JPH0286743A - Production of gelatin having high polymerization degree - Google Patents

Production of gelatin having high polymerization degree

Info

Publication number
JPH0286743A
JPH0286743A JP63236966A JP23696688A JPH0286743A JP H0286743 A JPH0286743 A JP H0286743A JP 63236966 A JP63236966 A JP 63236966A JP 23696688 A JP23696688 A JP 23696688A JP H0286743 A JPH0286743 A JP H0286743A
Authority
JP
Japan
Prior art keywords
gelatin
gel
reaction
solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63236966A
Other languages
Japanese (ja)
Other versions
JP2619933B2 (en
Inventor
Takehiro Tani
威広 谷
Masao Motoki
本木 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPI ZERACHIN KOGYO KK
Ajinomoto Co Inc
Original Assignee
NIPPI ZERACHIN KOGYO KK
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPI ZERACHIN KOGYO KK, Ajinomoto Co Inc filed Critical NIPPI ZERACHIN KOGYO KK
Priority to JP63236966A priority Critical patent/JP2619933B2/en
Publication of JPH0286743A publication Critical patent/JPH0286743A/en
Application granted granted Critical
Publication of JP2619933B2 publication Critical patent/JP2619933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain the subject gelatin having high jelly strength and high melting point by crosslinking and polymerizing a gelatin solution having a specific concentration with a transglutaminase and terminating the reaction before the gelatin of the gelatin. CONSTITUTION:A gelatin solution having a concentration of 2-60wt.% is produced by adding water to gelatin and the gelatin is crosslinked and polymerized by the addition of >=0.1 unit of transglutaminase (based on 1g of gelatin) originated from an actinomycete (e.g., Streptoverticillium). The crosslinking reaction is terminated before the gelatin of the gelatin by inactivating the enzyme or changing the reaction condition to obtain the objective gelatin suitable for a gelatin for food, gelatin for industrial use, gelatin for photographic use, etc.

Description

【発明の詳細な説明】 主呈上東科■分団 本発明は高重合ゼラチンの製造方法に関する。[Detailed description of the invention] Head of the Joto Department ■ Branch The present invention relates to a method for producing highly polymerized gelatin.

更に詳細には、本発明はゼラチン溶液にトランスグルタ
ミナーゼを添加してゼラチンを架橋重合し、ゼラチンが
ゲル化する以前に架橋重合を停止させることによる水に
可溶性の高重合ゼラチンの製造方法に関する。
More specifically, the present invention relates to a method for producing water-soluble highly polymerized gelatin by adding transglutaminase to a gelatin solution, crosslinking polymerizing gelatin, and stopping the crosslinking polymerization before gelatin gelatinizes.

の  および    ゛ ベ ゼラチンは動物の骨、皮等の結合組繊の主要成分である
コラーゲンを加水分解して得られる水溶性のタンパク質
で、その溶液は凝固点以下に冷却すると可逆的にゲルを
形成する。現在行われている工業的ゼラチンの製造方法
には、牛や豚の皮あるいは塩酸で無りa質を溶出させた
骨等の原料を酸で前処理する酸性法と石灰液等で前処理
するアルカリ法が存在するが、これらの前処理はコラー
ゲンの分子間あるいはその構成鎖間に天然で入った架橋
を切断し、後の温水による抽出を容易にすることを目的
としている。従って得られたゼラチンの主要成分は約l
O万の分子量を持つコラーゲンの構成ポリペプチド鎖の
単量体(α成分)、二量体(β成分)、二量体(T成分
)および、これらの加水分解生成物を大部分とし、天然
の架橋を残している巨大分子は極微量しか含まれていな
い。また原料の皮等を直接に酵素で分解して得られる酵
素法ゼラチンも成分としては同様の物となっている。
and ゛ Begelatin is a water-soluble protein obtained by hydrolyzing collagen, which is a major component of connective tissue fibers such as animal bone and skin, and its solution reversibly forms a gel when cooled below the freezing point. Current industrial gelatin manufacturing methods include an acid method in which raw materials such as cow or pig skin or bones from which the acetic acid has been eluted with hydrochloric acid are pretreated with acid, and a pretreatment with lime solution. Although alkaline methods exist, the purpose of these pretreatments is to cleave naturally occurring crosslinks between collagen molecules or its constituent chains to facilitate subsequent extraction with hot water. Therefore, the main component of the gelatin obtained is about 1
Most of the monomers (α component), dimers (β component), and dimers (T component) of the constituent polypeptide chains of collagen, which have a molecular weight of 0,000,000, and their hydrolysis products, are natural There are only trace amounts of macromolecules that remain cross-linked. In addition, enzymatic gelatin, which is obtained by directly decomposing raw materials such as skin with enzymes, has similar ingredients.

これらのゼラチンの成分の特徴はその粘度、ゼリー強度
等に種々の利点を与えているが、例えばゲルの良悪等を
改善したりする目的のため高粘度や高ゼリー強度、高融
点等が必要な場合には満足すべき結果が得られていなか
った。また工業用途に向けたときにはその粘度の限界が
問題となっていた。
The characteristics of these gelatin components give various advantages in terms of viscosity, jelly strength, etc., but for example, high viscosity, high jelly strength, high melting point, etc. are required for the purpose of improving gel quality. In some cases, satisfactory results were not obtained. Furthermore, when it was intended for industrial use, its viscosity limit was a problem.

従来、食品用途としてゼラチンのゼリー強度、粘度及び
融点を改善するためには硫酸セルロースナトリウム、カ
ラギーナン、寒天アルギン酸ナトリウム等の多糖類やガ
ム、オリゴ糖等の増粘剤、ゲル化剖等を゛添加する必要
があった。またゼラチン自体を架橋して高重合体を得る
ことも行われているが、その多くはホルマリン、グルタ
ルアルデヒド等のアルデヒド類によるものであり、反応
性が大きいため制御が難しく、高重合体の生成よりも架
橋結合によりゲル化物を形成させることを目的としてい
る。またこれらの架橋剤のほとんどは食用には適さない
。さらに架橋剤として植物性タンニンを用いる場合はゼ
ラチン濃度が低いと反応性が低く、濃度が高いと系全体
に架橋するため分子量をコントロールすることが困難で
あった。
Conventionally, to improve the jelly strength, viscosity and melting point of gelatin for food use, polysaccharides such as sodium cellulose sulfate, carrageenan, agar and sodium alginate, thickeners such as gums and oligosaccharides, and gelling agents have been added. I needed to. In addition, gelatin itself has been crosslinked to obtain high polymers, but most of these are based on aldehydes such as formalin and glutaraldehyde, which are difficult to control due to their high reactivity, and the formation of high polymers. The aim is to form a gelled product through cross-linking rather than through cross-linking. Also, most of these crosslinkers are not edible. Furthermore, when using vegetable tannin as a crosslinking agent, if the gelatin concentration is low, the reactivity is low, and if the concentration is high, the entire system will be crosslinked, making it difficult to control the molecular weight.

一方、トランスグルタミナーゼがタンパク質分子中のグ
ルタミン残基のγカルボキシアミド基とりジン残基のε
アミノ基を架橋させることは知られている(FOLK、
J、E、and FINLAYSON、J、S、(19
77)。
On the other hand, transglutaminase takes the γ carboxamide group of glutamine residues and the ε of gin residues in protein molecules.
It is known to crosslink amino groups (FOLK,
J, E, and FINLAYSON, J, S, (19
77).

Adv、Protein Chem、、vol、31+
1)。ゼラチンに用いた具体例は開示されていない。ま
たこの文献に於ける方法では使用タンパク質濃度が低く
、たかだか1重量%までであり、これを工業的に利用す
る試みはなされていない。本発明者らはゼラチンの場合
にはこの程度の低い濃度範囲では有効に架橋反応が起こ
らず、むしろ主鎖のペプチド結合の加水分解反応が優先
することを見いだした。
Adv, Protein Chem,, vol, 31+
1). Specific examples of use in gelatin are not disclosed. Furthermore, in the method described in this document, the protein concentration used is low, at most 1% by weight, and no attempt has been made to utilize it industrially. The present inventors have found that in the case of gelatin, the crosslinking reaction does not occur effectively in such a low concentration range, but rather the hydrolysis reaction of the peptide bonds in the main chain takes precedence.

またゼラチンの高濃度領域においてトランスグルタミナ
ーゼを作用させた例として特開昭58149645号公
報の「ゲル化物の製造方法」の実施例6が存在するが、
これはゲル化物の製造方法であり、本発明の「高重合ゼ
ラチンの製造方法」とは目的が異なっている。即ち、こ
の方法はゼラチンを十分に架橋してゼラチンゲルを得る
ことを目的としており、このゲルは通常の可逆性ゼラチ
ンゲルと異なり加熱によりゾル化せず、乾燥した物は膨
潤するのみで、水に溶解しない。これに対し、本発明に
よる高重合ゼラチンはこのゾルゲル変換を行い、ゼラチ
ンの基本的性質を備えている点でト記公報のゲル化物と
は区別される。更に、本発明者らはゼラチンの場合には
溶液がε(Tグルタミル)リジル架橋により完全にゲル
化し、ゲル化物を形成するまで架橋反応を完結させると
、常温に冷却した時には、ゼラチンが木来持っている水
素結合によるゲル化が妨げられ、原料ゼラチンのゲルに
比べて非常に脆いゲルになることを見いだした。これに
対し、本発明のゼラチンは高温では溶液状態にあり、冷
却してゲル化するときには、主としてゼラチン本体の水
素結合を使うのでゼラチンのゴム弾性は存在し、増強さ
れる。
Furthermore, as an example of using transglutaminase in a high concentration region of gelatin, there is Example 6 of ``Method for producing a gelled product'' in Japanese Patent Application Laid-Open No. 58149645.
This is a method for producing a gelled product, and its purpose is different from the "method for producing highly polymerized gelatin" of the present invention. In other words, the purpose of this method is to sufficiently crosslink gelatin to obtain a gelatin gel, and unlike ordinary reversible gelatin gels, this gel does not turn into a sol when heated; it only swells when dried, and does not absorb water. does not dissolve in On the other hand, the highly polymerized gelatin according to the present invention undergoes this sol-gel conversion and is distinguished from the gelatin of the above publication in that it has the basic properties of gelatin. Furthermore, in the case of gelatin, the present inventors found that when the solution is completely gelled by ε (T-glutamyl) lysyl cross-linking and the cross-linking reaction is completed to form a gelled product, when the gelatin is cooled to room temperature, It was discovered that gelation due to its own hydrogen bonds was hindered, resulting in a gel that was much more brittle than that of the raw material gelatin. On the other hand, the gelatin of the present invention is in a solution state at high temperatures, and when it is cooled to gel, it mainly uses hydrogen bonds in the gelatin body, so the rubber elasticity of gelatin is present and enhanced.

量、を”ン るための 本発明の目的は酵素による架橋重合反応を用いてゼラチ
ン溶液の粘度、冷却してゲル化した時のゲルのゼリー強
度や融解温度を改善し、通常のゼラチンの欠陥を補う点
にある。即ち、2−60重量%、好ましくは5−40重
量%の濃度のゼラチン溶液にゼラチン1gに対して0.
1ユニフト以上の、好ましくは0.5〜3ユニツトのト
ランスグルタミナーゼを添加して架橋反応させた後、ゲ
ル化物となる以前に酵素を失活するか、反応条件を変更
して停止することにより、ゼラチンのオリゴマーや高重
合体を多く生成させ、溶液状態で希望する粘度を持ち、
また冷却してゲル化した時には高いゼリー強度と高融解
温度を持つ、高重合ゼラチンを得ることを目的としてい
る。
The purpose of the present invention is to improve the viscosity of a gelatin solution, the jelly strength and melting temperature of gelatin when cooled and gelated, and to overcome the defects of ordinary gelatin by using an enzymatic cross-linking polymerization reaction. That is, in a gelatin solution with a concentration of 2-60% by weight, preferably 5-40% by weight, 0.0.
After adding 1 unit or more of transglutaminase, preferably 0.5 to 3 units, and causing a crosslinking reaction, the enzyme is deactivated before it becomes a gelled product, or the reaction conditions are changed to stop the reaction. Generates a large amount of gelatin oligomers and high polymers and has the desired viscosity in solution state.
The aim is also to obtain highly polymerized gelatin that has high jelly strength and high melting temperature when cooled and gelatinized.

また本発明は酵素反応の特徴を生かし、反応pH、温度
等を適切に選択し、反応速度を適宜コントロールするこ
とにより、工業的に十分制御可能な製造方法でゼラチン
の高重合物を得ることを目的としている。
Furthermore, the present invention makes use of the characteristics of enzymatic reactions to appropriately select the reaction pH, temperature, etc., and appropriately control the reaction rate, thereby making it possible to obtain a highly polymerized product of gelatin using a production method that is industrially fully controllable. The purpose is

更に、本発明は食品用ゼラチンや工業用ゼラチン、写真
用ゼラチン等に広く利用出来る、有用な改質ゼラチンを
得ることを目的としている。
A further object of the present invention is to obtain a useful modified gelatin that can be widely used as food gelatin, industrial gelatin, photographic gelatin, and the like.

本発明の特徴は2−60重量%、好ましくは5−40重
量%の濃度のゼラチン溶液にゼラチンIBに対し70.
1ユニツト以上の、好ましくは0.5−3ユニツトのト
ランスグルタミナーゼを添加して架橋重合させた後にゲ
ル化物となる以前に酵素を失活するか、反応条件を変更
し、反応を停止することにより、通常のゼラチンと同様
にゾルゲル変換を行う、物理的性質の改善された高重合
ゼラチンを製造することにある。
A feature of the invention is that the gelatin solution has a concentration of 2-60% by weight, preferably 5-40% by weight, and 70% by weight for gelatin IB.
By adding 1 unit or more, preferably 0.5-3 units of transglutaminase and crosslinking polymerization, the enzyme is deactivated before it becomes a gelled product, or the reaction conditions are changed to stop the reaction. The objective is to produce highly polymerized gelatin with improved physical properties that undergoes sol-gel conversion in the same way as ordinary gelatin.

このようにして製造された高重合ゼラチンを冷却して得
られるゲルは酵素による架橋にゼラチン本体の水素結合
による架橋が加わるために、通常の使用状態では原料ゼ
ラチンゲルより引っ張りに対する伸びが大きくまた融解
温度が高いため、高粘度ゼラチン、高融点ゼラチンとし
て利用でき、また食用に向けた場合には、日中で融は難
くて粘りのあるテクスチャーを示す。
The gel obtained by cooling the highly polymerized gelatin produced in this way is crosslinked by enzymes and hydrogen bonds in the gelatin body, so under normal usage conditions it has a greater elongation against tension than the raw gelatin gel and melts. Because of its high temperature, it can be used as high-viscosity gelatin and high-melting-point gelatin, and when used for food, it is difficult to melt during the day and exhibits a sticky texture.

この製造方法では架橋反応させる時の溶液の温度を変え
ることにより、得られた高重合ゼラチンを冷却した時の
ゲルの融解温度を希望する温度に設定することが可能と
なる。
In this production method, by changing the temperature of the solution during the crosslinking reaction, it is possible to set the melting temperature of the gel when the resulting highly polymerized gelatin is cooled to a desired temperature.

更に、この製造方法で失活操作を行った物を冷却して得
られたゲルは酵素反応の継続による経時変化やゲル化反
応の進行にともなう離水現象がなく、長時間にわたって
安定を保つことが可能である。
Furthermore, the gel obtained by cooling the product that has been deactivated using this production method does not change over time due to the continuation of the enzymatic reaction or undergo syneresis due to the progress of the gelation reaction, and can remain stable for a long period of time. It is possible.

本発明の1つの態様による高重合ゼラチンの製造方法に
よれば、ゼラチンを予め重合した後、乾燥して高重合ゼ
ラチンを得て、これを通常のゼラチンと同様に使用する
方法である。本発明の他の態様によればゼラチンを含む
製品の製造工程中、成形前に酵素を添加して高重合ゼラ
チンを得ることもできる。この場合には成形に用いる溶
液がすでに反応を終了して安定であるため、前記の「ゲ
ル化物の製造方法Jにおける未反応の溶液を酵素と共に
混合して成形し反応を完結させる方法に比べて取扱操作
が節単化される利点を持っている。
According to a method for producing highly polymerized gelatin according to one embodiment of the present invention, gelatin is polymerized in advance and then dried to obtain highly polymerized gelatin, which is used in the same manner as ordinary gelatin. According to another aspect of the invention, enzymes can be added during the manufacturing process of gelatin-containing products prior to shaping to obtain highly polymerized gelatin. In this case, the solution used for molding has already completed the reaction and is stable, so compared to the above-mentioned method of "Method J for producing gelled product, in which unreacted solution is mixed with enzyme and molded to complete the reaction." It has the advantage of simplifying handling operations.

本発明は市販されている全てのゼラチンに適用可能であ
り、例えば酸性法ゼラチンとアルカリ法ゼラチンとの間
に実質的な差異は存在しない。本発明者らは、酸性法ゼ
ラチンを使用することが好しいが、等電点が低く、グル
タミン残基がかなり少ないアルカリ法ゼラチンに於いて
も架橋反応が同程度に進行することを見いだした。
The present invention is applicable to all commercially available gelatins; for example, there is no substantial difference between acid-processed gelatin and alkaline-processed gelatin. The present inventors have found that although it is preferable to use acidic gelatin, the crosslinking reaction proceeds to the same extent even with alkaline gelatin, which has a low isoelectric point and contains considerably less glutamine residues.

本発明に使用するトランスグルタミナーゼは放線菌「ス
トレプトバートシリウム」から製造された物が好ましい
が、モルモットの肝臓から抽出された酵素等のように別
の起源のトランスグルタミナーゼであっても、同様の架
橋反応効果を示すものであれば使用可能である。
The transglutaminase used in the present invention is preferably one produced from the actinomycete "Streptovertsillium," but transglutaminase of a different origin, such as an enzyme extracted from guinea pig liver, may also be used. Any material that exhibits a crosslinking reaction effect can be used.

本発明に用いられるゼラチン溶液のpH6−8であれば
好ましいが、pl+4−10に於いても、長時間かけれ
ば反応が可能となる。更に、このことは酵素反応の至適
pHを外すことにより、反応速度を遅くさせ、反応の制
御を容易にし、架橋反応程度を任意に選択できるように
するという非常に大きな利点がある。また反応温度はゲ
ルの融解温度以上から酵素の失活温度以下の範囲で選択
できるが、好ましくは40−60’Cの範囲で選ばれる
。更に特別な場合には、ゼラチン溶液へ酵素を混合した
後、直ちに凝固点以下に冷却し、ゲルの状態で所定時間
の架橋反応を進行させた後、失活させることにより、高
温で溶解可能な高重合ゼラチンを得ることも可能である
Although it is preferable that the pH of the gelatin solution used in the present invention is 6-8, the reaction can be carried out even at pl+4-10 if it takes a long time. Furthermore, this has the great advantage of slowing down the reaction rate by removing the optimum pH for the enzymatic reaction, making it easier to control the reaction, and allowing the degree of crosslinking reaction to be arbitrarily selected. The reaction temperature can be selected within the range from above the melting temperature of the gel to below the inactivation temperature of the enzyme, but is preferably selected within the range of 40-60'C. In even more special cases, after mixing the enzyme with the gelatin solution, it is immediately cooled to below the freezing point, the crosslinking reaction is allowed to proceed for a predetermined period of time in the gelatin state, and then the enzyme is deactivated. It is also possible to obtain polymerized gelatin.

本発明に用いる失活方法には高温加熱による失活、例え
ばp117において75°C以上で10分以上処理する
場合や低pnによる酵素の変性、例えば40°Cにおい
てp112で30分以上処理する場合がある。他に、E
[lTA等の酵素反応阻害剤、失活剤の添加によるもの
、その他種々の失活方法がある。反応の停止方法にはp
l+を至適pHから外す他に、高温度の塩溶液にしての
反応の停止、アミノ酸ベプタイド等低分子反応基質の添
加による停止等があり、目的によって適当に選択するこ
とが出来る。更に、酵素濃度が低い場合は架橋反応中に
失活反応も同時に進行し、反応中に酵素が事実ト失活し
てしまう場合も存在する。
Inactivation methods used in the present invention include inactivation by high temperature heating, such as p117 treatment at 75°C or higher for 10 minutes or more, and enzyme denaturation by low pn, such as p112 treatment at 40°C for 30 minutes or more. There is. In addition, E
[There are various methods of deactivation, including those by adding enzyme reaction inhibitors such as lTA, and deactivators. For stopping the reaction, p
In addition to removing l+ from the optimum pH, the reaction can be stopped using a high-temperature salt solution, or by adding a low-molecular reaction substrate such as an amino acid peptide, which can be appropriately selected depending on the purpose. Furthermore, when the enzyme concentration is low, a deactivation reaction also proceeds simultaneously during the crosslinking reaction, and there are cases where the enzyme is actually completely deactivated during the reaction.

本発明による高重合体ゼラチンの製造はゼラチン溶液中
に酵素反応を阻害しない範囲で、多糖類、澱粉、デキス
トリン、グリセリン、ガム類、有機酸、糖類、無機塩類
、調味料、着色料、香辛料、糊料、増粘剤、安定剤、乳
化剤、その他通常ゼラチンの使用に於いて添加される添
加物を配合できる。
The production of high polymer gelatin according to the present invention includes polysaccharides, starch, dextrin, glycerin, gums, organic acids, saccharides, inorganic salts, seasonings, colorants, spices, and other ingredients in the gelatin solution within a range that does not inhibit the enzymatic reaction. Thickeners, thickeners, stabilizers, emulsifiers, and other additives that are usually added when using gelatin can be added.

以下、実施例及び比較例に基づき本発明を更に詳細に説
明するが、これは本発明を制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail based on Examples and Comparative Examples, but these are not intended to limit the present invention.

災施■上 高重合ゼラチンは次のようにして製造した。Disaster relief ■1 Highly polymerized gelatin was produced as follows.

ゼリー強度244、粘度40、融点30℃、等電点9.
1の酸性法ゼラチン15gに対して15重置火濃度にな
るように水を加え、膨潤後50゛Cで溶解し、苛性ソー
ダでpH7に調整した。トランスグルタミナーゼ(天野
製薬製;ヒドロキサム酸法(J、Biol、Chem、
+Vo1.241.5518(1966))による比活
性;2.5ユニ7ト/mg)12mgを少量の水に懸濁
させて添加した後、50°Cで撹拌を続けた。10分後
、ホットプレート−Lで溶液を加熱して急速に80°C
に昇温し、5分間保ち、酵素を失活させた。その後、直
ちに溶液を冷水浴に漬けて60℃に急冷し、ステンレス
プレートに流し込み、冷蔵庫で冷却した。このようにし
て得たll1111の厚さのフィルム状のゲルはそのま
まゲルとして測定に使用した。また乾燥品はこのゲルを
3IIIIfiの幅に細断し、乾燥した後に粉砕して得
た。
Jelly strength: 244, viscosity: 40, melting point: 30°C, isoelectric point: 9.
Water was added to 15 g of acid gelatin No. 1 so as to give a concentration of 15 times overheating, and after swelling, the mixture was dissolved at 50°C, and the pH was adjusted to 7 with caustic soda. Transglutaminase (manufactured by Amano Pharmaceutical; hydroxamic acid method (J, Biol, Chem,
+Vo1.241.5518 (1966)) Specific activity: 2.5 units/mg) After adding 12 mg of the suspension in a small amount of water, stirring was continued at 50°C. After 10 minutes, heat the solution rapidly to 80°C on hot plate-L.
The temperature was raised to 100% and maintained for 5 minutes to inactivate the enzyme. Thereafter, the solution was immediately immersed in a cold water bath to be rapidly cooled to 60°C, poured onto a stainless steel plate, and cooled in a refrigerator. The thus obtained film-like gel having a thickness of 1111 was used as it was for measurement. A dried product was obtained by cutting this gel into pieces with a width of 3IIIfi, drying them, and then pulverizing them.

比較のために、前記特開昭58−149645号公報記
載の[ゲル化物の製造方法」に従ったゼラチンゲル化物
を製造し、無処理の原料ゼラチンとともに測定した。ゼ
ラチンゲル化物の製造は、ゼラチン溶液がゲル化するま
で酵素反応させた後、そのまま冷却して、希望する形状
に細断した以外は上記方法と同じにした。
For comparison, a gelatin gel was produced according to the "Method for producing gelatin" described in JP-A-58-149645, and was measured together with untreated raw material gelatin. The gelatin gel was produced in the same manner as above except that the gelatin solution was subjected to an enzymatic reaction until gelatinized, then cooled and shredded into desired shapes.

このようにして製造した高重合ゼラチンの分子量分布を
液体クロマトグラフィーで測定して第1図に示した。(
カラム;Asahipak G5−620  :移動相
; M/10リン酸バッファー二流速;0.5ml/m
;温度;50°C:試料;0.5%傘20ttl:n過
;濾祇5μ:検出紫外線波長;23Qna)本実施例に
よる方法で製造したゼラチンは、原料のゼラチンに比べ
て明らかにγ成分以上の高分子量成分が増加していて、
高重合ゼラチンが形成されている。
The molecular weight distribution of the highly polymerized gelatin thus produced was measured by liquid chromatography and is shown in FIG. (
Column; Asahipak G5-620: Mobile phase; M/10 phosphate buffer; flow rate: 0.5ml/m
temperature; 50°C: sample; 0.5% umbrella 20ttl: n filter; filtration 5μ: detection ultraviolet wavelength; The high molecular weight components above are increasing,
Highly polymerized gelatin is formed.

またこのようにして得られたゲルを示差走査熱量計(パ
ーキンエルマーDSC−7:試料ゲル; 27mg :
昇温速度:5℃/m)で測定したデータを第2図に示し
た。ゼラチンの構成ポリペプチド鎖どうしが水素結合に
よって会合したゲルの架橋点を形成しているミセルの融
解ピークを見ると、本実施例による方法で得られたゲル
は原料ゼラチンのゲルに比べて、融解温度はやや下がる
が高温に肩を持ち、融解熱は大きくなっている。これは
構造がすこし乱れているが、ゲルの架橋点が原料ゼラチ
ンの場合と同じく、冷却によって生じた水素結合による
ミセルであり、エンタルピーが1!5.6J / gか
ら27.7 J / gに増加していることは高重合に
よって更に安定化していることを示している。これに反
し前記「ゲル化物の製造方法」に従ったゲルはピークが
高温側に裾を持ち、ゲル自体の融解温度は高いが、エン
タルピーが9.4J/gLか無(、高温に於けるトラン
スグルタミナーゼによる共有結合の架橋が、冷却した時
の水素結合による架橋を妨げていて、このゲルが本質的
に本発明によるゲルと異なっていることを示している。
In addition, the gel thus obtained was measured using a differential scanning calorimeter (PerkinElmer DSC-7: sample gel; 27 mg:
The data measured at a heating rate of 5° C./m) are shown in FIG. Looking at the melting peak of micelles, which form cross-linking points in the gel where the constituent polypeptide chains of gelatin are associated with each other through hydrogen bonds, the gel obtained by the method of this example has a lower melting point than the gel of the raw material gelatin. Although the temperature has fallen slightly, it remains high and the heat of fusion is increasing. Although this structure is slightly disordered, the crosslinking points of the gel are micelles due to hydrogen bonds generated by cooling, as in the case of raw material gelatin, and the enthalpy increases from 1!5.6 J/g to 27.7 J/g. The increase indicates further stabilization due to high polymerization. On the other hand, the gel produced according to the above-mentioned "method for producing a gelled product" has a tail on the high temperature side, and although the melting temperature of the gel itself is high, the enthalpy is 9.4 J/gL or nothing (transformer at high temperature). Covalent cross-linking by glutaminase precludes cross-linking by hydrogen bonds upon cooling, indicating that this gel is essentially different from the gel according to the invention.

本実施例による方法で得られたゼラチンの物性はJIS
法でゼリー強度250.粘度105.10%ゲルの融解
温度48°Cであった。これは原料ゼラチンの物性に比
べて改善されている。
The physical properties of gelatin obtained by the method according to this example are JIS
The jelly strength is 250. The melting temperature of the viscosity 105.10% gel was 48°C. This is improved compared to the physical properties of raw material gelatin.

本実施例による方決で得られたゼラチンを冷却したゲル
の引っ張り試験(フドーレオメータ:引っ張り速度;6
cn+/m)の結果を第3図に示した。
A tensile test (Fudau rheometer: tensile speed: 6
cn+/m) results are shown in FIG.

原料ゼラチンに比べ、明らかに破断強度と伸びが大きく
なっている。また「ゲル化物の製造方法」で得られたゲ
ルは伸びが小さく、脆くなってすぐ切断し、ゲルが水素
結合による全体的架橋でなくて少数の共有結合によって
形成されていることを示している。
Compared to the raw material gelatin, the breaking strength and elongation are clearly higher. In addition, the gel obtained by the ``method for producing gelled products'' has low elongation, becomes brittle, and breaks quickly, indicating that the gel is not entirely crosslinked by hydrogen bonds but is formed by a small number of covalent bonds. .

z廉拠l 実施例1と同じゼラチン6gに対し6重量%濃度になる
ように水を加え、膨潤後40”Cで溶解し、苛性ソーダ
でpH7に調整した。この水溶液にトランスグルタミナ
ーゼ4.8Bを少量の水に懸濁させたものを添加した後
、40°Cで撹拌を続けた。30分後、ホットプレート
ヒで溶液を加熱して急速に80°Cに昇温し、5分間保
ち、酵素を失活させた。その後、直ちに溶液を冷却浴に
漬けて60″Cに急冷し、ステンレスプレートに流し込
み、冷蔵庫で冷却した。このゲルを細断し、乾燥した後
に粉砕して乾燥品を得た。
Water was added to 6 g of the same gelatin as in Example 1 to give a concentration of 6% by weight, and after swelling, it was dissolved at 40"C and the pH was adjusted to 7 with caustic soda. Transglutaminase 4.8B was added to this aqueous solution. After adding the suspension in a small amount of water, stirring was continued at 40°C. After 30 minutes, the solution was heated on a hot plate to rapidly raise the temperature to 80°C and kept for 5 minutes. The enzyme was inactivated. Thereafter, the solution was immediately immersed in a cooling bath to be rapidly cooled to 60"C, poured onto a stainless steel plate, and cooled in a refrigerator. This gel was cut into pieces, dried, and then ground to obtain a dry product.

このようにして製造した高重合ゼラチンの10%ゲルの
融解温度は45°Cであった。これは原料ゼラチンの融
解温度に比べて改善されている。このゼラチン濃度と反
応温度では反応時間を25−60分にしても同様の融解
温度が得られた。
The melting temperature of the 10% gel of highly polymerized gelatin thus produced was 45°C. This is improved compared to the melting temperature of raw material gelatin. At this gelatin concentration and reaction temperature, similar melting temperatures were obtained even with reaction times of 25-60 minutes.

1施拠ユ ゼリー強度260、粘度40、融点31°C1等電点5
.0のアルカリ法ゼラチン20gに対し、20重量%濃
度になるように水を加え、膨潤後50°Cで溶解した。
1 base Uzery strength 260, viscosity 40, melting point 31°C 1 isoelectric point 5
.. Water was added to 20 g of alkaline method gelatin to give a concentration of 20% by weight, and after swelling, the gelatin was dissolved at 50°C.

このpHを測定すると5.2であった。このゼラチン水
溶液にトランスグルタミナーゼ24mgを少量の水に懸
濁させて添加した後、50°Cで撹拌を続けた。
When this pH was measured, it was 5.2. After adding 24 mg of transglutaminase suspended in a small amount of water to this aqueous gelatin solution, stirring was continued at 50°C.

15分後、ホットプレート上で溶液を加熱して急速に8
0°Cに昇温し、5分間保ち、酵素を失活させた。
After 15 minutes, heat the solution on a hot plate to rapidly
The temperature was raised to 0°C and kept for 5 minutes to inactivate the enzyme.

その後、直ちに溶液を冷水浴に漬けて60°Cに栄、冷
し、ステンレスプレートに流し込み、冷蔵庫で冷却した
。このようにして得たlll111の厚さのフィルム状
のゲルはそのままゲルとして測定に使用した。
Thereafter, the solution was immediately immersed in a cold water bath and cooled to 60°C, poured onto a stainless steel plate, and cooled in a refrigerator. The thus obtained film-like gel having a thickness of lll111 was used as it was for measurement.

また乾燥品はこのゲルを3Mの幅に細断し、乾燥した後
に粉砕して得た。
A dried product was obtained by cutting this gel into pieces with a width of 3M, drying them, and then crushing them.

本実施例による方法で得られたゼラチンの物性はゼリー
強度2501粘度110.10%ゲルの融解温度60°
Cであった。これは原料ゼラチンの物性に比べて改善さ
れている。
The physical properties of the gelatin obtained by the method according to this example are as follows: jelly strength: 250%, viscosity: 110.10%, gel melting temperature: 60°
It was C. This is improved compared to the physical properties of raw material gelatin.

本実施例による方法で得られたゼラチンを冷却したゲル
の引っ張り試験結果を第4図に示した。
FIG. 4 shows the results of a tensile test of the cooled gelatin obtained by the method of this example.

原料ゼラチンに比べ、明らかに破断強度と伸びが大きく
なっている。また前記「ゲル化物の製造方法」で得られ
たゲルは伸びが小さく、すぐ切断し、脆くなっている。
Compared to the raw material gelatin, the breaking strength and elongation are clearly higher. Further, the gel obtained by the above-mentioned "method for producing gelled product" has low elongation, easily breaks, and is brittle.

実1」ロエ 実施例3と同じゼラチン40gをグリセリン16gと水
77gの混合液に投入して膨潤した後、60°Cで熔解
し、苛性ソーダでpH7に調整した。この水溶液にトラ
ンスグルタミナーゼ16II1gを少量の水に懸濁させ
て添加した後、60″Cで撹拌を続けた。10分後、ホ
ットプレート上で溶液を加熱して急速に80°Cに昇温
し、5分間保ち、酵素を失活させた。その後、直ちに溶
液を冷水浴に漬けて60’C急冷し、ステンレスプレー
トに流し込み、冷蔵庫で冷却した。このようにして得た
1鵬の厚さのフィルム状のゲルはそのままゲルとして測
定に使用した。
Example 1 40 g of the same gelatin as in Roe Example 3 was added to a mixture of 16 g of glycerin and 77 g of water to swell it, then melted at 60°C and adjusted to pH 7 with caustic soda. After adding 1 g of transglutaminase 16II suspended in a small amount of water to this aqueous solution, stirring was continued at 60"C. After 10 minutes, the solution was heated on a hot plate to rapidly raise the temperature to 80 °C. The solution was kept for 5 minutes to inactivate the enzyme.Then, the solution was immediately immersed in a cold water bath to rapidly cool it to 60'C, poured into a stainless steel plate, and cooled in the refrigerator. The film-like gel was used as it was for measurement.

比較のために、80°Cでの失活を行わないで、そのま
まステンレスプレートに流し込んで冷却して得られ本実
施例配合のゲルを常温で2日間放置して測定した。
For comparison, a gel containing the formulation of this example was obtained by pouring it directly onto a stainless steel plate and cooling it without inactivating it at 80° C., and the gel was left at room temperature for 2 days and then measured.

本実施例による方法で得られたゲルの融解温度は50″
Cであった。これは原料ゼラチンで作ったゲルの融解温
度40°Cに比べて改善されている。またゲルの引っ張
り試験結果を第5図に示した。酵素処理していないゲル
に比べ、明らかに破断点までの伸びが大きくなっている
。また酵素を失活させなかったゲルは伸びが小さく、脆
なくっている。
The melting temperature of the gel obtained by the method according to this example is 50''
It was C. This is improved compared to the melting temperature of gel made from raw material gelatin, which is 40°C. Further, the results of the gel tensile test are shown in FIG. The elongation to the breaking point is clearly greater than that of the gel not treated with enzymes. In addition, the gel that did not inactivate the enzyme had less elongation and was brittle.

尖隻貫エ ゼリー強度185、粘度60、融点28°C1等電点5
.1のアルカリ法ゼラチン75gに15重量%濃度にな
るように水を加え、膨潤後40°Cで溶解した。このp
Hを測定すると、6.1であった。トランスグルタミナ
ーゼ30mgを少量の水に懸濁させてゼラチン水溶液に
添加した後、40°Cで撹拌を続けた。40分後、溶液
が増粘して来た所で、手早く塩酸を注入しpH4,2に
低下させた。次に溶液を30’Cに冷却し、塩酸で、p
H2にした後、ステンレスプレートに流し込み、直ちに
冷水によりゲル化させた。常温で1時間放置して酵素を
失活後、ゲルを冷蔵庫に移した。このようにして得た3
ffi11の厚さのフィルム状のゲルを5−の幅に細断
し、精篭にいれて流水中に3時間浸漬した。膨潤したゲ
ルを40°Cで溶解するとゼラチン濃度5重量%、ρ■
3.7であった。ステンレスプレートに流し込み、ゲル
化後、冷風で乾燥してゼラチン重合物を得た。
Penetrating jelly strength 185, viscosity 60, melting point 28°C1 isoelectric point 5
.. Water was added to 75 g of alkaline gelatin No. 1 to give a concentration of 15% by weight, and after swelling, the gelatin was dissolved at 40°C. This p
When H was measured, it was 6.1. After suspending 30 mg of transglutaminase in a small amount of water and adding it to the aqueous gelatin solution, stirring was continued at 40°C. After 40 minutes, when the solution started to thicken, hydrochloric acid was quickly injected to lower the pH to 4.2. The solution was then cooled to 30'C and treated with hydrochloric acid at p.
After raising the temperature to H2, it was poured into a stainless steel plate and immediately gelled with cold water. After inactivating the enzyme by leaving it at room temperature for 1 hour, the gel was transferred to a refrigerator. 3 obtained in this way
A film-like gel having a thickness of ffi11 was cut into pieces of 5-mm width, placed in a fine basket, and immersed in running water for 3 hours. When the swollen gel is dissolved at 40°C, the gelatin concentration is 5% by weight, ρ■
It was 3.7. The mixture was poured into a stainless steel plate, gelled, and dried with cold air to obtain a gelatin polymer.

本実旅篭による方法で得られたゼラチンを冷却したゲル
の融解温度は40°Cであった。これは原料ゼラチンの
ゲルのpH3,7での融解温度28°Cに比べて改善さ
れている。
The melting temperature of the gel obtained by cooling the gelatin obtained by the method of Hatago Honjitsu was 40°C. This is improved compared to the melting temperature of raw material gelatin gel at pH 3.7 of 28°C.

実U 実施例5と同じゼラチン6gに6重量%濃度になるよう
に水を加え、膨潤後40°Cで溶解した。トランスグル
タミナーゼ4.8mgを少量の水に懸濁させて前記のゼ
ラチン水溶液に添加した後、40℃で撹拌を続けた。7
0分後、溶液が増粘して来た所で、手早く酢酸101を
加えて反応を停止させた。この溶液のpHを測定すると
PH3,5であった。その後、溶液をステンレスプレー
トに流し込み、冷蔵庫で冷却した。
Actual U Water was added to 6 g of the same gelatin as in Example 5 to give a concentration of 6% by weight, and after swelling, the gelatin was dissolved at 40°C. After 4.8 mg of transglutaminase was suspended in a small amount of water and added to the gelatin aqueous solution, stirring was continued at 40°C. 7
After 0 minutes, when the solution started to thicken, acetic acid 101 was quickly added to stop the reaction. When the pH of this solution was measured, it was PH3.5. Thereafter, the solution was poured onto a stainless steel plate and cooled in a refrigerator.

本実施例による方法で得られたゼラチンを冷却したゲル
の融解温度は33°Cであった。これは原料ゼラチンの
ゲルのρ■3.2での融解温度27℃に比べて改善され
ている。
The melting temperature of the gel obtained by cooling the gelatin obtained by the method of this example was 33°C. This is improved compared to the melting temperature of raw gelatin gel at ρ■3.2 of 27°C.

主所■盈果 本発明の方法によって製造される高重合ゼラチンは水に
可溶性であり通常のゼラチンと同様な条件で使用できる
。本発明の高重合ゼラチンを冷却して得られるゲルは酵
素による架橋にゼラチン本体の水素結合による架橋が加
わるために、通常の使用状態では原料ゼラチンゲルより
引っ張りに対する伸びが大きくまた融解温度が高いため
、高粘度ゼラチン、高融点ゼラチンとして利用でき、ま
た食用に向けた場合には、日中で溶は難くて粘りのある
テクスチャーを示す。
Main points 1. Effects The highly polymerized gelatin produced by the method of the present invention is soluble in water and can be used under the same conditions as ordinary gelatin. The gel obtained by cooling the highly polymerized gelatin of the present invention has a higher elongation under tension and a higher melting temperature than the raw gelatin gel under normal usage conditions because crosslinking by enzymes and hydrogen bonding of the gelatin body is added. It can be used as high viscosity gelatin, high melting point gelatin, and when used for food, it is difficult to dissolve during the day and has a sticky texture.

本発明の製造方法では架橋反応させる時の溶液の温度を
変えることより、得られた高重合ゼラチンを冷却した時
のゲルの融解温度を希望する温度に設定することが可能
となる。
In the production method of the present invention, by changing the temperature of the solution during the crosslinking reaction, it is possible to set the melting temperature of the gel when the obtained highly polymerized gelatin is cooled to a desired temperature.

更に、この製造方法で酵素の失活操作を行った高重合ゼ
ラチンを冷却して得られたゲルは酵素反応の継続による
経時変化及びそれに伴うゲル化反応の進行にともなう離
水現象がなく、長時間にわたって安定を保つことが可能
である。
Furthermore, the gel obtained by cooling highly polymerized gelatin that has been subjected to enzyme deactivation using this production method does not undergo any deterioration over time due to the continuation of the enzymatic reaction or the syneresis phenomenon associated with the progress of the gelation reaction, and can be used for long periods of time. It is possible to maintain stability over a period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高重合ゼラチン及び原料ゼラチンのそれぞれの
分子量分布を示す、液体クロマトグラフィーのチャート
である。 第2図は実施例1で製造された高重合ゼラチン及び原料
ゼラチンのそれぞれの15重量%のゲルおよび特開昭5
8−149645号公報記載の「ゲル化物の製造方法」
でえられた同濃度のゲルの示差走査熱量測定の結果を示
すチャートである。 第3図は実施例1で製造された高重合ゼラチン及び原料
ゼラチンのそれぞれの15重量%のゲルおよび前記「ゲ
ル化物の製造方法」でえられた同濃度のゲルの引っ張り
試験の応力−歪曲線である。 第4図は実施例3で製造された高重合ゼラチン及び原料
ゼラチンのそれぞれの20重量%のゲルおよび前記「ゲ
ル化物の製造方法」でえられた同濃度のゲルの引っ張り
試験の応力−歪曲線である。 第5図は実施例4で製造された高重合ゼラチン及び原料
ゼラチンのそれぞれのグリセリン配合ゲルおよび前記「
ゲル化物の製造方法」でえられた同組成配合の引っ張り
試験の応力−歪曲線である。 特許出暉人 ニッピゼラチンT業株式会社同   味の
素株式会社 (外4名) ネ を 区 O番φ也ゼ゛ラチン ■儒−料ぜ゛フチン 1 I 尾2凹 手
FIG. 1 is a liquid chromatography chart showing the molecular weight distribution of highly polymerized gelatin and raw material gelatin. Figure 2 shows a gel containing 15% by weight of each of the highly polymerized gelatin and raw material gelatin produced in Example 1 and JP-A No. 5
"Method for producing gelled product" described in Publication No. 8-149645
It is a chart showing the results of differential scanning calorimetry of the obtained gels of the same concentration. Figure 3 shows stress-strain curves of tensile tests of 15% by weight gels of the highly polymerized gelatin and raw material gelatin produced in Example 1, and gels of the same concentration obtained by the above-mentioned "Method for producing gelled products". It is. Figure 4 shows stress-strain curves of tensile tests of 20% by weight gels of the highly polymerized gelatin and raw material gelatin produced in Example 3, and gels of the same concentration obtained by the above-mentioned "Method for producing gelled products". It is. FIG. 5 shows the glycerin-blended gel of the highly polymerized gelatin produced in Example 4 and the raw material gelatin, and the "
2 is a stress-strain curve of a tensile test of the same composition obtained by the method for producing a gelled product. Patent author Nippi Gelatin T Gyo Co., Ltd. Ajinomoto Co., Inc. (4 others)

Claims (1)

【特許請求の範囲】[Claims] 2−60重量%の濃度のゼラチン溶液に、ゼラチン1g
に対して0.1ユニット以上のトランスグルタミナーゼ
を添加して架橋重合させた後、ゼラチン溶液がゲル化物
となる以前に酵素を失活するか、または反応を停止させ
ることを特徴とした高重合ゼラチンの製造方法。
1 g of gelatin in a gelatin solution with a concentration of 2-60% by weight
Highly polymerized gelatin characterized by adding 0.1 unit or more of transglutaminase to cross-link polymerization, and then deactivating the enzyme or stopping the reaction before the gelatin solution becomes a gelatinized product. manufacturing method.
JP63236966A 1988-09-21 1988-09-21 Method for producing high polymerization degree gelatin Expired - Lifetime JP2619933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63236966A JP2619933B2 (en) 1988-09-21 1988-09-21 Method for producing high polymerization degree gelatin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63236966A JP2619933B2 (en) 1988-09-21 1988-09-21 Method for producing high polymerization degree gelatin

Publications (2)

Publication Number Publication Date
JPH0286743A true JPH0286743A (en) 1990-03-27
JP2619933B2 JP2619933B2 (en) 1997-06-11

Family

ID=17008405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63236966A Expired - Lifetime JP2619933B2 (en) 1988-09-21 1988-09-21 Method for producing high polymerization degree gelatin

Country Status (1)

Country Link
JP (1) JP2619933B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659352A1 (en) * 1990-03-09 1991-09-13 Nippi Gelatine Ind Ltd Process for the production of highly polymerised gelatin
JPH11237704A (en) * 1997-12-15 1999-08-31 Fuji Photo Film Co Ltd Manufacture of flat silver halide emulsion
WO2001085224A1 (en) * 2000-05-12 2001-11-15 The Nottingham Trent University Medical implant materials
JP2007096079A (en) * 2005-09-29 2007-04-12 Stanley Electric Co Ltd Semiconductor light emitting device
US7727629B2 (en) 2002-04-11 2010-06-01 Ocean Nutrition Canada Limited Encapsulated agglomeration of microcapsules and method for the preparation thereof
JP2010526610A (en) * 2007-05-16 2010-08-05 ゲリタ アクチェンゲゼルシャフト Vascular stent
JP2010227052A (en) * 2009-03-27 2010-10-14 Nitta Gelatin Inc Viscosity-imparting agent and liquid food
JP2011193842A (en) * 2010-03-23 2011-10-06 Aoba Kasei Kk Quality improver for food, method for producing the same and food for heating
JP2014100110A (en) * 2012-11-21 2014-06-05 Tokyo Metropolitan Industrial Technology Research Institute High-melting point gelatin composition, production method thereof and use thereof
US8900630B2 (en) 2002-11-04 2014-12-02 Dsm Nutritional Products Microcapsules having multiple shells and method for the preparation thereof
CN104327747A (en) * 2014-10-31 2015-02-04 湖南尔康制药股份有限公司 Production method for preparing pharmaceutical gelatin by enzyme process
US10166196B2 (en) 2007-01-10 2019-01-01 Dsm Nutritional Products Ag Vegetarian microcapsules
JP2020000147A (en) * 2018-06-29 2020-01-09 小林製薬株式会社 Thermostable gelatin gel composition
JP2020059653A (en) * 2018-10-05 2020-04-16 青葉化成株式会社 Natural polymer compound composition, method for producing the same, food and medical material
US20220091056A1 (en) * 2016-01-14 2022-03-24 Jamlet MONASELIDZE Differential scanning microcalorimeter device for detecting disease and monitoring therapeutic efficacy

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659352A1 (en) * 1990-03-09 1991-09-13 Nippi Gelatine Ind Ltd Process for the production of highly polymerised gelatin
JPH11237704A (en) * 1997-12-15 1999-08-31 Fuji Photo Film Co Ltd Manufacture of flat silver halide emulsion
US7718168B2 (en) 2000-05-12 2010-05-18 Aston University Medical implant materials containing immobilized transglutaminase
WO2001085224A1 (en) * 2000-05-12 2001-11-15 The Nottingham Trent University Medical implant materials
US8968872B2 (en) 2002-04-11 2015-03-03 Dsm Nutritional Products Ag Encapsulated agglomeration of microcapsules and method for the preparation thereof
US7727629B2 (en) 2002-04-11 2010-06-01 Ocean Nutrition Canada Limited Encapsulated agglomeration of microcapsules and method for the preparation thereof
US8900630B2 (en) 2002-11-04 2014-12-02 Dsm Nutritional Products Microcapsules having multiple shells and method for the preparation thereof
JP2007096079A (en) * 2005-09-29 2007-04-12 Stanley Electric Co Ltd Semiconductor light emitting device
US10166196B2 (en) 2007-01-10 2019-01-01 Dsm Nutritional Products Ag Vegetarian microcapsules
JP2010526610A (en) * 2007-05-16 2010-08-05 ゲリタ アクチェンゲゼルシャフト Vascular stent
JP2010227052A (en) * 2009-03-27 2010-10-14 Nitta Gelatin Inc Viscosity-imparting agent and liquid food
JP2011193842A (en) * 2010-03-23 2011-10-06 Aoba Kasei Kk Quality improver for food, method for producing the same and food for heating
JP2014100110A (en) * 2012-11-21 2014-06-05 Tokyo Metropolitan Industrial Technology Research Institute High-melting point gelatin composition, production method thereof and use thereof
CN104327747A (en) * 2014-10-31 2015-02-04 湖南尔康制药股份有限公司 Production method for preparing pharmaceutical gelatin by enzyme process
US20220091056A1 (en) * 2016-01-14 2022-03-24 Jamlet MONASELIDZE Differential scanning microcalorimeter device for detecting disease and monitoring therapeutic efficacy
US11946889B2 (en) * 2016-01-14 2024-04-02 Jamlet MONASELIDZE Differential scanning microcalorimeter device for detecting disease and monitoring therapeutic efficacy
JP2020000147A (en) * 2018-06-29 2020-01-09 小林製薬株式会社 Thermostable gelatin gel composition
JP2020059653A (en) * 2018-10-05 2020-04-16 青葉化成株式会社 Natural polymer compound composition, method for producing the same, food and medical material

Also Published As

Publication number Publication date
JP2619933B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
JPH0286743A (en) Production of gelatin having high polymerization degree
Veis et al. Collagen fibrillogenesis
Coimbra et al. Tailoring the properties of gelatin films for drug delivery applications: Influence of the chemical cross-linking method
Gudmundsson Rheological properties of fish gelatins
CN111848991B (en) Preparation method of crosslinked hyaluronic acid microspheres
JPH07505417A (en) Biodegradable water resistant polymer material
JP2000504751A (en) Crosslinked products of biopolymers containing amino groups
JP2008531011A (en) Gelation of anionic polysaccharide using protein hydrolyzate
Yang et al. The preparation of poly (γ-glutamic acid)-NHS ester as a natural cross-linking agent of collagen
Wang et al. Citric acid and heating on gelatin hydrolysis and gelation in confectionery gels
Zhang et al. Dual-functionalized hyaluronic acid as a facile modifier to prepare polyanionic collagen
RU2604223C1 (en) Method for production of protein-polysaccharide biodegradable film
JP2897780B2 (en) Manufacturing method of highly polymerized gelatin
US3057782A (en) Cross-linked gelatin plasma substitute and production thereof
Di Muzio et al. A convenient strategy to synthesize highly tunable gelatin methacryloyl with very low gelation temperature
WO2004029096A2 (en) Polysaccharide-based polymers and methods of making the same
Kim et al. Biocompatible hydrogel formation of gelatin from cold water fish via enzymatic networking
Ahmed Rheology of gelatin and advances in rheological measurements
JPH02171160A (en) Preparation of fish fin-like food
CN108272068B (en) Heat-reversible gelatinized starch
Ni et al. Effect of microbial transglutaminase on thermal gelation of carp actomyosin sol
JP2001008634A (en) Soluble polymerized gelatin, its production and method for adjusting its solubility
CN111087626A (en) High-strength pure natural globulin hydrogel and preparation method thereof
JPH04222559A (en) Gelatin film
WO1993013755A1 (en) Injectable composition containing collagen microcapsules

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12