【式】【formula】

―CH2―CH2―CH2―CIを表わす。R″は置換ま
たは無置換のアルコキシ基、カルボキシ基、例え
―CH 2 ―CH 2 ―CH 2 ―Represents CI. R″ is a substituted or unsubstituted alkoxy group, carboxy group, e.g.

【式】【formula】

【式】【formula】

【式】【formula】

【式】を、Rは アルキルカルボキシ基、置換ベンゼンスルホキシ
基、置換フエノキシ基、不飽和カルボキシ基、ア
ルキル燐酸エステル基、アルキル亜燐酸エステル
基、例えば
[Formula], R is an alkylcarboxy group, a substituted benzenesulfoxy group, a substituted phenoxy group, an unsaturated carboxy group, an alkyl phosphate group, an alkyl phosphite group, e.g.

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】 【formula】

【式】【formula】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁性流体を簡単な操作で効率
よく製造することができ、しかも工業的規模の実
施が可能になるので工業的製法として好適であ
る。 〔実施例〕 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 撹拌翼、滴下漏斗、還流冷却器、温度計を付し
た内容8の四口フラスコ中に硫酸第一鉄、塩化
第二鉄の1モル水溶液各500mlを入れ、撹拌下90
℃にて6N NaOH水溶液を滴下し、PH7に調整し
た。さらに30分90℃にて撹拌を続けマグネタイト
コロイド溶液を調製した。 一方(CH3O)3Si(CH23OCO−C(CH3)=
CH230mlをエタノール200mlに溶解した溶液を調
製した。このエタノール溶液を室温にて撹拌下に
マグネタイトコロイド中に滴下した後、1時間撹
拌下に加熱還流した。 ケロシン200mlを上記液に撹拌しつつ混合する
ことによりマグネタイトコロイドはケロシンに移
行して黒褐色を呈し、静置することにより澄明な
水層を生じた。分液漏斗を用いて2層を分離しケ
ロシン層は水10mlにて2回洗浄した。 生成したケロシンを分散媒とする磁性流体は固
体濃度約32%の液体で密度1.10であつた。この磁
性流体は容器に保存し30日間経過後も沈澱物は生
じなかつた。 実施例 2 実施例1において(CH3O)3Si(CH23OCOC
(CH3)=CH2の代りに 30mlを用いたほかは全く同様に行なつた。得られ
た磁性流体は固体濃度約35%、密度1.15の液体で
あつた。この液体は30日間経過後も沈澱物は生じ
なかつた。 実施例 3 撹拌翼、滴下漏斗、還流冷却器、温度計を付し
た内容8の四口フラスコ中に硫酸第一鉄、塩化
第二鉄の1モル水溶液各500mlを入れ、撹拌下90
℃にて6N NaOH水溶液を滴下しPH7に調整し
た。さらに30分間90℃にて撹拌を続けマグネタイ
トコロイド溶液を調製した。(CH3O)3Si
(CH23NHC2H530mlをキシレン200mlに溶解した
溶液を室温にて撹拌下にマグネタイトコロイド液
中に加え、さらに1時間撹拌下に加熱還流した。
冷却後静置することにより黒褐色のキシレン層と
澄明な水層が分離した。分液漏斗を用いて2層を
分離し、キシレン層は水10mlにて2回洗浄した。 得られた磁性流体は固体濃度約35%の液体で30
日間経過後も沈澱物は生じなかつた。 実施例 4 実施例3における(CH3O)3Si(CH23NHC2H5
に代えて、 30mlを用いたほかは全く同様に行なつた。得ら
れた磁性流体は固体濃度約34%に液体で30日間経
過後も沈澱物は生じなかつた。 比較例 市販のマグネタイト粉末(長径の平均が150Å)
100gとケロシン200mlと(CH3O)3Si
(CH23OCO−C(CH3)=CH230mlとを室温にて
混合し、撹拌下に加熱還流し、その後放冷した。
このものを容器に保存したところ、1日経過した
ところでマグネタイト粒子は完全に沈澱してしま
つた。
According to the present invention, a magnetic fluid can be efficiently produced with simple operations, and can be carried out on an industrial scale, so it is suitable as an industrial production method. [Example] Next, the present invention will be explained in more detail with reference to Examples. Example 1 500 ml each of 1 molar aqueous solutions of ferrous sulfate and ferric chloride were placed in a four-necked flask with a capacity of 8 and equipped with a stirring blade, a dropping funnel, a reflux condenser, and a thermometer, and the mixture was stirred for 90 minutes.
A 6N NaOH aqueous solution was added dropwise at °C to adjust the pH to 7. Stirring was continued for an additional 30 minutes at 90°C to prepare a magnetite colloid solution. On the other hand, ( CH3O ) 3Si ( CH2 ) 3OCO −C( CH3 )=
A solution was prepared by dissolving 30 ml of CH 2 in 200 ml of ethanol. This ethanol solution was added dropwise to the magnetite colloid at room temperature with stirring, and then heated under reflux with stirring for 1 hour. When 200 ml of kerosene was mixed with the above solution while stirring, the magnetite colloid was transferred to kerosene and took on a dark brown color, and upon standing, a clear aqueous layer was formed. Two layers were separated using a separatory funnel, and the kerosene layer was washed twice with 10 ml of water. The produced magnetic fluid using kerosene as a dispersion medium was a liquid with a solids concentration of about 32% and a density of 1.10. This magnetic fluid did not form any precipitate even after 30 days of storage in a container. Example 2 In Example 1, (CH 3 O) 3 Si(CH 2 ) 3 OCOC
(CH 3 )=instead of CH 2 The same procedure was carried out except that 30 ml was used. The obtained magnetic fluid was a liquid with a solids concentration of about 35% and a density of 1.15. This liquid did not produce any precipitate even after 30 days. Example 3 500 ml each of 1 molar aqueous solutions of ferrous sulfate and ferric chloride were placed in a four-necked flask with a capacity of 8 and equipped with a stirring blade, a dropping funnel, a reflux condenser, and a thermometer, and the mixture was stirred for 90 minutes.
A 6N NaOH aqueous solution was added dropwise at ℃ to adjust the pH to 7. Stirring was continued for an additional 30 minutes at 90°C to prepare a magnetite colloid solution. ( CH3O ) 3Si
A solution prepared by dissolving 30 ml of (CH 2 ) 3 NHC 2 H 5 in 200 ml of xylene was added to the magnetite colloid solution at room temperature with stirring, and the mixture was further heated to reflux while stirring for 1 hour.
After cooling, the mixture was allowed to stand, and a dark brown xylene layer and a clear aqueous layer were separated. The two layers were separated using a separatory funnel, and the xylene layer was washed twice with 10 ml of water. The obtained magnetic fluid is a liquid with a solids concentration of approximately 35%.
No precipitate was formed even after several days had passed. Example 4 (CH 3 O) 3 Si(CH 2 ) 3 NHC 2 H 5 in Example 3
Instead of The same procedure was carried out except that 30 ml was used. The obtained magnetic fluid was a liquid with a solid concentration of about 34%, and no precipitate was formed even after 30 days. Comparative example: Commercially available magnetite powder (average major axis is 150Å)
100g and 200ml of kerosene and (CH 3 O) 3 Si
( CH2 ) 3OCO -C( CH3 )= CH2 (30ml) was mixed at room temperature, heated to reflux with stirring, and then allowed to cool.
When this product was stored in a container, the magnetite particles had completely precipitated after one day.

Claims (1)

【特許請求の範囲】[Claims] 1 強磁性体粒子の水分散液中で該強磁性体粒子
表面にシランカツプリング剤またはチタンカツプ
リング剤を結合させた後、疎水性溶媒中に分散さ
せることを特徴とする磁性流体の製造法。
1. A method for producing a magnetic fluid, which comprises bonding a silane coupling agent or a titanium coupling agent to the surface of ferromagnetic particles in an aqueous dispersion of ferromagnetic particles, and then dispersing the mixture in a hydrophobic solvent. .
JP56160064A 1981-10-12 1981-10-12 Production of dispersion for filler Granted JPS5861829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160064A JPS5861829A (en) 1981-10-12 1981-10-12 Production of dispersion for filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160064A JPS5861829A (en) 1981-10-12 1981-10-12 Production of dispersion for filler

Publications (2)

Publication Number Publication Date
JPS5861829A JPS5861829A (en) 1983-04-13
JPH028773B2 true JPH028773B2 (en) 1990-02-27

Family

ID=15707111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160064A Granted JPS5861829A (en) 1981-10-12 1981-10-12 Production of dispersion for filler

Country Status (1)

Country Link
JP (1) JPS5861829A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554088A (en) * 1983-05-12 1985-11-19 Advanced Magnetics Inc. Magnetic particles for use in separations
WO1996034063A1 (en) * 1995-04-28 1996-10-31 Nof Corporation Coating composition, process for preparing the composition, and process for preparing dispersion of inorganic oxide sol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317579A (en) * 1976-08-03 1978-02-17 Mitsubishi Steel Mfg Magnetic emulsifier for treating oillcontained exhaust water
JPS5695326A (en) * 1979-12-29 1981-08-01 Kansai Paint Co Ltd Pigment dispersed liquid
JPS5697533A (en) * 1979-12-29 1981-08-06 Kansai Paint Co Ltd Pigment dispersion
JPS5697534A (en) * 1979-12-29 1981-08-06 Kansai Paint Co Ltd Pigment dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317579A (en) * 1976-08-03 1978-02-17 Mitsubishi Steel Mfg Magnetic emulsifier for treating oillcontained exhaust water
JPS5695326A (en) * 1979-12-29 1981-08-01 Kansai Paint Co Ltd Pigment dispersed liquid
JPS5697533A (en) * 1979-12-29 1981-08-06 Kansai Paint Co Ltd Pigment dispersion
JPS5697534A (en) * 1979-12-29 1981-08-06 Kansai Paint Co Ltd Pigment dispersion

Also Published As

Publication number Publication date
JPS5861829A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
JP2006520258A (en) Chemomechanical production of functional colloids
JPH05205930A (en) Magnetohydrodynamic fluid
CN101796144A (en) cyclic-treated metal oxide
US4664841A (en) Fine particle substance-containing non-aqueous dispersions
JP2014520053A (en) Hydrophobic functionalized particles
US4886624A (en) Colloidal alcohol-dispersible association complexes of ceric dioxide and a hydroxyphenyl carboxylic acid
EP0371147B1 (en) Abrasive composition for silicon wafer
JPH0751580B2 (en) Novel aluminum-magnesium-hydroxy-compounds and their preparation
CN100453469C (en) Method for preparing Nano cube of hematite
JPH0727813B2 (en) Magnetic fluid composition
JPH028773B2 (en)
JPH0825747B2 (en) Magnetite particles and method for producing the same
EP0250205B1 (en) Reaction product of phosphate-ester and alkoxysilan
JPS6332242B2 (en)
JPH028967B2 (en)
JP2009505808A (en) Dispersion system of deagglomerated barium sulfate in halogenated solvent, ether or ester
JP3877827B2 (en) Method for producing ultra high purity spherical silica fine particles
CN106397465B (en) Azo metal complex and its charge control agent application and the toner containing it
JPH01153529A (en) Ultrafine particle of titanium oxide having modified surface
JPH02206691A (en) Production of magnetic fluid
JP2832297B2 (en) Method for producing ultra-fine water-dispersible magnetite
JPH0217932A (en) Modified inorganic particle and preparation thereof
JP2020523425A (en) Method for producing spherical polysilsesquioxane particles
US2132588A (en) Diaromatic peroxide
JP3208805B2 (en) Hydrating pesticide composition