JPH0284587A - Polyvinyl alcohol-based synthetic fiber and pneumatic radial tire reinforced with cord therefrom - Google Patents

Polyvinyl alcohol-based synthetic fiber and pneumatic radial tire reinforced with cord therefrom

Info

Publication number
JPH0284587A
JPH0284587A JP1050139A JP5013989A JPH0284587A JP H0284587 A JPH0284587 A JP H0284587A JP 1050139 A JP1050139 A JP 1050139A JP 5013989 A JP5013989 A JP 5013989A JP H0284587 A JPH0284587 A JP H0284587A
Authority
JP
Japan
Prior art keywords
cord
strength
pva
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1050139A
Other languages
Japanese (ja)
Other versions
JP2718977B2 (en
Inventor
Masanori Sato
真紀 佐藤
Shizuo Iwasaki
静雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP1050139A priority Critical patent/JP2718977B2/en
Publication of JPH0284587A publication Critical patent/JPH0284587A/en
Application granted granted Critical
Publication of JP2718977B2 publication Critical patent/JP2718977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Tyre Moulding (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the title fiber for rubber reinforcement markedly improved in the fatigue resistance of the reinforcing cords therefrom and causing no decreases in the breaking strength of said cords by crosslinking reaction of the surface of high-strength PVA-based synthetic fiber followed by adhesive treatment. CONSTITUTION:A cord from high-strength PVA-based synthetic fiber >=15g/de in tenacity is put to crosslinking reaction on the fiber surface using a crosslinking agent consisting of an aldehyde, methylol, isocyanate or carboxylic acid, followed by dipping treatment using a RFL adhesive, thus obtaining a cord for rubber reinforcement. This surface crosslinking reaction will markedly improve the fatigue resistance of said PVA fiber as an previous disadvantage; Therefore, when applied to pneumatic tires, this cord will not decrease in breaking strength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ゴム補強用、特に空気入りタイヤ補強用ポリ
ビニルアルコール系合Ffj、繊維(以下「PVA繊維
」と略す)の耐疲労性を大幅に向上することのできるコ
ード処理技術に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention significantly improves the fatigue resistance of polyvinyl alcohol composite Ffj fibers (hereinafter abbreviated as "PVA fibers") for reinforcing rubber, especially pneumatic tires. It relates to code processing techniques that can be improved.

(従来の技術) 従来、PVA繊維はゴム補強材料として広〈産業用繊維
として使用されてきた。しかし、この繊維は耐疲労性が
劣り、また元来水に可溶であるというポリマー特性を有
している為に、耐熱水性に劣るという欠点を有している
。従って、屈曲量を多く受けるタイヤを始めとするゴム
補強用コードとしては、使用が極めて限定されていた。
(Prior Art) Conventionally, PVA fibers have been widely used as rubber reinforcing materials and as industrial fibers. However, this fiber has poor fatigue resistance, and since it has a polymer characteristic of being inherently soluble in water, it has the disadvantage of poor hot water resistance. Therefore, its use as a rubber reinforcing cord for tires that are subjected to a large amount of bending is extremely limited.

ところが、今日、特開昭59−130314号および同
59−100710号各公報に見られる様に超高分子量
(例えば平均分子量40万以上)化によってPVA繊維
の高強力化が可能となった。しかし、かかる超高分子量
のPVAポリマーを工業的に生産することは難しく、ま
た、製造面の困難さからコスト的にもポリエステルやナ
イロン等の一般のゴム補強用コードに供される繊維に比
し大幅に割高となり、商業的に競争力を持ち得ないもの
であった。
However, as seen in JP-A-59-130314 and JP-A-59-100710, it has now become possible to increase the strength of PVA fibers by increasing the molecular weight (for example, average molecular weight of 400,000 or more). However, it is difficult to industrially produce such ultra-high molecular weight PVA polymer, and due to manufacturing difficulties, it is also less expensive than fibers used in general rubber reinforcing cords such as polyester and nylon. It was significantly more expensive and could not be commercially competitive.

以上の様な背景から、PVAポリマーを従来のP V 
A Va維の分子量より若干大きい程度の分子量とする
ことで、工業的にも比較的容易にかつ多量に高強力PV
A!li維を供給出来る方法が見い出され(例えば特開
昭60−126311号および同60−126312号
等記載)、ゴム補強用コードとして工業的、商業的に用
いることの見通しがついた。この様にして供給された高
強力PVA繊維はアラミド繊維には強力および弾性率の
面でともに及ばないものの、従来のナイロンやポリエス
テル等の繊維よりは大幅に強度も向上し、−見、ゴム補
強用コードとして十分使用可能なものと考えられた。ま
た、かかる方法で得られた高強力PVA繊維は特開昭6
1−108713号公報にも記述されている様に従来の
PVAI&維に比し機械的な歪入力に対しても大幅に改
善される為、ゴム補強用タイヤコードとしての耐疲労性
も十分実用に耐え得るものと考えられた。
From the above background, PVA polymer has been replaced with conventional PVA polymer.
By making the molecular weight slightly larger than the molecular weight of A Va fiber, it is relatively easy to produce high-strength PV in large quantities industrially.
A! A method for supplying li fibers has been discovered (for example, as described in JP-A-60-126311 and JP-A-60-126312, etc.), and the prospect of industrial and commercial use as a rubber reinforcing cord has been achieved. Although the high-strength PVA fibers supplied in this way are not comparable to aramid fibers in terms of strength and elastic modulus, they are significantly stronger than conventional fibers such as nylon and polyester, and are reinforced with rubber. It was considered that the code was sufficiently usable as a commercial code. In addition, the high-strength PVA fiber obtained by this method is
As described in Publication No. 1-108713, it is significantly improved against mechanical strain input compared to conventional PVAI and fibers, so its fatigue resistance is sufficient for practical use as a tire cord for rubber reinforcement. considered to be tolerable.

一方、従来のPVA繊維の繊維性能向上手段としては特
公昭47−8186号、同48−7887号、同48−
9210号、同48−32623号、同48−3262
4号、同48−9209号、同52−25602号およ
び同53−1368号等の公報記載の手段が知られてお
り、耐湿熱性、高温時での初期モジュラス等の改良が図
れてきた。
On the other hand, as conventional means for improving the fiber performance of PVA fibers, Japanese Patent Publications Nos. 47-8186, 48-7887, and 48-
No. 9210, No. 48-32623, No. 48-3262
4, No. 48-9209, No. 52-25602, and No. 53-1368 are known, and improvements have been made in heat and humidity resistance, initial modulus at high temperatures, etc.

しかし、上記特開昭60−126311号および同第6
0−126312号等記載の方法で得られる高強力PV
A繊維は下記の第1表に示す様に15g/d以上の強度
を有しているのに対し、従来の改良PVA繊維では高々
フィラメントの強度が11g/dに過ぎなかった。
However, the above-mentioned Japanese Patent Application Laid-open No. 60-126311 and No. 6
High strength PV obtained by the method described in No. 0-126312 etc.
As shown in Table 1 below, the A fiber has a strength of 15 g/d or more, whereas the filament strength of the conventional improved PVA fiber was only 11 g/d at most.

従って、かかる高強力PVA繊維では従来のPVA繊維
に比し強力、耐疲労性ともに大幅に改善された為、ゴム
補強用繊維として極めて有望であると考えられた。
Therefore, since such high-strength PVA fibers have significantly improved strength and fatigue resistance compared to conventional PVA fibers, they are considered to be extremely promising as fibers for reinforcing rubber.

(発明が解決しようとする課題) しかしながら本発明者らは、上記特開昭60−1263
11号および同60−126312号等記載の方法によ
り得られた高強力PVA繊維は耐疲労性に関して重大な
欠点を有していることを明らかにした。すなわち、この
ままでは全くタイヤコードとしての耐疲労性が不足し、
通常の実地走行でもコード切れ(以下rcBUJ :コ
ードブレーキングアップと呼ぶ)が発生し、タイヤ安全
上側底実用には適さないことを明らかにした。以下、こ
の点につき更に詳細に説明する。
(Problem to be Solved by the Invention) However, the present inventors
It has been revealed that the high-strength PVA fibers obtained by the methods described in No. 11 and No. 60-126312 have a serious drawback in terms of fatigue resistance. In other words, as it is, the fatigue resistance as a tire cord is completely insufficient,
Cord breakage (hereinafter referred to as rcBUJ: cord breaking up) occurred even during normal actual driving, making it clear that the tire safety upper side sole was not suitable for practical use. This point will be explained in more detail below.

下記の第2表に示す各種繊維材料を同表に示す撚り数で
カーカスプライのコードとして用いたタイヤサイズ19
5/70 SR14の乗用車用タイヤを試作し、これら
タイヤ(こつき、カーカスプライのコードの強力保持率
をドラム走行および実地走行後に新品時のコード強力と
の対比で評価した。得られた結果を第2表に併記する。
Tire size 19 using various fiber materials shown in Table 2 below with the number of twists shown in the same table as carcass ply cord.
5/70 SR14 passenger car tires were prototyped, and the cord strength retention rate of the carcass ply was evaluated by comparing with the cord strength when new after drum running and actual running.The obtained results were Also listed in Table 2.

尚、カーカスプライコードの強力保持率の測定個所は、
第1図に示すタイヤのx印の部分とした。
The strong retention rate of the carcass ply cord is measured at the following locations:
The area marked with an x on the tire shown in FIG. 1 was used.

第2表から明らかな様に、高強力PVA繊維のドラム走
行後の強力保持率はポリエステル繊維とほぼ同等であっ
たが、実地走行後のコード強力保持率はポリエステル繊
維が90%以上であるのに対して、高強力PVA繊維は
20〜40%にまで低下してしまい、また場合によって
はCBUが発生し、タイヤパンクの寸前の状態であった
As is clear from Table 2, the strength retention rate of high-strength PVA fibers after drum running was almost the same as that of polyester fibers, but the cord strength retention rate after actual running was 90% or more for polyester fibers. In contrast, the strength of high-strength PVA fibers decreased to 20 to 40%, and in some cases, CBU occurred and the tire was on the verge of puncture.

上記の実地走行試験は通常の車輌に試験タイヤを取り付
け、内圧も通常内圧(通常は1.7 kg/cm2)で
試験を実施したものであるが、これはあくまでタイヤ使
用条件としては管理状態におかれたものであり、一般市
場では過剰積載や時として内圧1.Okg/c[112
以下という異常状態で゛使用されることもあり得る為、
管理状態下で実地走行5万km走行時のコード強力保持
率が20〜40%であったということは、一般市場での
安全性を全く保証出来ないと判断せざるを得す、このま
までは側底実用には供し得ないと判断された。
The above practical driving test was conducted with the test tires mounted on a normal vehicle and at normal internal pressure (usually 1.7 kg/cm2), but this is only a controlled condition for tire usage conditions. In the general market, overloading and sometimes internal pressure 1. Okg/c [112
Because it may be used in the following abnormal conditions,
The fact that the cord strength retention rate was 20-40% after 50,000 km of actual driving under controlled conditions means that we cannot guarantee safety at all in the general market. It was determined that the bottom could not be put to practical use.

上述の様に、タイヤドラム試験や所謂チューブ疲労試験
等のLABO試験では検出出来ない様な現象はPVA繊
維特異な現象と考えられる為、本発明者らは上記の様な
疲労原因の徹底的究明を実施すべき、更に次のような試
験を行った。まず、下記の第3表に示す各種繊維材料を
同表に示す条件下でベルトコードとして用いた第2図に
示すフォールドベルト構造の、タイヤサイズP235/
75 R15の乗用車用タイヤを試作した。これらタイ
ヤにつき、前述の様にして実地走行後のベルトコードの
強力保持率を評価した。得られた結果を第3表に併記す
る。尚、ベルトコードの強力保持率の測定個所は、第2
図に示すX印の部分とした。
As mentioned above, phenomena that cannot be detected in LABO tests such as tire drum tests and so-called tube fatigue tests are thought to be unique to PVA fibers, so the inventors of the present invention conducted a thorough investigation into the causes of fatigue as described above. The following tests were also conducted. First, we tested a tire size P235/100 with the fold belt structure shown in Figure 2 using various fiber materials shown in Table 3 below as belt cords under the conditions shown in the same table.
We made a prototype of a 75 R15 passenger car tire. Regarding these tires, the strength retention rate of the belt cord after actual running was evaluated as described above. The obtained results are also listed in Table 3. In addition, the measurement point for the strong retention rate of the belt cord is the second
This is the part marked with an X in the figure.

上記第3表から明らかな様に、高強力PVA繊維をベル
トコードとして使用してもコードの強力保持率は、新品
時対比約60%にまで低下し、やはり耐疲労性に大きな
問題があることが判明した。
As is clear from Table 3 above, even when high-strength PVA fibers are used as belt cords, the strength retention rate of the cords decreases to about 60% compared to when they were new, indicating that fatigue resistance is still a major problem. There was found.

従って本発明の目的は、例えば空気入りタイヤに適用し
た場合には実地走行後も殆どコード強力の低下を生ずる
ことのない耐疲労性の大幅に向上したゴム補強用PVA
繊維コードを入手するくことのできる技術を提供するこ
にある。
Therefore, an object of the present invention is to provide a rubber reinforcing PVA with significantly improved fatigue resistance that hardly causes a decrease in cord strength even after actual running when applied to pneumatic tires, for example.
The object of the present invention is to provide a technique by which fiber cords can be obtained.

(課題を解決するための手段) 本発明者は前記実地走行後の高強力PVA繊維コードの
強力低下原因につき鋭意検討した結果、以下に示す知見
を得た。
(Means for Solving the Problems) The inventor of the present invention has made the following findings as a result of intensive investigation into the cause of the decrease in the strength of the high-strength PVA fiber cord after the above-mentioned actual running.

まず、実地走行後タイヤから取り出したコードをエポキ
シ樹脂中に埋め込み、ミクロトームで切断した該コード
横断面を観察したところ、上撚りと下撚りの交錯間近傍
のフィラメントが著しく変形し、フィラメント10本以
上が凝集東北していることが分かった。通常フィラメン
トはコードにかかる歪をフィラメント−本−本に分散す
る役割を有する為、フィラメントが凝集し歪を均一に分
散することが出来なくなればフィラメントまたはコード
の強力低下は促進されてしまうことになる。
First, when we embedded the cord taken out from the tire after actual driving into epoxy resin and observed the cross section of the cord cut with a microtome, we found that the filaments near the intersection of the first and second twists were significantly deformed, and more than 10 filaments was found to be concentrated in Tohoku. Normally, the filament has the role of dispersing the strain applied to the cord between the filament and the cord, so if the filament aggregates and the strain cannot be evenly distributed, the strength of the filament or cord will decrease more quickly. .

次に、この様なフィラメント凝集体現象を更に明確化す
る為に、上撚り、下撚りをほぐし、上撚りと下撚りが接
しているコード界面を顕微鏡で観察した。するとやはり
フィラメントは数本〜数十本単位であたかもプレスされ
た様にフィルム状になっている形跡が認められ、フィラ
メント元来の役割と考えられる歪入力の緩和を図ること
は不可能であることが分かった。この様なフィラメント
同士の凝集現象はポリエステル、アラミド繊維には認め
られず、PVA繊維のみに見られる現象であった。
Next, in order to further clarify such filament agglomeration phenomenon, the upper twist and lower twist were loosened, and the cord interface where the upper twist and the lower twist were in contact was observed under a microscope. As a result, it was found that the filaments were formed into a film-like shape in units of several to several tens of filaments, as if they had been pressed, and it was impossible to alleviate the strain input, which is thought to be the original role of filaments. I understand. Such a phenomenon of aggregation between filaments was not observed in polyester or aramid fibers, but was a phenomenon observed only in PVA fibers.

一方、ドラム走行(2万km走行、コード強力保持率6
0%)したコードでは一部で上記フィラメント凝集現象
が若干認められるものの、その程度は極めて小さく、ド
ラム走行においてはフィラメント各1本ずつに歪入力が
まだ均一に分散されているもと考えられる。また、従来
のPVA繊維ではドラム走行でも4700kmでCBU
が発生してしまっているが、前記高強力PVA繊維は2
万kmでも残強力が60%であり、従来のPVA繊維と
較べ大幅に耐疲労性が改良されていることが分かる。し
かし、この様に改良された高強力PVA繊維でも実地走
行後のコードで大きく強力低下するという現象は従来の
知見からは側底予測することの出来ない現象であった。
On the other hand, drum running (20,000 km running, strong cord retention rate 6)
Although the filament agglomeration phenomenon described above is slightly observed in some parts of the cord with 0%), the extent of the filament aggregation phenomenon is extremely small, and it is considered that the strain input is still uniformly distributed to each filament during drum running. In addition, with conventional PVA fiber, even when running on a drum, the CBU is
However, the high strength PVA fiber has 2
Even after 10,000 km, the residual strength was 60%, indicating that the fatigue resistance was significantly improved compared to conventional PVA fibers. However, even with such improved high-strength PVA fibers, the strength of the cord after actual running is greatly reduced, a phenomenon that could not be predicted based on conventional knowledge.

そこで本発明者らは、実地走行後とドラム走行後のコー
ドおよびフィラメントを詳細に観察することにより、以
下の相違を見い出した。即ち、(1)実地走行において
は走行と停止をくり返す為、100℃〜常温までの不規
則な温度履歴を繰り返して受ける。
The inventors of the present invention have found the following differences by closely observing the cord and filament after actual running and after running on a drum. That is, (1) during actual driving, the vehicle repeatedly runs and stops, so it is repeatedly subjected to an irregular temperature history from 100° C. to room temperature.

(2)実地走行においては、コードの受ける歪入力も不
規則に絶えず変化し、これに従い、フィラメント同士の
こすれ個所、こすれ人力も変化することになる。
(2) During actual running, the strain input that the cord receives changes constantly and irregularly, and accordingly, the locations where the filaments rub against each other and the force exerted by the rubbing also change.

(3)これに対してドラム走行におけるコードは絶えず
100℃以上の高温下にあり、フィラメント自体の軟化
によりフィラメント同士のこすれ入力を緩和し易い。
(3) On the other hand, the cord during drum running is constantly exposed to high temperatures of 100° C. or higher, and the rubbing force between the filaments is easily alleviated by the softening of the filaments themselves.

上記知見は、ドラム走行後のコードのフィラメントはフ
ィラメント同士のこずれがフィラメント中の一箇所に集
中することにより所謂バイアス状カット面を有するのに
対し、実地走行後のコードのフィラメント面には多数箇
所でフィラメント同士のこすれ傷が見られ、またバイア
ス状カット面だけを見てもバイアス状カットの中に数箇
所のこすれ傷跡が見られることによっても説明される。
The above findings indicate that the filaments of the cord after running on a drum have a so-called bias cut surface due to the misalignment between the filaments concentrating in one place in the filament, whereas the filament surface of the cord after running on the drum has a large number of cut surfaces. This can also be explained by the fact that rubbing scratches between the filaments can be seen in some places, and even when looking only at the bias cut surface, there are several rubbing scars in the bias cut.

以上説明した様なフィラメント凝集東北によるフィラメ
ント入力を減少させ、高強力PVA繊維のコードの耐疲
労性を高める為には、フィラメント凝集を阻止すれば良
いという知見に基づき、本発明は以下に示す考察の下に
なされたものである。
Based on the knowledge that it is sufficient to prevent filament aggregation in order to reduce the filament input due to filament aggregation Tohoku and increase the fatigue resistance of high-strength PVA fiber cords as explained above, the present invention has been developed based on the following considerations. This was done under the

即ち、PVA繊維は元来分子内に水素結合を有している
為、僅かな水の存在によっても水素結合が水分子と親和
性を持ち、このことがPVA繊維自体が凝集し易いとい
う欠点となっていると考えられる。また、所謂水分子は
PVA繊維の非晶部に浸入し、PVA繊維非晶部の膨潤
を引き起こすことが、例えばガラス転移点の低下等を招
く結果となっていると考えられる。
In other words, since PVA fibers originally have hydrogen bonds within their molecules, the hydrogen bonds have an affinity for water molecules even in the presence of a small amount of water, and this has the disadvantage that PVA fibers themselves tend to aggregate. It is thought that it has become. Furthermore, it is thought that so-called water molecules penetrate into the amorphous portion of the PVA fiber and cause the amorphous portion of the PVA fiber to swell, resulting in, for example, a decrease in the glass transition point.

尚、前記高強力PVA繊維では高強力発現の一手段とし
て非晶部の緻密化や、高配向化により高強力を可能とし
ており、特開昭61−108713号公報では、かかる
高強力PVA繊維の耐蒸圧性も向上することが報告され
ているが、これだけではまだまだ実地走行後のコードの
耐疲労性を向上させることは不可能であることは、前述
の結果から見て明らかであった。
In the above-mentioned high-strength PVA fiber, high strength is achieved by making the amorphous part denser and highly oriented as a means of achieving high strength. Although it has been reported that the vapor pressure resistance is also improved, it is clear from the above results that it is still impossible to improve the fatigue resistance of the cord after actual running with this alone.

そこで本発明者らは、更に非晶構造を緻密化するかもし
くは所謂スキン−コア構造を生せしめればフィラメント
同士の凝集摩滅を防止することができ、これにより実地
走行での高強力PVA繊維コードの強力低下を実質的に
阻止し、耐疲労性を付与することが出来るとの考えの下
に更に鋭意検討を行った結果、本発明を達成するに至っ
た。
Therefore, the present inventors found that it is possible to prevent the agglomeration and wear of the filaments by further densifying the amorphous structure or creating a so-called skin-core structure. As a result of further intensive studies based on the idea that it is possible to substantially prevent a decrease in strength and impart fatigue resistance, the present invention has been achieved.

すなわち、本発明は、原糸強度として15 g/d以上
であるPVA繊維の表面を架橋反応した後、接着剤処理
したPVA繊維、およびこの繊維を撚り合わせて成るコ
ードをカーカスおよび/またはベルトの補強用コードと
して使用した空気入りラジアルタイヤに関するものであ
る。
That is, the present invention subjects the surface of PVA fibers having a yarn strength of 15 g/d or more to a crosslinking reaction, and then using adhesive-treated PVA fibers and cords made by twisting these fibers to form carcass and/or belts. This relates to a pneumatic radial tire used as a reinforcing cord.

本発明における架橋反応はPVA分子の分子内架橋、分
子間架橋のどちらの架橋反応でも耐疲労性改良効果が得
られる。かかる架橋反応を生せしめる架橋剤として、ア
ルデヒド類、メチロール類、インシアネート類、カルボ
ン酸類、エポキシ類もしくは有機過酸化物類等の有機化
合物およびリン酸類、塩酸、シリカ、チタニウム等の無
機化合物が使用される。但し、ホウ酸は効果が認められ
ない。
The crosslinking reaction in the present invention can provide an effect of improving fatigue resistance by either intramolecular crosslinking or intermolecular crosslinking of PVA molecules. As a crosslinking agent that causes such a crosslinking reaction, organic compounds such as aldehydes, methylols, incyanates, carboxylic acids, epoxies, or organic peroxides, and inorganic compounds such as phosphoric acids, hydrochloric acid, silica, and titanium are used. be done. However, no effect was observed with boric acid.

具体的にはアルデヒド類として、ホルムアルデヒド、ノ
ニルアルデヒド、ベンズアルデヒド、クロロアセクール
アルデヒド、アセトアルデヒド、アクロレイン、クロト
ンアルデヒド、グリオキサ−/ペテレフタルジアルデヒ
ド、フルフラール、ヘキサヒドロベンズアルデヒド、p
−トルアルデヒド、α−ナフトアルデヒド、4−フェニ
ルベンズアルデヒド、9−アントラアルデヒド、0−ク
ロロベンズアルデヒド、p−クロロベンズアルデヒド、
2.4−ジクロロベンズアルデヒド、nブチルアルデヒ
ド、イソバレルアルデヒド、ペンタアルデヒド、フェニ
ルアセトアルデヒド、3゜5.5−)!Jメチルヘキサ
ール等がある。
Specifically, the aldehydes include formaldehyde, nonylaldehyde, benzaldehyde, chloroacecoolaldehyde, acetaldehyde, acrolein, crotonaldehyde, glyoxa/peterepthaldialdehyde, furfural, hexahydrobenzaldehyde, p
- tolualdehyde, α-naphthaldehyde, 4-phenylbenzaldehyde, 9-anthraldehyde, 0-chlorobenzaldehyde, p-chlorobenzaldehyde,
2.4-Dichlorobenzaldehyde, n-butyraldehyde, isovaleraldehyde, pentaldehyde, phenylacetaldehyde, 3°5.5-)! Examples include J methylhexal.

メチロール類としては、アクリロニトリル、Nメチロー
ルアクリロアミド、N−メチロールメラミン等がある。
Examples of methylols include acrylonitrile, N-methylol acrylamide, and N-methylol melamine.

カルボン酸類としては、ギ酸、酢酸等のモノカルボン酸
およびアジピン酸、テレフタル酸等のジカルボン酸があ
る。ジカルボン酸の場合、いわゆるPVA分子間に次式
、 で表わされる分子間または分子内架橋を生じ得る。
Examples of carboxylic acids include monocarboxylic acids such as formic acid and acetic acid, and dicarboxylic acids such as adipic acid and terephthalic acid. In the case of dicarboxylic acids, intermolecular or intramolecular crosslinks represented by the following formula can occur between so-called PVA molecules.

インシアネートとしては4.4−ジフェニルメタンジイ
ソシアネー)  (MDI:プロミネートXC武田薬品
工業■製)を代表とするブロック化されたインシアネー
ト、例えばトリレンジイソシアネート(TDI) 、ナ
フチレンジイソシアネート(NDl)、トリジンジイソ
シアネート(TODI)、キシレンジイソシアネート、
1,5−ナフタレンジイソシアネート、トリフェニルメ
タントリイソシアネート、ジシクロヘキシルメタンジイ
ソシアネート (水添化MDI)が、またエポキシ化合
物としては2官能以上のエポキシ基を有するエポキシ化
合物がある。
Examples of incyanates include blocked incyanates such as 4,4-diphenylmethane diisocyanate (MDI: Prominate Tolidine diisocyanate (TODI), xylene diisocyanate,
Examples include 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, and dicyclohexylmethane diisocyanate (hydrogenated MDI), and as epoxy compounds, there are epoxy compounds having a difunctional or more functional epoxy group.

有機過酸化物としてジクミルペルオキシド、2゜5−ジ
メチル−2,5−ジ(tert−ブチルペルオキシ)ヘ
キサン、2.5−ジメチルヘキサン−2゜5−シ(ベル
オキシルベンゾエート)、2.5−ジメチル−2,5−
ジ(tert−ブチルペルオキシ)ヘキサン−3等があ
る。
Dicumyl peroxide, 2゜5-dimethyl-2,5-di(tert-butylperoxy)hexane, 2.5-dimethylhexane-2゜5-di(beroxyl benzoate), 2.5-dicumyl peroxide as organic peroxides. dimethyl-2,5-
Examples include di(tert-butylperoxy)hexane-3.

有機過酸化物は熱を加えることにより次式、R−0−0
−R−R−0・ ・0−R に従いラジカル0・を発生し、次いで水素の引きぬきが
起こり架橋反応を形成する。
By applying heat, the organic peroxide can be converted to the following formula, R-0-0
Radical 0. is generated according to -R-R-0. .0-R, and then hydrogen is abstracted to form a crosslinking reaction.

リン酸類としてはメタリン酸、ビロリン酸、オルトリン
酸、三リン酸または四リン酸を使用することができる。
As the phosphoric acid, metaphosphoric acid, birophosphoric acid, orthophosphoric acid, triphosphoric acid or tetraphosphoric acid can be used.

上記架橋剤のうち、エポキシ類、イソシアネート類は熱
を加えることによって容易に反応するので表面架橋に適
している。一方アルデヒド類、メチロール類、無機酸類
および有機酸類は膨潤浴中で反応させるのが好ましいた
め、これら架橋剤をm維の内部まで入り込ませ、均一に
架橋されるのが好ましい。
Among the above-mentioned crosslinking agents, epoxies and isocyanates are suitable for surface crosslinking because they easily react with the application of heat. On the other hand, since it is preferable to react aldehydes, methylols, inorganic acids, and organic acids in a swelling bath, it is preferable that these crosslinking agents penetrate into the interior of the m-fibers to uniformly crosslink them.

無機酸としては塩酸、リン酸などが好ましく、また有機
酸としてはギ酸、酢酸などのカルボン酸が好ましい。こ
れらの酸はPVAの一〇H基と反応して次式、 l−OHHO→→l−0→+H20 に従いエステル結合またはエーテル結合を形成すると考
えられる。
Preferred inorganic acids include hydrochloric acid and phosphoric acid, and preferred organic acids include carboxylic acids such as formic acid and acetic acid. It is believed that these acids react with the 10H group of PVA to form an ester bond or ether bond according to the following formula: l-OHHO→→l-0→+H20.

上記架橋剤による架橋処理によりPVA繊維は架橋され
るが、少なくともフィラメント表面層のみが架橋される
ようにする。
The PVA fibers are crosslinked by the crosslinking treatment using the above crosslinking agent, but at least only the filament surface layer is crosslinked.

また、架橋処理は原糸または生コードどちらで実施して
も良く、例えば、原糸で架橋処理する場合の具体例を示
すと、架橋処理後十分に風乾した後、通常の方法で撚糸
して1500 d/2.31X31(回/foCm)の
撚りをかけ、スダレ反とし、次いでこれを接着剤処理と
して通常のレゾルシン−ホルマリン/ラテックス(以下
rRFLJと略記する)液に浸漬し、150℃×120
秒間xo、1g/d(デイツプテンション)、200℃
×30秒間X1g/dおよび205℃×30秒間x0.
6 g/dの各ドライ、ホット、ノルマゾーンにて緊張
熱処理を施し、しかる後通常の方法でゴムシートの被覆
、その後の加硫(例えば150℃×30分間)を行う。
Further, the crosslinking treatment may be carried out on either the raw yarn or the raw cord. For example, to give a specific example of crosslinking treatment on the raw yarn, after the crosslinking treatment is sufficiently air-dried, the yarn is twisted in the usual manner. It was twisted at 1500 d/2.31 x 31 (twice/foCm) to form a sagging fabric, then immersed in a normal resorcin-formalin/latex (hereinafter abbreviated as rRFLJ) solution as an adhesive treatment, and heated at 150°C x 120°C.
xo per second, 1g/d (dip tension), 200℃
x 30 seconds x 1 g/d and 205°C x 30 seconds x 0.
6 g/d in dry, hot, and normal zones, followed by coating with a rubber sheet and subsequent vulcanization (for example, at 150° C. for 30 minutes) in a conventional manner.

この場合RFL液は特にその成分が規定されるものでは
ない。
In this case, the components of the RFL liquid are not particularly defined.

また、生コードを架橋処理する場合にもスダレ反以降は
上記と同様の過程で高強力PVAw&維補強ゴムを得る
ことができる。
Furthermore, when crosslinking raw cord, high strength PVAw and fiber-reinforced rubber can be obtained by the same process as above after sagging.

尚、架橋処理は原糸製造段階でも生コード段階でもその
効果が変わるものではない。
It should be noted that the effect of the crosslinking treatment remains the same whether it is at the yarn production stage or at the raw cord stage.

架橋処理によってコードは若干その強力の低下を来たす
が、架橋処理による強力低下を10%以下に抑えるのが
好ましい。一方、架橋反応条件によっては前記RFL液
付着後の緊張熱処理によっても反応が進行し、デイツプ
コードの強力低下が起こることがあるので、架橋反応さ
せた後のコードは十分に水洗することが好ましい。
Although the strength of the cord slightly decreases due to the crosslinking treatment, it is preferable to suppress the decrease in strength due to the crosslinking treatment to 10% or less. On the other hand, depending on the crosslinking reaction conditions, the reaction may proceed even if the tension heat treatment is applied after the RFL liquid is attached, and the strength of the dip cord may decrease, so it is preferable to thoroughly wash the cord after the crosslinking reaction.

(作 用) 一般にこれまでは、繊維に架橋等の処理を施すとフィラ
メントが硬化する為に機械的歪みによってフィラメント
の動きが拘束されて耐疲労性が低下すると言われており
、架橋によって耐疲労性が改良されたという報告は未だ
ないのが現状である。
(Function) It has generally been said that when fibers are subjected to treatments such as crosslinking, the filaments harden and their movement is restricted by mechanical strain, resulting in a decrease in fatigue resistance. Currently, there are no reports of improved performance.

事実、従来のPVA繊維の架橋処理は全て耐湿熱性の向
上や染色性の向上に関するものであった。
In fact, all conventional crosslinking treatments for PVA fibers have been concerned with improving heat and humidity resistance and dyeability.

ところが、本発明において初めて、PVA繊維の架橋処
理によりゴム用補強繊維としての耐疲労性に改良効果が
あることが見出された。このことは、従来より考えられ
ていた、フィラメント硬化すると耐疲労性は低下すると
いう概念を打破したものであり、上述の様にして本発明
者らが詳細にPVA繊維の疲労挙動を検討した結果、P
 V A l!維の耐疲労性改良手段として表面硬化が
有効であることを突き止めたものである。
However, in the present invention, it has been discovered for the first time that crosslinking treatment of PVA fibers has the effect of improving fatigue resistance as reinforcing fibers for rubber. This fact breaks down the conventional concept that fatigue resistance decreases as the filament hardens, and was the result of the inventors' detailed study of the fatigue behavior of PVA fibers as described above. , P
VA l! It was discovered that surface hardening is effective as a means to improve the fatigue resistance of fibers.

本発明における架橋処理による耐疲労性改良効果は従来
の118/d程度の比較的強力の低いPVA繊維につい
ても有効であるが、この様なPVA繊維はあまりにも耐
疲労性が劣る為、ナイロンやポリエステル繊維等のゴム
補強用汎用繊維の耐疲労性レベルには到達せず、よって
前述した特開昭59−130314号、同59−100
710号等記載の高強力PVAIa雑に適用して初めて
高強力でかつ耐疲労性の向上というメリットが得られ、
従来のナイロンやポリエステル繊維等の汎用ゴム補強用
繊維に比し極めて有用である。
The fatigue resistance improvement effect of the crosslinking treatment in the present invention is also effective for conventional PVA fibers with relatively low strength of about 118/d, but such PVA fibers have extremely poor fatigue resistance, so nylon and The fatigue resistance level does not reach the fatigue resistance level of general-purpose rubber reinforcing fibers such as polyester fibers, and thus
It is only when applied to high-strength PVAIa materials described in No. 710 etc. that the benefits of high strength and improved fatigue resistance can be obtained.
It is extremely useful compared to conventional rubber reinforcing fibers such as nylon and polyester fibers.

(実施例) 次に本発明を実施例および比較例により説明する。(Example) Next, the present invention will be explained with reference to Examples and Comparative Examples.

比較例1 特開昭59−130314号および同59−10071
0号公報記載の方法にて得られた高強力PVA繊維に撚
りをかけ、1500 d/2.31 X31回/10c
mの撚りコードとし、これを通常のRFLデイツプ液に
浸漬し、150 tX120秒間xO,1g/d 。
Comparative Example 1 JP-A-59-130314 and JP-A-59-10071
High-strength PVA fibers obtained by the method described in Publication No. 0 were twisted to 1500 d/2.31 x 31 times/10 c
A twisted cord of m length was immersed in a normal RFL dip solution for 150 t x 120 seconds at xO, 1 g/d.

200℃×30秒間X1g/dおよび205℃×30秒
間×0.6g/dの各ドライ、ホットおよびノルマゾー
ンにて緊張熱処理を施した。このコードを以下の実施例
および比較例のコントロールとした。
Tension heat treatment was performed at 200° C. for 30 seconds at 1 g/d and at 205° C. for 30 seconds at 0.6 g/d in dry, hot, and normal zones. This code was used as a control for the following examples and comparative examples.

実施例1 比較例1と同様にして得た撚りコードをH2S0420
%、Na25o、10%およびホルマリン(ホルムアル
デヒド37%水溶液)37重量%の水溶液の浴中に60
℃で30分間浴比50:lにて浸漬した。次いで、1分
に水洗洗浄した後、24時間風乾後、乾燥状態で48時
間乾燥させた。その後は比較例1と同様のRFLデイツ
プ処理を施した。
Example 1 A twisted cord obtained in the same manner as in Comparative Example 1 was used as H2S0420.
%, Na25O, 10% and formalin (formaldehyde 37% aqueous solution) in a bath of 37% by weight aqueous solution.
℃ for 30 minutes at a bath ratio of 50:l. Next, it was washed with water for 1 minute, air-dried for 24 hours, and then dried in a dry state for 48 hours. Thereafter, the same RFL dip treatment as in Comparative Example 1 was performed.

実施例2 比較例1と同様にして得た撚りコードをH2SO420
%、Na、30.10%およびテレフタルアルデヒド4
重量%のエタノール溶液にて実施例1と同様の浸漬処理
を施し、次いで同様のRFLデイツプ処理を施した。
Example 2 A twisted cord obtained in the same manner as in Comparative Example 1 was
%, Na, 30.10% and terephthaldehyde 4
The sample was subjected to the same immersion treatment as in Example 1 using a wt% ethanol solution, and then to the same RFL dip treatment.

実施例3 比較例1と同様にして得た撚りコードをアクリロニトリ
ル5%、Na2SO48%およびNaOH0,5%の水
溶液の浴中に60℃で60分間浴比50:1にて浸漬し
た。次いで、十分に水洗した後風乾して、比較例1と同
様のRFLデイツプ処理を施した。
Example 3 A twisted cord obtained in the same manner as in Comparative Example 1 was immersed in a bath of an aqueous solution of 5% acrylonitrile, 8% Na2SO4 and 0.5% NaOH at 60° C. for 60 minutes at a bath ratio of 50:1. Next, it was thoroughly washed with water, air-dried, and subjected to the same RFL dip treatment as in Comparative Example 1.

実施例4 比較例1と同様にして得た撚りコードをN−メチロール
アクリルアミド5%、NH,CI 0.5%およびNa
N0□0.5%の水溶液の浴中に50℃で10分間浴比
50:lで浸漬し、そのまま50℃で10分間、次いで
100℃で10分間乾燥処理を施した後、NaO8,2
0%、Na、30.3%の水溶液にて60℃で60分間
アルカリ処理を施した。しかる後、十分に風乾した後に
比較例1と同様のRFLデイツプ処理を施した。
Example 4 A twisted cord obtained in the same manner as in Comparative Example 1 was mixed with 5% N-methylolacrylamide, 0.5% NH, CI, and Na
NaO8,2
An alkali treatment was performed at 60° C. for 60 minutes using an aqueous solution containing 0%, Na, and 30.3%. Thereafter, it was thoroughly air-dried and then subjected to the same RFL dip treatment as in Comparative Example 1.

比較例2 比較例1と同様にして得た撚りコードをホウ酸3.5%
の水溶液の浴中に100℃で5分間浴比50:1にて浸
漬し、次いで乾燥させた後、比較例1と同様のRFLデ
イツプ処理を施した。
Comparative Example 2 A twisted cord obtained in the same manner as Comparative Example 1 was mixed with 3.5% boric acid.
The sample was immersed in an aqueous solution bath at 100° C. for 5 minutes at a bath ratio of 50:1, then dried, and then subjected to the same RFL dip treatment as in Comparative Example 1.

実施例5 比較例1と同様にして得た撚りコードをH2SO45,
7%、(NH2)2C014,3重量%の水溶液の浴中
に60℃で30分間浴比50:1にて浸漬し、十分に水
洗した後に100℃で30分間の乾燥処理、次いで19
0℃で3分間の熱処理を施した。しかる後、比較例1と
同様のRFLデイツプ処理を施した。
Example 5 A twisted cord obtained in the same manner as in Comparative Example 1 was treated with H2SO45,
7%, (NH2)2C014, 3% by weight aqueous solution at 60°C for 30 minutes at a bath ratio of 50:1, thoroughly rinsed with water, dried at 100°C for 30 minutes, and then dried at 100°C for 30 minutes.
Heat treatment was performed at 0° C. for 3 minutes. Thereafter, the same RFL dip treatment as in Comparative Example 1 was performed.

実施例6 ブロックイソシアネートとしてカプロラクタムでブロッ
クされたMDI(商品名:t、田薬品@製ブロミネー)
XC−929)を用い、比較例1と同様にして得た撚り
コードを該MD11.7%の水溶液の浴中に浴比50:
1で浸漬し、150℃で2分間、次いで200℃で1分
間の処理を施した。しかる後、比較例1と同様のRFL
デイツプ処理を施した。
Example 6 MDI blocked with caprolactam as blocked isocyanate (trade name: t, Bromine manufactured by Tayaku@)
XC-929), the twisted cord obtained in the same manner as in Comparative Example 1 was placed in a bath of an aqueous solution having an MD of 11.7% at a bath ratio of 50:
1, and then treated at 150°C for 2 minutes and then at 200°C for 1 minute. After that, RFL similar to Comparative Example 1
Deep treatment was applied.

実施例7.8 比較例1と同様にして得た撚りコードをアジピン酸クロ
ライド(実施例7)またはフタル酸クロライド(実施例
8)1%、およびトリエチルアミン0.5%のTHF溶
液に室温で15時間浸漬し、次いでメチルアルコールで
洗浄、風乾した後、比較例1と同様のRFLデイツプ処
理を施した。
Example 7.8 A twisted cord obtained similarly to Comparative Example 1 was dissolved in a THF solution of 1% adipic acid chloride (Example 7) or phthalic acid chloride (Example 8) and 0.5% triethylamine at room temperature for 15 minutes. After soaking for a time, washing with methyl alcohol, and air drying, the same RFL dip treatment as in Comparative Example 1 was performed.

実施例9,10 比較例1と同様にして得た撚りコードをテレフタル酸ジ
グリシジルエステル(実施例9)または0−フタル酸ジ
グリシジルエステル(実施例10)(商品名:ナガセ産
業、エポキシIEX 711. [EX 721)6.
5%、およびDMP:30 0.2%のアセトン溶液に
5分間浸漬後、150℃で2分間、次いで200℃で1
分間の熱処理を施し、しかる後比較例と同様のRFLデ
イツプ処理を施した。
Examples 9 and 10 A twisted cord obtained in the same manner as in Comparative Example 1 was treated with terephthalic acid diglycidyl ester (Example 9) or 0-phthalic acid diglycidyl ester (Example 10) (trade name: Nagase Sangyo, Epoxy IEX 711) . [EX 721)6.
5%, and DMP: 30. After 5 minutes of immersion in 0.2% acetone solution, 2 minutes at 150°C, then 1 minute at 200°C.
A heat treatment was performed for 1 minute, and then an RFL dip treatment similar to that of the comparative example was performed.

実施例11 比較例1と同様にして得た撚りコードをジクミルパーオ
キサイド(商品名;日本油脂■製パークミルD)10%
のアセトン溶液の浴中に15分間浸漬し、200℃で3
分間熱処理を施し、しかる後比較例1と同様のRFLデ
イツプ処理を施した。
Example 11 A twisted cord obtained in the same manner as in Comparative Example 1 was mixed with 10% dicumyl peroxide (trade name: Permil D manufactured by NOF ■).
immersed in a bath of acetone solution for 15 minutes and heated at 200 °C for 3
A heat treatment was performed for a minute, and then an RFL dip treatment similar to that in Comparative Example 1 was performed.

上述のようにして処理した各RFLデイツプ処理コード
(以下「デイツプコード」と略記する)の強力と疲労試
験後のコード強力を測定し、デイツプコード対比の強力
保持率を求めた。
The strength of each RFL dip-treated cord (hereinafter abbreviated as "dip cord") treated as described above and the strength of the cord after the fatigue test were measured, and the strength retention rate in comparison with the dip cord was determined.

コード強力測定法および疲労試験は下記の様にして行っ
た。
The cord strength measurement method and fatigue test were conducted as follows.

実施例12.13 比較列1と同様にして得た撚りコードをpH3に調整し
た塩酸またはギ酸の水溶液中に60℃で30分浸漬し、
水洗いで余分な酸を除去した後、緊張処理を行った。そ
の条件は、150℃×120秒間×張力0.1g/d後
、200℃X40秒間X1g/d、続いて200℃×4
0秒間xO,5g/dとした。
Example 12.13 A twisted cord obtained in the same manner as in Comparative Row 1 was immersed in an aqueous solution of hydrochloric acid or formic acid adjusted to pH 3 for 30 minutes at 60°C.
After removing excess acid by washing with water, a tension treatment was performed. The conditions were: 150°C x 120 seconds x tension 0.1g/d, then 200°C x 40 seconds x 1g/d, then 200°C x 4
It was set as xO for 0 seconds and 5 g/d.

しかる後に、比較例1と同様のRFLデイツプ処理を施
し、コード試験を行った。
Thereafter, the same RFL dip treatment as in Comparative Example 1 was performed, and a cord test was conducted.

コード強力測定法および疲労試験は下記の様にして行っ
た。
The cord strength measurement method and fatigue test were conducted as follows.

(1)コード強力測定法 ベルト屈曲試料およびタイヤから取り出したコードから
はさみで付着ゴムを取り除いた後、該コードをチャック
間距離IQcmでJIS L1017 に従い常温で引
張り、破断時の強力を測定し、破断強力を撚糸前のトー
タルデニール数で除した値を強力S(g/d)  とし
た。尚、トータルデニール数は撚糸前のデニール数を用
いたが、これはコード処理工程やタイヤ加硫工程で若干
コードの伸縮があり、またタイヤから取り出したコード
は若干ゴム付着がある為、繁雑化を避ける為である。
(1) Cord strength measurement method After removing the attached rubber with scissors from the belt bending sample and the cord taken out from the tire, the cord was pulled at room temperature with a distance between chucks IQ cm according to JIS L1017, and the strength at break was measured. The value obtained by dividing the strength by the total denier number before twisting was defined as the strength S (g/d). For the total denier, we used the denier before twisting, but this is complicated because the cord expands and contracts slightly during the cord processing process and tire vulcanization process, and the cord taken out from the tire has some rubber adhesion. This is to avoid.

(2)コード疲労試験 PVA繊維コードが上撚り、下撚りの界面で凝集、摩滅
することによりコードと直角方向に圧縮を受ける試験法
として、いわゆるベルト屈曲試験法があり、この試験法
をコード疲労試験として採用した。試験サンプルの形状
は幅50II]1IIS厚さl cm、長さ50cmの
板状とし、この中に供試コードとスチールコードを入れ
、100 kg/cm2の圧力下、150℃で30分間
加硫した後、プーリー径50mmφ、荷重100 kg
下で10万回屈曲疲労を与え、しかる後、供試コードの
強力を上述のコード強力測定法に従い測定した。
(2) Cord fatigue test There is a so-called belt bending test method, which is a test method in which PVA fiber cords undergo compression in the direction perpendicular to the cord due to agglomeration and abrasion at the interface between the first and second twists. It was adopted as a test. The shape of the test sample was a plate with a width of 50 cm, a thickness of 1 cm, and a length of 50 cm.The test cord and steel cord were placed in this plate and vulcanized at 150°C for 30 minutes under a pressure of 100 kg/cm2. Rear pulley diameter 50mmφ, load 100kg
The test cord was subjected to bending fatigue 100,000 times, and then the strength of the test cord was measured according to the above-mentioned cord strength measuring method.

得られた試験結果を下表の第4表に示す。The test results obtained are shown in Table 4 below.

第4表に示す試験結果から明らかな様に、実施例1〜I
Oはコントロールに比しデイツプコード強力はほぼ同等
で、耐疲労性が大幅に改善された。
As is clear from the test results shown in Table 4, Examples 1 to I
The dip cord strength of O was almost the same as that of the control, and the fatigue resistance was significantly improved.

また実施例11〜13ではデイツプコード強力および耐
疲労性の双方が改善された。
Furthermore, in Examples 11 to 13, both the dip cord strength and fatigue resistance were improved.

これに対し比較例2では上記改善効果は見られなかった
On the other hand, in Comparative Example 2, the above improvement effect was not observed.

比較例3〜4、実施例14〜21 次に、上記各種コードのタイヤへの適用として、かかる
コードをベルトに用いカーカスプライにはポリエステル
コードを用いた185/70R13サイズのタイヤと、
当該コードをカーカスプライに用いベルトにはスチール
コードを用いた195/70SR14サイズのタイヤを
試作した。
Comparative Examples 3 to 4, Examples 14 to 21 Next, as an application of the above various cords to tires, a 185/70R13 size tire using such cords for the belt and polyester cord for the carcass ply,
A 195/70SR14 size tire was prototyped using the cord for the carcass ply and a steel cord for the belt.

これら試作タイヤにつき、以下のドラム走行試験および
実地走行試験を行った。
These prototype tires were subjected to the following drum running test and field running test.

(1)BFドラム走行試験 試作タイヤを25℃±2℃の室内中で内圧3.0kg/
cm2に調整した後、24時間放置後、空気圧の再調整
を行い、JIS荷重の2倍荷重をタイヤに負荷し、直径
的3mのドラム上で速度60kg/時で2万km走行さ
せた。その後タイヤからコードを取り出し、コード強力
を上述の様にJIS L1017に従い測定した。
(1) BF drum running test Prototype tires were placed indoors at 25°C ± 2°C at an internal pressure of 3.0 kg/
cm2, the tire was left for 24 hours, the air pressure was readjusted, a load twice the JIS load was applied to the tire, and the tire was run for 20,000 km at a speed of 60 kg/hour on a drum with a diameter of 3 m. Thereafter, the cord was removed from the tire, and the strength of the cord was measured in accordance with JIS L1017 as described above.

(2)実地走行試験 試作タイヤを規定リムで組んだ後、一般乗車に取り付け
て一般走行させ、195/70 SR14サイズのカー
カスプライ検討用試作タイヤでは実地走行約5万km、
また185/70 R13のベルトコード検討用試作タ
イヤでは3.2万km走行させた後のコード強力を上述
の様にJIS L1017に従い測定した。
(2) Practical driving test After assembling the prototype tire with the specified rim, it was installed on a general passenger and driven for general driving.The 195/70 SR14 size prototype tire for carcass ply study was driven approximately 50,000 km in the field.
In addition, the cord strength of the 185/70 R13 belt cord trial tire after traveling 32,000 km was measured in accordance with JIS L1017 as described above.

得られた試験結果を第5表に示す。The test results obtained are shown in Table 5.

尚、同表中のコードの撚計数αは次式により求めたもの
である。
Incidentally, the twist count α of the cord in the same table was determined by the following formula.

a = N X m X 10−3 (式中のαは撚計数、Nはコードloam当たりの撚り
数、Dはコードのトークルデニール数の1/2、ρは繊
維の比重を示す) 第5表に示す試験結果から明らかな様に、実施例14〜
18は比較例3に比し、また実施例19〜21は比較例
4に比し夫々走行後のコードの強力保持率が改善された
a = N As is clear from the test results shown in the table, Examples 14-
Cord strength retention after running was improved in No. 18 as compared to Comparative Example 3, and in Examples 19 to 21 as compared with Comparative Example 4.

(発明の効果) 以上説明してきた様に本発明のPVA繊維においては、
高強力PVAI#l維の表面が架橋反応されたことによ
り、例えばこれを空気入りタイヤに適用した場合には実
地走行後も殆どコード強力の低下を来すことがないとい
う効果が得られる。この結果、かかるコードで補強され
た本発明の空気入りラジアルタイヤにおいては耐久性の
大幅向上が可能となる。
(Effect of the invention) As explained above, in the PVA fiber of the present invention,
Since the surface of the high-strength PVAI #1 fiber is subjected to a cross-linking reaction, for example, when this is applied to a pneumatic tire, there is an effect that the cord strength hardly decreases even after actual running. As a result, the durability of the pneumatic radial tire of the present invention reinforced with such cords can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカーカスプライコードの強力保持率の測定個所
を示すタイヤの部分断面図、 第2図はベルトコードの強力保持率の測定個所を示すタ
イヤの部分断面図である。
FIG. 1 is a partial sectional view of the tire showing the locations where the strength retention rate of the carcass ply cord is measured, and FIG. 2 is a partial sectional view of the tire showing the locations where the strength retention rate of the belt cords is measured.

Claims (1)

【特許請求の範囲】 1、原糸強度として15g/d以上を有するポリビニル
アルコール系合成繊維の少なくとも表面を架橋反応した
後、接着剤処理したことを特徴とするポリビニルアルコ
ール系合成繊維。 2、請求項1記載のポリビニルアルコール系合成繊維を
撚り合わせて成るコードをカーカスおよび/またはベル
トの補強用コードとして使用したことを特徴とする空気
入りラジアルタイヤ。
[Scope of Claims] 1. A polyvinyl alcohol synthetic fiber having a yarn strength of 15 g/d or more, which is characterized in that at least the surface thereof is subjected to a crosslinking reaction and then treated with an adhesive. 2. A pneumatic radial tire characterized in that a cord made by twisting the polyvinyl alcohol synthetic fibers according to claim 1 is used as a reinforcing cord for a carcass and/or a belt.
JP1050139A 1988-03-04 1989-03-03 Tire reinforcing cord made of polyvinyl alcohol-based synthetic fiber and pneumatic radial tire reinforced with this cord Expired - Lifetime JP2718977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1050139A JP2718977B2 (en) 1988-03-04 1989-03-03 Tire reinforcing cord made of polyvinyl alcohol-based synthetic fiber and pneumatic radial tire reinforced with this cord

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-51219 1988-03-04
JP5121988 1988-03-04
JP1050139A JP2718977B2 (en) 1988-03-04 1989-03-03 Tire reinforcing cord made of polyvinyl alcohol-based synthetic fiber and pneumatic radial tire reinforced with this cord

Publications (2)

Publication Number Publication Date
JPH0284587A true JPH0284587A (en) 1990-03-26
JP2718977B2 JP2718977B2 (en) 1998-02-25

Family

ID=26390585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050139A Expired - Lifetime JP2718977B2 (en) 1988-03-04 1989-03-03 Tire reinforcing cord made of polyvinyl alcohol-based synthetic fiber and pneumatic radial tire reinforced with this cord

Country Status (1)

Country Link
JP (1) JP2718977B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340650A (en) * 1992-02-18 1994-08-23 Kuraray Company Limited Vinyl alcohol units-containing polymer composite fiber having resistance to hot water and wet heat and process for its production
US5717026A (en) * 1995-05-22 1998-02-10 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and method of manufacture
DE102013019888A1 (en) * 2013-11-28 2015-05-28 Carl Freudenberg Kg Hydrogelierende fibers and fiber structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837077A (en) * 1971-09-11 1973-05-31
JPS6328931A (en) * 1986-07-14 1988-02-06 東レ株式会社 Tire cord composed of polyvinyl alcohol fiber improved in fatique resistance
JPH02216288A (en) * 1988-09-07 1990-08-29 Toray Ind Inc Cord for reinforcing power transmission belt and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837077A (en) * 1971-09-11 1973-05-31
JPS6328931A (en) * 1986-07-14 1988-02-06 東レ株式会社 Tire cord composed of polyvinyl alcohol fiber improved in fatique resistance
JPH02216288A (en) * 1988-09-07 1990-08-29 Toray Ind Inc Cord for reinforcing power transmission belt and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340650A (en) * 1992-02-18 1994-08-23 Kuraray Company Limited Vinyl alcohol units-containing polymer composite fiber having resistance to hot water and wet heat and process for its production
US5717026A (en) * 1995-05-22 1998-02-10 Kuraray Co., Ltd. Polyvinyl alcohol-based fiber and method of manufacture
DE102013019888A1 (en) * 2013-11-28 2015-05-28 Carl Freudenberg Kg Hydrogelierende fibers and fiber structures

Also Published As

Publication number Publication date
JP2718977B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US5151142A (en) Heavy duty pneumatic radial tires using rubber reinforcing fiber cords with improved adhesion
KR0182655B1 (en) Polyvinyl alcohol-based fiber and manufacturing thereof
US20090056849A1 (en) Polyester cord for reinforcement of rubber and a method for manufacturing the same
JP2717160B2 (en) Monofilament for embedding in rubber
JP2004308027A (en) Polyketone fiber cord for reinforcing rubber and tire using the same
US6319601B1 (en) Polyvinyl alcohol based fibers
JPH0284587A (en) Polyvinyl alcohol-based synthetic fiber and pneumatic radial tire reinforced with cord therefrom
JP4966554B2 (en) Pneumatic radial tire
JPH02249705A (en) Pneumatic tire
JP4434344B2 (en) Pneumatic radial tire for motorcycles
JP2672623B2 (en) Polyvinyl alcohol synthetic fiber for rubber reinforcement
US4934427A (en) Pneumatic tires
JP4465514B2 (en) Polyester fiber cord processing method
KR101312798B1 (en) Tire Cord Fabric and Method for Manufacturing The Same
JP3762583B2 (en) Polyester fiber cord manufacturing method
JP3762581B2 (en) Polyester fiber cord manufacturing method
JPS6071240A (en) Manufacture of tire reinforcing cord
JPH06207338A (en) Polyvinyl alcohol cord and its production
US5016698A (en) Pneumatic radial tires with improved polyvinyl alcohol belt cords
JP3663714B2 (en) Fiber reinforced rubber hose
JPH06210761A (en) Pneumatic bias tire
JP4544829B2 (en) Polyketone fiber cord and tire using the same
JP2895489B2 (en) Pneumatic tire
JPH0253928A (en) Treated high-tenacity polyvinyl alcohol fiber cord and pneumatic tire reinforced with the same cord
JPS60104580A (en) Production of tire reinforcing code