JPH0287427A - Optical fiber composite insulator and manufacture thereof - Google Patents

Optical fiber composite insulator and manufacture thereof

Info

Publication number
JPH0287427A
JPH0287427A JP23879088A JP23879088A JPH0287427A JP H0287427 A JPH0287427 A JP H0287427A JP 23879088 A JP23879088 A JP 23879088A JP 23879088 A JP23879088 A JP 23879088A JP H0287427 A JPH0287427 A JP H0287427A
Authority
JP
Japan
Prior art keywords
optical fiber
glass tube
insulator
glass
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23879088A
Other languages
Japanese (ja)
Other versions
JPH0664954B2 (en
Inventor
Shoji Seike
清家 捷二
Toshiyuki Mima
美馬 敏之
Koichi Mori
幸一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63238790A priority Critical patent/JPH0664954B2/en
Publication of JPH0287427A publication Critical patent/JPH0287427A/en
Publication of JPH0664954B2 publication Critical patent/JPH0664954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make glass sealing of an optical fiber over the whole internal hole of an insulator by sealedly protecting the optical fiber with a glass tube made of an appropriate material, and by sealing the glass tube penetrated by the optical fiber in a porcelain internal hole with a sealing glass. CONSTITUTION:An optical fiber 1 is cut into specified lengths, and the ends of each piece is covered with heat resistant resin 3-1, 3-2. A specified number of optical fibers 1 are installed inside this glass tube 4 with low thermal expansion. After the glass tube 4 with optical fibers 1 is heated to a temp. 700-800 deg.C, metal dies 5-1, 5-2 in specific shape apply a pressure. Thereby the optical fibers 1 are sealed in the glass tube 4. Finally heat resistant resin 6 seals, if necessary, the gaps between the heat resistant resin and glass tube or between optical fibers and glass to be produced at the ends of glass tube 4 after being welded. These optical fibers 1 after completion of anti-heat treatment are installed in an internal hole 12 of an insulator 11, and the gap between the side wall of glass tube 4 and the inner hole 12 is filled with glass powder for sealing or mixture liquid, and an organic glass flow stopper 13 is provided in the internal hole 12 at the bottom.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、送電線網及び変電所における故障点検出シス
テムを形成する場合に主として用いられる光ファイバ複
合碍子及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical fiber composite insulator that is mainly used in forming a fault point detection system in a power transmission line network and a substation, and a method for manufacturing the same.

(従来の技術) 従来から電力系統における故障点の自動検出のため、課
電側の光センサからの信号を接地側の検出器まで伝送す
る機能を有する光ファイバ複合碍子が使用されている。
(Prior Art) Optical fiber composite insulators that have a function of transmitting a signal from an optical sensor on the power supply side to a detector on the ground side have been used for automatic detection of failure points in power systems.

これらの光ファイバ複合碍子は種々のものが知られてお
り、例えば特開昭60−158.402号公報において
は、碍子の軸部の軸心に貫通孔を有し、この貫通孔に光
ファイバが挿通され、その貫通孔の全体または部分にシ
リコーンゴムやエポキシ樹脂等の有機絶縁物を充填する
ことにより光ファイバを封着し、碍子の表面漏洩絶縁距
離を減少させることを防止する技術および碍子の磁器全
体を加熱しておき貫通孔中に溶融したガラスを貫通孔の
全体または部分に流し込み、光ファイバを封でする技術
が知られている。
Various kinds of these optical fiber composite insulators are known. For example, in Japanese Patent Application Laid-Open No. 60-158.402, the insulator has a through hole in the axial center of the shaft part, and an optical fiber is inserted into this through hole. A technique for sealing an optical fiber by filling the whole or part of the through hole with an organic insulating material such as silicone rubber or epoxy resin to prevent surface leakage of the insulator from reducing the insulation distance, and an insulator. A technique is known in which the entire porcelain is heated and molten glass is poured into the whole or part of the through hole to seal the optical fiber.

(発明が解決しようとする課題) しかしながら、上述した有機物による封着においては、
封着材である有機物と磁器とでは熱膨張係数が大きく異
なるため、加熱時に貫通孔から封着材が飛び出したり、
磁器を内部からおし割ったりする問題があった。
(Problem to be solved by the invention) However, in the above-mentioned sealing using an organic substance,
Since the thermal expansion coefficients of the organic sealing material and porcelain are significantly different, the sealing material may jump out of the through hole when heated.
There was a problem of cracking the porcelain from inside.

また、上述した無機物による封着においては、被覆をは
がした光ファイバまたは被覆があっても加熱により被覆
がはがれた光ファイバが碍子の内孔内を挿通することと
なるため、封着用ガラスを溶融させるために加熱すると
光ファイバが碍子内部で断線しやすい問題もあった。す
なわち、シリコーンゴム等の被覆を施された光ファイバ
からジャケットストリッパー等で被覆をはく離すると、
表面にわずかな傷がつき強度が大幅に低下し、このよう
に強度が低下した光ファイバを無機ガラス封着に使用す
ると、封着後に光ファイバが断線する問題もあった。
In addition, in the case of sealing with an inorganic material as described above, the optical fiber with the coating removed or the optical fiber whose coating has been peeled off due to heating will be inserted into the inner hole of the insulator, so the sealing glass is used. There was also the problem that the optical fiber was likely to break inside the insulator when heated to melt it. In other words, when the coating is removed from an optical fiber coated with silicone rubber or the like using a jacket stripper or the like,
Slight scratches on the surface cause a significant drop in strength, and when an optical fiber with such reduced strength is used for sealing inorganic glass, there is a problem that the optical fiber may break after sealing.

本発明の目的は上述した課題を解消して、製造方法が簡
単でしかも信!ki性の高い光ファイバ複合碍子および
その製造方法を提供しようとするものである。
The purpose of the present invention is to solve the above-mentioned problems and to produce a product that is simple and reliable! The present invention aims to provide an optical fiber composite insulator with high resistance and a method for manufacturing the same.

(課題を解決するための手段) 本発明の光ファイバ複合碍子は、碍子の中央部分を貫通
する内孔中に、ガラス管の内孔に溶着した光ファイバを
設置し、碍子の内孔とガラス管の側壁の間を封着用ガラ
スで封着した構造を有することを特徴とするものである
(Means for Solving the Problems) The optical fiber composite insulator of the present invention has an optical fiber welded to the inner hole of a glass tube installed in the inner hole penetrating the central part of the insulator, and the inner hole of the insulator and the glass It is characterized by having a structure in which the side walls of the tube are sealed with sealing glass.

また、本発明の光ファイバ複合碍子の製造方法は、両端
部を耐熱性樹脂で被覆した光ファイバをガラス管内孔に
設置し、ガラス管を所定の温度まで加熱し加圧すること
により光ファイバをガラス管内に封着し、当該光ファイ
バを碍子の中央部分を貫通する内孔中に設置し、碍子の
内孔とガラス管の側壁の間に封着用ガラスを充填した後
加熱して、碍子の内孔とガラス管の側壁の間を封着する
ことを特徴とするものである。
Furthermore, in the method for manufacturing an optical fiber composite insulator of the present invention, an optical fiber whose both ends are coated with a heat-resistant resin is installed in the inner hole of a glass tube, and the optical fiber is heated to a predetermined temperature and pressurized. The optical fiber is sealed inside the tube, and the optical fiber is installed in the inner hole that passes through the center of the insulator. After filling sealing glass between the inner hole of the insulator and the side wall of the glass tube, it is heated to seal the inside of the insulator. It is characterized by sealing between the hole and the side wall of the glass tube.

(作 用) 上述した構成において、本発明の光ファイバ複合碍子は
、碍子の磁器と熱膨張係数が近い無機ガラスを封着材と
して用いることにより、従来の有機封着における課題を
解決できるとともに、光ファイバを碍子内孔中へ無機ガ
ラスにより封着を行うときに、光ファイバをパイレック
スガラス等の低熱膨張性ガラス管で被覆する構成として
いるため、光ファイバの断線もなく信頼性の高い光ファ
イバ複合碍子を得ることができる。
(Function) In the above-described configuration, the optical fiber composite insulator of the present invention can solve problems in conventional organic sealing by using inorganic glass, which has a coefficient of thermal expansion close to that of the porcelain of the insulator, as a sealing material. When sealing the optical fiber into the inner hole of the insulator with inorganic glass, the optical fiber is coated with a low thermal expansion glass tube such as Pyrex glass, so the optical fiber is highly reliable and does not break. Composite insulators can be obtained.

また、磁器の熱膨張係数をα2.ガラス管の熱膨張係数
をα1、封着用ガラスの熱膨張係数をαgとしたとき、
0.4≦αt/αg≦1.0.0.5≦αg/αい≦1
.0で、かつ0.5≦αg/αp≦1.5の関係を満た
すように各部材を構成すると、後述する実施例からも明
らかなように、信頼性のより良好な光ファイバ複合碍子
を得ることができるため好ましい。
In addition, the coefficient of thermal expansion of porcelain is α2. When the thermal expansion coefficient of the glass tube is α1 and the thermal expansion coefficient of the sealing glass is αg,
0.4≦αt/αg≦1.0.0.5≦αg/α≦1
.. If each member is configured to satisfy the relationship 0 and 0.5≦αg/αp≦1.5, an optical fiber composite insulator with better reliability can be obtained, as is clear from the examples described later. This is preferable because it can be done.

さらに、本発明の製造方法においては、光ファイバに対
し低熱膨張性ガラス管を封着した後、このガラス管と碍
子内孔との間を封着ガラスで封着しているため、加熱時
にも光ファイバは劣化せず、光ファイバの断線を未然に
防ぐことができる。
Furthermore, in the manufacturing method of the present invention, after a low thermal expansion glass tube is sealed to the optical fiber, the gap between the glass tube and the insulator inner hole is sealed with sealing glass, so that even during heating, The optical fiber does not deteriorate and breakage of the optical fiber can be prevented.

また、本発明の製造方法で使用する光ファイバとして、
光ファイバ製造時に保護被覆を形成させず、光ファイバ
と直接接着せず、光ファイバの損傷を防止するために有
機シートにより保護した光ファイバを使用すると、従来
光ファイバの被覆をはがす際に生じた光ファイバの劣化
を、被覆はがし工程をなくすことにより皆無にすること
ができるため好ましい。
Moreover, as an optical fiber used in the manufacturing method of the present invention,
If you use an optical fiber that is protected by an organic sheet to prevent damage to the optical fiber without forming a protective coating or directly adhering it to the optical fiber during manufacturing, the problems that occur when removing the coating from conventional optical fibers. This is preferable because deterioration of the optical fiber can be completely eliminated by eliminating the step of removing the coating.

さらに、光ファイバを)古着したガラス管の両端部に耐
熱樹脂を封入すると、光ファイバをガラス管に熔着した
り、ガラス管に熔着した光ファイバを碍子内孔に封着ガ
ラスを用いて封着した後においても、光ファイバを屈曲
変形することが可能であり、他の光ファイバとの接続が
容易となる等の利点を有する。
Furthermore, if heat-resistant resin is sealed at both ends of a used glass tube (optical fiber), the optical fiber can be welded to the glass tube, or the optical fiber welded to the glass tube can be placed in the inner hole of the insulator using sealing glass. Even after being sealed, the optical fiber can be bent and deformed, which has advantages such as ease of connection with other optical fibers.

さらにまた、封着加熱時に、碍子の外部に露出した部分
の光ファイバを冷却しながら碍子を加熱すると、ガラス
管による耐熱処理が施されておらず高温にさらされる部
分の劣化を防1Fできるため好ましい。
Furthermore, by heating the insulator while cooling the optical fibers exposed to the outside during sealing and heating, it is possible to prevent deterioration of the parts of the insulator that are not heat-resistant and are exposed to high temperatures due to the glass tube. preferable.

(実施例) 第1図(a)〜(f)は本発明における光ファイバ複合
碍子を製造する際の耐熱処理工程を説明するための図で
ある。第1図(a)は、本発明の光ファイバ複合碍子に
使用する光ファイバを作製する際の好適な一例を示すも
ので、必要に応じて実施される工程である。第1図(a
)において、通常の光ファイバ作製時に施されるシリコ
ーンゴム、ポリイミド樹脂等の耐熱樹脂による表面被覆
を実施せず、引き抜かれた光ファイバIを有機物シート
2により保護して巻き取ることにより、表面被覆のない
光ファイバ1の取扱いを容易にしている。
(Example) FIGS. 1(a) to 1(f) are diagrams for explaining a heat-resistant treatment process when manufacturing an optical fiber composite insulator according to the present invention. FIG. 1(a) shows a preferred example of producing an optical fiber for use in the optical fiber composite insulator of the present invention, and shows steps to be carried out as necessary. Figure 1 (a
), the surface coating is done by protecting the pulled optical fiber I with an organic sheet 2 and winding it up, without applying the surface coating with heat-resistant resin such as silicone rubber or polyimide resin, which is applied during the production of ordinary optical fibers. This makes it easy to handle the optical fiber 1 without any cracks.

まず、第1図(b)に示すように、第1図(a)に示す
ようにして得るかまたは被:Wをはがして得た光ファイ
バ1を所定の長さに切断し、碍子から外部へはみ出る部
分の保護のため両端部をポリイミド、シリコーンゴム等
の耐熱樹脂3−1.3−2で被覆する。このとき、光フ
ァイバ1に予め耐熱性樹脂をコーティングしておき、ガ
ラス管を溶着する部分のコーティングを光ファイバ1に
傷をつけないように、加熱または薬品の処理によりはぎ
取って耐熱樹脂3−1.3−2を形成することができる
。次に、第1図(c)に示すように、耐熱樹脂3−1.
3−2で両端部を被覆した光ファイバlを、パイレック
スガラス等の低熱膨張性のガラス管4内に所定本数、本
実施例では2本設置する。
First, as shown in FIG. 1(b), the optical fiber 1 obtained as shown in FIG. 1(a) or obtained by peeling off the W is cut into a predetermined length, and the In order to protect the protruding parts, both ends are covered with heat-resistant resin 3-1.3-2 such as polyimide or silicone rubber. At this time, the optical fiber 1 is coated with a heat-resistant resin in advance, and the coating on the part where the glass tube is welded is peeled off by heating or chemical treatment so as not to damage the optical fiber 1. .3-2 can be formed. Next, as shown in FIG. 1(c), heat-resistant resin 3-1.
A predetermined number of optical fibers l, both ends of which are coated with 3-2, are installed in a low thermal expansion glass tube 4 such as Pyrex glass, two in this embodiment.

次に、第1図(d)に示すように、内部に光ファイバl
を設置したガラス管4を700〜800 ’Cの温度に
加熱した後、所定形状の金型5−1.5−2により加圧
する。これにより、光ファイバ1をガラス管4内に封着
する。この場合、封着を容易にするために、ガラス管内
面および光ファイバ表面にフラックス成分を塗布するこ
とは有効である。また、ガラス管の外部に露出した光フ
ァイバ(耐熱樹脂を塗布している部分)を冷却しながら
加熱することは、耐熱性樹脂を保護するために有効であ
る。最後に、第1図(e)に示すように、必要に応して
溶着後のガラス管4の両端部に生じる耐熱樹脂とガラス
管あるいは光ファイバとガラス間等の間のすき間に耐熱
樹脂6を封入して、光ファイバ1の耐熱処理を実施して
いる。
Next, as shown in FIG. 1(d), an optical fiber l is inserted inside.
After heating the glass tube 4 equipped with the above to a temperature of 700 to 800'C, it is pressurized using a mold 5-1.5-2 having a predetermined shape. Thereby, the optical fiber 1 is sealed inside the glass tube 4. In this case, it is effective to apply a flux component to the inner surface of the glass tube and the surface of the optical fiber in order to facilitate sealing. Furthermore, heating the optical fiber exposed outside the glass tube (the part coated with heat-resistant resin) while cooling it is effective in protecting the heat-resistant resin. Finally, as shown in FIG. 1(e), if necessary, a heat-resistant resin 6 The optical fiber 1 is heat-resistant treated by enclosing it.

なお、第1図(d)に示す加熱・加圧による光ファイバ
の封着のかわりに、第1図(f)に示すように、ガラス
管4を局部的にバーナ7−1.7−2で加熱して軟化し
た状態で、ローラ8−]、  82で引張しながら加圧
して、光ファイバ1をガラス管4に封入することもでき
る。
Note that instead of sealing the optical fibers by heating and pressurizing as shown in FIG. 1(d), the glass tube 4 is locally sealed with a burner 7-1, 7-2, as shown in FIG. 1(f). The optical fiber 1 can also be sealed in the glass tube 4 by heating it in a softened state and applying pressure while pulling it with the rollers 8- and 82.

耐熱処理の終了した光ファイバ1は、第2図に示すよう
に碍子11の中央部分を貫通する内孔12中に設置し、
内孔12とガラス管4の側壁との間に封着用ガラス粉末
または泥漿を充填するとともに、下端部の内孔12中に
仮焼磁器等よりなる無機ガラス流れ止め13を設ける。
The optical fiber 1 that has been heat-resistant treated is installed in the inner hole 12 that passes through the center of the insulator 11, as shown in FIG.
Glass powder or slurry for sealing is filled between the inner hole 12 and the side wall of the glass tube 4, and an inorganic glass stopper 13 made of calcined porcelain or the like is provided in the inner hole 12 at the lower end.

封着用ガラスは、充填効率を良くするために、ガラス管
と碍子の内孔に納まる形状に成形後仮焼したものが特に
よい。また、封着用ガラスが溶融し、脱気にともない体
積が減少する分の封着ガラスを補充する際、流動性を良
くするためにビーズ状(直径300〜2000μm)に
成形した封着ガラスを使用することは均質に封着するた
めに有効である。その後、第2図に示すように、ヒータ
14.熱風吹込口15aおよび排出口15bからなる加
熱装置16中に碍子11を設置し、熱風吹込口15aか
ら熱風を吹き込み排出口15bから・排気するとともに
、ヒータ13を使用して碍子11の周囲から加熱して低
融点の封着用ガラスを溶融する。その際、溶融したガラ
スが下部へ移動し上部内孔中にガラスが存在しなくなる
ような場合は、加熱中に碍子11の上部より溶融した無
機ガラスをつぎ足す必要がある。なお、封着加熱時には
、碍子11の外部に露出した部分の光ファイバを、無機
繊維と水冷用金属パイプとからなる冷却部17−1゜1
7−2により保護して、冷却しながら加熱すると、光フ
ァイバの折れを防止できるため好ましい。最後に、必要
に応じてガラス管4の周囲を碍子11の両端でシリコー
ンゴム等で保護し、第3図に示すような光ファイバ複合
碍子を得ることができる。
In order to improve the filling efficiency, the sealing glass is particularly preferably formed into a shape that fits into the inner hole of the glass tube and the insulator, and then calcined. In addition, when replenishing the sealing glass that decreases in volume due to melting and degassing, sealing glass formed into beads (300 to 2000 μm in diameter) is used to improve fluidity. This is effective for uniformly sealing. Thereafter, as shown in FIG. 2, the heater 14. The insulator 11 is installed in a heating device 16 consisting of a hot air inlet 15a and an outlet 15b, and hot air is blown from the hot air inlet 15a and exhausted from the outlet 15b, and the heater 13 is used to heat the insulator 11 from around it. to melt the low melting point sealing glass. At that time, if the molten glass moves to the lower part and there is no glass in the upper inner hole, it is necessary to add molten inorganic glass from the upper part of the insulator 11 during heating. Note that during sealing and heating, the optical fiber in the portion exposed to the outside of the insulator 11 is cooled by a cooling section 17-1゜1 consisting of inorganic fibers and a metal pipe for water cooling.
It is preferable to protect the optical fiber by 7-2 and heat it while cooling, since this can prevent the optical fiber from breaking. Finally, if necessary, the glass tube 4 is protected at both ends of the insulator 11 with silicone rubber or the like to obtain an optical fiber composite insulator as shown in FIG.

以下、実際の例について説明する。An actual example will be explained below.

まず、以下の各実施例で使用する光ファイバ。First, optical fibers used in each of the following examples.

ガラス管、封着ガラス、磁器の仕様について、第1表に
記載する。
The specifications of the glass tube, sealing glass, and porcelain are listed in Table 1.

n■上 光ファイバに対する断熱前処理の有効性を確認するため
、碍子形状:外径60mmφ、内孔径15+nmφ。
In order to confirm the effectiveness of the heat insulation pretreatment for the n■ upper optical fiber, the insulator shape was: outer diameter 60 mmφ, inner hole diameter 15+nmφ.

長さ200mm、封着焼成スケジュール:480°C,
1時間保持の条件で、第2表に示す光ファイバ、ガラス
管、封着ガラス、磁器を使用して第2表に示す本発明範
囲内および範囲外の碍子テストピースを作製し、封着後
の外観および封着後の光伝送1員失を調べた。外観は、
封着焼成後に染色塗料を含浸させ、発色状態によりクラ
ックの有無を観察し、また磁器を切断し封着ガラスの充
填状態を観察した。○印を記入したものはクランク発生
が認められず、封着ガラスに大きな気泡もなく良好な外
観状態を示しているものを表わす。光伝送損失は、封着
焼成前後で光透過量を測定し、その1員失量が3dB以
下であれば問題がない。
Length 200mm, Sealing firing schedule: 480°C,
Under conditions of holding for 1 hour, insulator test pieces within and outside the scope of the present invention as shown in Table 2 were prepared using the optical fiber, glass tube, sealing glass, and porcelain shown in Table 2, and after sealing. The appearance and loss of one member of optical transmission after sealing were investigated. The appearance is
After sealing and firing, the porcelain was impregnated with a dyeing paint, and the presence or absence of cracks was observed based on the state of color development.The porcelain was also cut to observe the filling state of the sealing glass. Those marked with a circle indicate that no cranking was observed and the sealing glass had no large bubbles and had a good appearance. Optical transmission loss is determined by measuring the amount of light transmitted before and after sealing and firing, and if the loss of one member is 3 dB or less, there is no problem.

結果を第2表に示す。The results are shown in Table 2.

第2表の結果から、本発明のA−1〜八−3は封着後の
外観が良好で封着後の光伝送損失もすべて3db以下と
問題がなかったのに対し、比較例の八−4゜八−5は封
着後の外観からA−4では封着が不十分で、またA−4
,A−5とも碍子製造時に光ファイバが断線していた。
From the results in Table 2, it can be seen that A-1 to A-8-3 of the present invention had a good appearance after sealing, and the optical transmission loss after sealing was all 3 db or less, causing no problems, whereas Comparative Example A-1 to A-8-3 had no problem. -4゜8-5: Judging from the appearance after sealing, A-4 was insufficiently sealed, and A-4
, A-5 both had optical fibers broken during insulator manufacturing.

この結果から、本発明のガラス管による被覆処理の有効
性が確認できた。
From this result, the effectiveness of the coating treatment using the glass tube of the present invention was confirmed.

実上血I 実施例1でガラス管による被覆処理の有効性が確認でき
たことをふまえて、各部材の熱膨張係数の最適な組み合
わせを見出すため、以下のような実験を実施した。
Practical Blood I Based on the fact that the effectiveness of the glass tube coating treatment was confirmed in Example 1, the following experiment was conducted in order to find the optimal combination of thermal expansion coefficients of each member.

まず、第6表に示す光ファイバを400 mmに切断し
、切断した光ファイバのガラス管で溶着しない両端部1
00 mmに耐熱樹脂であるポリイミドを被覆した。こ
の光ファイバを第3表に示す組成で内径0.8mmφ、
外径2.0+nmφ、長さ220 mmのガラス管の内
孔に挿通した。その後、ガラス管を加熱してガラス管が
変形できる状態になったとき、金型により加圧して光フ
ァイバをガラス管内孔に封着した。
First, cut the optical fiber shown in Table 6 to 400 mm, and cut both ends of the cut optical fiber that are not welded with a glass tube.
00 mm was coated with polyimide, which is a heat-resistant resin. This optical fiber has the composition shown in Table 3, has an inner diameter of 0.8 mmφ,
It was inserted into the inner hole of a glass tube with an outer diameter of 2.0+nmφ and a length of 220 mm. Thereafter, when the glass tube was heated to a state where it could be deformed, pressure was applied using a mold to seal the optical fiber into the inner hole of the glass tube.

このようにしてガラス管内に封着した光ファイバを、第
3表に示す組成で外径60mmφ、内孔径15II1m
φ、長さ200 mmの碍子の中央部分を貫通する内孔
中に挿通し、ガラス管と磁器内孔の側壁との間に第3表
に示す封着ガラス粉末を充填して加熱することにより封
着した。封着焼成スケジュールは、封着ガラスがへ組成
の場合480°C,1時間保持、B組成の場合450’
C,1時間保持、C組成の場合460°C,1時間保持
で実施した。碍子が冷却した後に、封着ガラスで溶着さ
れていなく、碍子の内孔から外部へ露出したガラス管お
よび光ファイバの加熱により焼損した部分を樹脂または
ゴム状弾性体で被覆して、試験No、B−1〜B−39
の光ファイバ複合碍子を得た。得られた光ファイバ複合
碍子に対して、実施例1と同様に封着後の外観を調べる
とともに、封着後の光伝送損失を調べた。さらに、各温
度差における冷熱試験を、加熱して所定温度になったグ
リコール溶液槽と20°Cの水槽を利用し、各槽中に1
時間ずつ保持し、その操作を3回繰返すことにより実施
した。結果を第3表に示す。
The optical fiber sealed in the glass tube in this way was prepared with the composition shown in Table 3 and had an outer diameter of 60 mmφ and an inner hole diameter of 15 II 1 m.
By inserting the insulator into the inner hole penetrating the central part of the insulator with φ, length 200 mm, filling the space between the glass tube and the side wall of the porcelain inner hole with the sealing glass powder shown in Table 3, and heating it. Sealed. The sealing firing schedule is 480°C for 1 hour if the sealing glass has composition B, and 450°C if the sealing glass has composition B.
C, held for 1 hour; in the case of C composition, held at 460°C for 1 hour. After the insulator has cooled, the portions of the glass tube and optical fiber that have not been welded with the sealing glass and are exposed to the outside from the inner hole of the insulator and have been burned out by heating are covered with resin or rubber-like elastic material, and test No. B-1 to B-39
An optical fiber composite insulator was obtained. The appearance of the obtained optical fiber composite insulator after sealing was examined in the same manner as in Example 1, and the optical transmission loss after sealing was also examined. Furthermore, we conducted a cold/thermal test at each temperature difference using a glycol solution tank that had been heated to a specified temperature and a water tank at 20°C.
This was carried out by holding the sample for each time and repeating the operation three times. The results are shown in Table 3.

第3表の結果から、封着後の外観および光伝送′#員失
を満たすとともに、温度差70°Cの冷熱試験を満たす
本発明の光ファイバ複合碍子の中でも、磁器の熱膨張係
数をα2.ガラス管の熱膨張係数をαt、封着用ガラス
の熱膨張係数をαgとしたとき、 0.4 ≦ αg/α2≦1.0 0.5 ≦ αg/α2≦1.0 で、かつ 0.5≦ αg/αp≦1.0 の関係を満たす光ファイバ複合碍子は、さらに良好な冷
熱試験結果が得られていることがわかる。
From the results in Table 3, it is clear that among the optical fiber composite insulators of the present invention that satisfy the appearance after sealing and optical transmission loss, and also satisfy the thermal test with a temperature difference of 70°C, the coefficient of thermal expansion of porcelain is α2. .. When the thermal expansion coefficient of the glass tube is αt and the thermal expansion coefficient of the sealing glass is αg, 0.4 ≦ αg/α2≦1.0 0.5 ≦ αg/α2≦1.0, and 0.5 It can be seen that the optical fiber composite insulator that satisfies the relationship ≦αg/αp≦1.0 has even better thermal test results.

災与■1 長さ400胴の光ファイバへの両端部の各100mmを
ポリイミド樹脂で被覆し、外径2 mmφ、内径0.8
柵φ、長さ210 mmのガラス管Bに挿通し、加熱お
よび加圧して、光ファイバをガラス管内に封着した。こ
の光ファイバを磁器Aからなる碍子の内径10mmφの
内孔の中央に設置し、その外側部に前記第1表に記載す
る封着ガラスA粉末を充填した。
Disaster ■1 Coat each 100 mm of both ends of an optical fiber with a length of 400 mm with polyimide resin, and have an outer diameter of 2 mmφ and an inner diameter of 0.8 mm.
The optical fiber was inserted into a glass tube B having a fence φ and a length of 210 mm, and was heated and pressurized to seal the optical fiber inside the glass tube. This optical fiber was installed in the center of an inner hole having an inner diameter of 10 mm in an insulator made of porcelain A, and the outer part thereof was filled with sealing glass A powder listed in Table 1 above.

次に、碍子の内孔から外部に露出した上下端部のガラス
管および光ファイバを、第4表に示すように必要に応じ
て無機繊維でおおい、無機繊維を固定するためにその外
部を金属または耐火物で囲い、さらに無機繊維の内部に
金属管を設置した。
Next, the glass tube and optical fiber at the upper and lower ends exposed to the outside from the inner hole of the insulator are covered with inorganic fibers as required, as shown in Table 4, and the outside is covered with metal to fix the inorganic fibers. Alternatively, it was surrounded with refractory material and a metal tube was installed inside the inorganic fibers.

このように配置した碍子を電気炉に挿入し、最高温度4
80°Cで1時間保持するスケジュールで加熱して封着
した。得られた光ファイバ複合碍子に対して引張試験を
実施して、光ファイバ刊1張強度を測定した。結果を第
4表に示す。
Insert the insulator arranged in this way into an electric furnace and heat it to a maximum temperature of 4.
It was heated and sealed by holding it at 80°C for 1 hour. A tensile test was conducted on the obtained optical fiber composite insulator to measure the tensile strength of the optical fiber. The results are shown in Table 4.

第  4 表 第4表の結果から、光ファイバを碍子内孔へ加熱して封
着する際、碍子の内孔から外部に露出した上下部のガラ
ス管および光ファイバを、冷却部により冷却すると、高
い光ファイバ引張強度を得ることができ好ましいことが
わかる。
Table 4 From the results in Table 4, when heating and sealing the optical fiber into the inner hole of the insulator, if the upper and lower glass tubes and the optical fiber exposed to the outside from the inner hole of the insulator are cooled by the cooling section, It can be seen that high optical fiber tensile strength can be obtained, which is preferable.

尖血汎↓ 実際の製品として組み立てて評価するため、長さ200
0mmの光ファイバAの両端部の各500 mmをポリ
イミド樹脂で被覆した。外径5 mmφ、内径3.4m
mφ、長さ1020mmのガラス管Bを電気炉内850
°Cで加熱後加圧して、内径が短径1mmの楕円形状に
なるよう成形した。このガラス管の内孔に光ファイバ2
本を挿入し、光ファイバの両端部を無機繊維でおおい、
冷却しながら電気炉内で850°Cまで加熱し、10k
gの荷重でガラス管を加圧し、光ファイバをガラス管内
孔に封着した。
Senkepan ↓ Length 200 mm to assemble and evaluate as an actual product
Each 500 mm of both ends of the 0 mm optical fiber A were coated with polyimide resin. Outer diameter 5mmφ, inner diameter 3.4m
Glass tube B with mφ and length of 1020 mm was placed in an electric furnace at 850 mφ and 1020 mm in length.
It was heated at °C and then pressurized to form an elliptical shape with an inner diameter of 1 mm in breadth. Optical fiber 2 is inserted into the inner hole of this glass tube.
Insert a book, cover both ends of the optical fiber with inorganic fiber,
Heat to 850°C in an electric furnace while cooling and heat at 10k.
The glass tube was pressurized with a load of g to seal the optical fiber into the inner hole of the glass tube.

磁器Aからなる胴径105 mmφ、等径190 、m
mφ。
Body made of porcelain A, diameter 105 mmφ, equal diameter 190 m
mφ.

長さ1000mm、内孔径10mmφの碍子の内孔にガ
ラス管で保護封着した光ファイバを挿入し、内孔下部に
磁器製の流れ止めを設置し、ガラス管と碍子の内孔の側
面との間に封着用ガラスBの粉末を充填した。さらに、
碍子の内孔から外部へ露出したガラス管および光ファイ
バを無機繊維でおおい、耐火物でその外部を固定すると
ともに無機繊維内に金属パイプを設置し、冷却できる構
造とした。
An optical fiber protected and sealed with a glass tube is inserted into the inner hole of an insulator with a length of 1000 mm and an inner hole diameter of 10 mmφ, and a porcelain flow stopper is installed at the bottom of the inner hole to connect the glass tube and the side surface of the inner hole of the insulator. Powder of sealing glass B was filled in between. moreover,
The glass tube and optical fiber exposed to the outside through the inner hole of the insulator are covered with inorganic fiber, the outside is fixed with refractory material, and a metal pipe is installed inside the inorganic fiber to create a structure that can be cooled.

このように設置した碍子を電気炉内に挿入し、端部を冷
却しながら最高温度480°Cで1時間保持するスケジ
ュールで加熱した。次に、冷却後の碍子の内孔から外部
に露出しているガラス管の封着ガラスと接触している部
分を、樹脂の支持物とともにシリコーンゴムで接着して
固定した。
The insulator thus installed was inserted into an electric furnace and heated at a maximum temperature of 480° C. for 1 hour while cooling the ends. Next, the portion of the glass tube exposed to the outside from the inner hole of the cooled insulator and in contact with the sealing glass was fixed together with the resin support by adhering with silicone rubber.

このようにして作成した光ファイバ複合碍子を第5表に
示す方法で特性の測定を行なった。結果を第6表に示す
。第6表の結果は、いずれも仕様を満足するレベルのも
のであった。
The characteristics of the optical fiber composite insulator thus produced were measured by the method shown in Table 5. The results are shown in Table 6. All the results in Table 6 were at a level that satisfied the specifications.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の光ファイバ複合碍子およびその製造方法によれば、光
ファイバを適切な材質からなるガラス管で保護封着し、
その光ファイバが挿通されたガラス管を磁器内孔中に封
着用ガラスで封着することにより、碍子の内孔全体にわ
たり光ファイバのガラス封着が可能であり、長期信頼性
の優れた光ファイバ複合碍子を高い歩留でかつ容易に得
ることができる。
(Effects of the Invention) As is clear from the detailed explanation above, according to the optical fiber composite insulator and the manufacturing method thereof of the present invention, an optical fiber is protected and sealed with a glass tube made of an appropriate material,
By sealing the glass tube with the optical fiber inserted into the inner hole of the porcelain with sealing glass, it is possible to seal the optical fiber with glass over the entire inner hole of the insulator, resulting in an optical fiber with excellent long-term reliability. Composite insulators can be easily obtained with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a )〜(f)は本発明の光ファイバ複合碍子
を製造する際の耐熱工程を説明するための図、第2図は
本発明の光ファイバ複合碍子を製造する際の加熱工程を
説明するための図、 第3図は本発明の光ファイバ複合碍子の一例の構成を示
す図である。 1・・・光ファイバ    2・・・有機物シート3−
1.3−2・・・耐熱樹脂  4・・・ガラス管5−1
.5−2・・・金型    6・・・耐熱樹脂1゜ 2・・・バーナ 8〜1゜ 8−2・・・ローラ 11・・・碍子 12・・・内孔 13・・・無機ガラス流れ止め 14・・・ヒータ 5a ・・・熱風吹込口 5b ・・・排出口 16・・・加熱装置 17−1゜ 17−2・・・冷却部
Figures 1 (a) to (f) are diagrams for explaining the heat-resistant process when manufacturing the optical fiber composite insulator of the present invention, and Figure 2 is a heating process when manufacturing the optical fiber composite insulator of the present invention. FIG. 3 is a diagram showing the configuration of an example of the optical fiber composite insulator of the present invention. 1... Optical fiber 2... Organic material sheet 3-
1.3-2...Heat-resistant resin 4...Glass tube 5-1
.. 5-2...Mold 6...Heat-resistant resin 1゜2...Burner 8-1゜8-2...Roller 11...Insulator 12...Inner hole 13...Inorganic glass flow Stop 14...Heater 5a...Hot air inlet 5b...Discharge port 16...Heating device 17-1゜17-2...Cooling section

Claims (1)

【特許請求の範囲】 1、碍子の中央部分を貫通する内孔中に、ガラス管の内
孔に溶着した光ファイバを設置し、碍子の内孔とガラス
管の側壁の間を封着用ガラスで封着した構造を有するこ
とを特徴とする光ファイバ複合碍子。 2、光ファイバ複合碍子を構成する各部材の熱膨張係数
が、磁器の熱膨張係数をα_p、ガラス管の熱膨張係数
をα_t、封着用ガラスの熱膨張係数をα_gとしたと
き、 0.4≦α_t/α_p≦1.0 0.5≦α_g/α_p≦1.0 で、かつ 0.5≦α_g/α_t≦1.5 の関係を有する請求項1記載の光ファイバ複合碍子。 3、両端部を耐熱性樹脂で被覆した光ファイバをガラス
管内孔に設置し、ガラス管を所定の温度まで加熱し加圧
することにより光ファイバをガラス管内に封着し、当該
光ファイバを挿通したガラス管を碍子の中央部分を貫通
する内孔中に設置し、碍子の内孔とガラス管の側壁の間
に封着用ガラスを充填した後加熱して、碍子の内孔とガ
ラス管の側壁の間を封着することを特徴とする光ファイ
バ複合碍子の製造方法。 4、前記光ファイバとして、有機シートで保護しながら
引き抜いた光ファイバを使用した請求項3記載の光ファ
イバ複合碍子の製造方法。 5、前記光ファイバを封着したガラス管の両端部に耐熱
樹脂を封入した請求項3記載の光ファイバ複合碍子の製
造方法。 6、封着加熱時に、碍子の外部に露出した部分の光ファ
イバを冷却しながら封着部を加熱する請求項3〜5のい
ずれかに記載の光ファイバ複合碍子の製造方法。
[Claims] 1. An optical fiber welded to the inner hole of the glass tube is installed in the inner hole penetrating the central part of the insulator, and a sealing glass is installed between the inner hole of the insulator and the side wall of the glass tube. An optical fiber composite insulator characterized by having a sealed structure. 2. The coefficient of thermal expansion of each member constituting the optical fiber composite insulator is 0.4, where α_p is the coefficient of thermal expansion of porcelain, α_t is the coefficient of thermal expansion of the glass tube, and α_g is the coefficient of thermal expansion of the sealing glass. The optical fiber composite insulator according to claim 1, having the following relationships: ≦α_t/α_p≦1.0, 0.5≦α_g/α_p≦1.0, and 0.5≦α_g/α_t≦1.5. 3. An optical fiber whose both ends were coated with heat-resistant resin was installed in the inner hole of the glass tube, the glass tube was heated to a predetermined temperature and pressurized to seal the optical fiber inside the glass tube, and the optical fiber was inserted. A glass tube is placed in an inner hole that passes through the center of the insulator, and sealing glass is filled between the inner hole of the insulator and the side wall of the glass tube, and then heated to seal the inner hole of the insulator and the side wall of the glass tube. A method for manufacturing an optical fiber composite insulator, which is characterized by sealing a fiber insulator between the fibers. 4. The method of manufacturing an optical fiber composite insulator according to claim 3, wherein the optical fiber is an optical fiber that has been extracted while being protected with an organic sheet. 5. The method for manufacturing an optical fiber composite insulator according to claim 3, wherein both ends of the glass tube to which the optical fiber is sealed are sealed with a heat-resistant resin. 6. The method for manufacturing an optical fiber composite insulator according to any one of claims 3 to 5, wherein the sealed portion is heated while cooling the optical fiber in the portion exposed to the outside of the insulator during the sealing heating.
JP63238790A 1988-09-26 1988-09-26 Optical fiber composite insulator and method for manufacturing the same Expired - Lifetime JPH0664954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238790A JPH0664954B2 (en) 1988-09-26 1988-09-26 Optical fiber composite insulator and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238790A JPH0664954B2 (en) 1988-09-26 1988-09-26 Optical fiber composite insulator and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0287427A true JPH0287427A (en) 1990-03-28
JPH0664954B2 JPH0664954B2 (en) 1994-08-22

Family

ID=17035321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238790A Expired - Lifetime JPH0664954B2 (en) 1988-09-26 1988-09-26 Optical fiber composite insulator and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0664954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115359976A (en) * 2022-08-10 2022-11-18 常州博瑞电力自动化设备有限公司 Thermal expansion compensation optical fiber insulator and use method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811705U (en) * 1981-07-15 1983-01-25 住友電気工業株式会社 Optical fiber wall penetration part

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811705U (en) * 1981-07-15 1983-01-25 住友電気工業株式会社 Optical fiber wall penetration part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115359976A (en) * 2022-08-10 2022-11-18 常州博瑞电力自动化设备有限公司 Thermal expansion compensation optical fiber insulator and use method thereof
CN115359976B (en) * 2022-08-10 2023-06-23 常州博瑞电力自动化设备有限公司 Thermal expansion compensation optical fiber insulator and use method thereof

Also Published As

Publication number Publication date
JPH0664954B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US7728230B2 (en) Compound and hollow insulator and its manufacturing method thereof
US2986847A (en) Process for lining metal pipes with glass
US4806416A (en) Insulating coating
KR950700135A (en) Improvement and Manufacturing Method of Insulated Furnace Roller
CN106698892B (en) A kind of cover-plate glass platinum channel thermocouple assembly and its manufacturing method
KR960015429B1 (en) Optical fiber-containing insulators and process for producing the same
KR20130125346A (en) Heating cable
JPH0287427A (en) Optical fiber composite insulator and manufacture thereof
US4576661A (en) Process for sealing the end of insulated pipes which have a number of monitoring wires, and means for carrying out the process
US1881228A (en) Pouring spout
EP0293203B1 (en) Freeze resistant pipe
RU2249756C2 (en) Method of heat insulating and waterproofing of pipe
JPH073497B2 (en) Heat resistant optical fiber manufacturing method
JPH03276522A (en) Optical fiber composite insulator and its manufacture
CN114286459B (en) Armored heating device for heating liquid metal pipeline
CN101291047B (en) Cold packaging technique for cable
CN112113682A (en) Manufacturing method of optical fiber temperature measuring probe of oil immersed transformer
US3560282A (en) Protective tube for electrical elements and its method of manufacture
CN218004500U (en) Heat-resistant and anti-aging silicone rubber glass fiber sleeve
CN2141079Y (en) Thermocouple
JPH0456410B2 (en)
SU905575A1 (en) Method of protecting tubes by reinforced coating
SU1334246A1 (en) Cable input bushing
JPS6133519Y2 (en)
SU1536155A1 (en) Method of insulating pipes