JPH0284541A - Production of metal-coated fiber structure - Google Patents

Production of metal-coated fiber structure

Info

Publication number
JPH0284541A
JPH0284541A JP19611888A JP19611888A JPH0284541A JP H0284541 A JPH0284541 A JP H0284541A JP 19611888 A JP19611888 A JP 19611888A JP 19611888 A JP19611888 A JP 19611888A JP H0284541 A JPH0284541 A JP H0284541A
Authority
JP
Japan
Prior art keywords
solution
ammonia
fiber structure
plating
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19611888A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ito
清 伊藤
Toshiya Tanioka
俊哉 谷岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP19611888A priority Critical patent/JPH0284541A/en
Publication of JPH0284541A publication Critical patent/JPH0284541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To easily activate a substrate surface to be plated by electroless plating, under mild condition, by applying a solution of ammonia, an aliphatic amine compound, an amino acid or its salt to a properly defatted and scoured fiber structure and drying the solution. CONSTITUTION:A solution of ammonia, an aliphatic amine compound, an amino acid or monomer or polymer of its salt is applied to a properly defatted and scoured fiber structure containing a synthetic fiber such as polyvinyl chloride, polyvinylidene chloride, polyester, polyamide or polyolefin and is dried. A uniform metal film can be formed on the surface by electroless plating.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属被覆繊維構造物の製造方法に関し、更に詳
しくは、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポ
リエステル系、ポリアミド系等の合成繊維を含有する繊
維構造物の表面に無電解メッキ(別名:化学メッキ)を
施こす際に、メッキすべき合成繊維構造物を予めアンモ
ニア、脂肪族アミン系化合物、又はアミノ酸又はその塩
類の溶液で処理した後、メッキ触媒を均一に吸着させ活
性化し、無電解メッキ浴を通過させ、合成繊維構造物表
面に所望の厚さの金属皮膜を形成させることを特徴とす
る金属被覆繊維構造物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a metal-coated fiber structure, and more specifically, it relates to a method for manufacturing a metal-coated fiber structure, and more specifically, a metal-coated fiber structure containing synthetic fibers such as polyvinyl chloride-based, polyvinylidene chloride-based, polyester-based, polyamide-based, etc. When performing electroless plating (also known as chemical plating) on the surface of a fiber structure to be plated, the synthetic fiber structure to be plated must be treated with ammonia, an aliphatic amine compound, or a solution of amino acids or their salts beforehand. , relates to a method for manufacturing a metal-coated fiber structure, characterized in that a plating catalyst is uniformly adsorbed and activated, and the synthetic fiber structure is passed through an electroless plating bath to form a metal film of a desired thickness on the surface of the synthetic fiber structure.

従来の技術 一般にプラスチック表面に無電解メッキを施こすには、
脱脂、触媒付与、活性化等の前処理を行なった後、無電
解メッキ浴に浸漬させるのが普通であり、更に基材表面
の濡れを良好にして、触媒の吸着及び付着能を向上させ
たり、或いは基材と金属との密着性の向上を目的として
機械的エツチング又は化学的エツチング等の表面処理を
併用することも多く行われている。
Conventional technology Generally, in order to apply electroless plating to a plastic surface,
After pretreatment such as degreasing, catalyst application, and activation, it is common to immerse the material in an electroless plating bath to improve the wetting of the substrate surface and improve the adsorption and adhesion ability of the catalyst. Alternatively, surface treatments such as mechanical etching or chemical etching are often used in combination for the purpose of improving the adhesion between the base material and the metal.

現在、工業的に無電解メッキの対象とされているプラス
チックとしては、ABS樹脂、ポリプロピレン樹脂、ナ
イロン樹脂等があげられる。その理由は、これらの素材
が化学エツチングされ易く、また無電解メッキの密着性
も比較的良好であるからである。
Currently, plastics that are industrially targeted for electroless plating include ABS resin, polypropylene resin, and nylon resin. This is because these materials are easily chemically etched and have relatively good adhesion during electroless plating.

一方、メッキし難くい樹脂としては、ポリエステル系樹
脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂等があげ
られる。これらの樹脂の化学エツチングに関し、例えば
、特公昭47−19600号公報には、ポリアミド、ポ
リエステル、ポリビニル、ポリ塩化ビニリデン、ポリオ
レフィン樹脂等のメッキに先立って、それぞれの樹脂に
適した有機溶剤たとえば、塩化ビニル系樹脂に対しては
酢酸エチル、アセトン、ベンゼン、トリクレン等を、ま
たポリエステル系樹脂に対してはm−クレゾール、o−
フェノールの10〜20%水溶液ヲ、そして、ポリプロ
ピレンに対しては5%の苛性ソーダ水溶液に10〜20
%のデカリンスはテトラリン等の有機溶剤を混入しさら
に界面活性剤2〜10g/lを加えてエマルジョン化し
た浴等で50〜60℃で膨潤処理を行ない、次いで、5
0〜60%硫酸水溶液に重クロム酸カリ2〜5 g/l
を加えた浴で50〜70℃で1〜2分間エツチングを行
なった後無電解メッキする方法が開示されている。
On the other hand, examples of resins that are difficult to plate include polyester resins, vinyl chloride resins, vinylidene chloride resins, and the like. Regarding the chemical etching of these resins, for example, Japanese Patent Publication No. 47-19600 describes that prior to plating polyamide, polyester, polyvinyl, polyvinylidene chloride, polyolefin resins, etc., organic solvents suitable for each resin, such as chloride For vinyl resins, use ethyl acetate, acetone, benzene, trichlene, etc. For polyester resins, use m-cresol, o-cresol, etc.
10-20% aqueous solution of phenol, and for polypropylene 10-20% aqueous solution of caustic soda.
% of decalin is mixed with an organic solvent such as tetralin and further added with 2 to 10 g/l of a surfactant to form an emulsion. Swelling treatment is performed at 50 to 60°C, and then 5.
Potassium dichromate 2-5 g/l in 0-60% sulfuric acid aqueous solution
A method is disclosed in which etching is carried out for 1 to 2 minutes at 50 to 70 DEG C. in a bath containing .

しかし、上記方法で樹脂の膨潤に使われる上記の有機溶
剤は蒸発し易く特有の臭気があり且つ可燃性であるため
、作業環境の汚染及び火災等の危険性がある。更に、膨
潤処理後の化学エツチングに使われる硫酸と重クロム酸
カリの混合液は、強い酸化力を有しており重合体物質の
欠損、物理的強力の低下等の問題を生ずる可能性がある
。その上、クロム酸が溶存した廃水は公害規制が厳しく
廃水処理方法が複雑であり、更に沈殿回収したクロムを
含んだスラッジの処理等に難問が多いという欠点がある
However, the organic solvent used to swell the resin in the above method evaporates easily, has a unique odor, and is flammable, so there is a risk of contaminating the working environment and causing fire. Furthermore, the mixed solution of sulfuric acid and potassium dichromate used for chemical etching after swelling treatment has strong oxidizing power and may cause problems such as loss of polymer substances and reduction in physical strength. . Furthermore, pollution regulations for wastewater containing dissolved chromic acid are strict, and wastewater treatment methods are complicated, and furthermore, there are many difficulties in processing the chromium-containing sludge that has been precipitated and recovered.

他方、無電解メッキ金属皮膜の密着性を改良する方法と
して合成繊維の表面に微細な凹凸を付与することも考え
られるが、プラスチック成型品に対して行なわれている
ようなサンドブラスト法などで機械的粗化を施す方法は
繊維の場合には損傷が甚しく実際上は不可能である。
On the other hand, one way to improve the adhesion of electroless plated metal films is to add fine irregularities to the surface of synthetic fibers, but mechanical In the case of fibers, the roughening method causes severe damage and is practically impossible.

更に、特開昭60−181362号公報には、ポリエス
テル繊維に化学メッキを施こす改良法として、スルホン
酸基及び/又は金属スルホネート基を有する化合物を含
むポリエステル繊維をアルカリ浴に浸漬及び/又は通過
させることにより、8〜30重量%の減量処理を施し、
繊維表面に金属スルホネート基を露出させた後、触媒付
与、活性化処理することにより均一な無電解メッキ金属
膜を形成させる方法が開示されている。
Furthermore, JP-A-60-181362 discloses an improved method for chemically plating polyester fibers, in which polyester fibers containing a compound having a sulfonic acid group and/or a metal sulfonate group are immersed and/or passed through an alkaline bath. By doing so, a weight loss treatment of 8 to 30% by weight is performed,
A method has been disclosed in which a uniform electroless plated metal film is formed by exposing metal sulfonate groups on the fiber surface and then applying a catalyst and activating the group.

この方法は、ポリエステル紡糸原料に金属スルホネート
基を有する化合物を共存させて溶融紡糸するために、原
料段階から特製しなければならず、そして溶融紡糸時に
、ポリエステル以外の化合物を共存させると紡糸ノズル
の摩耗又は紡糸中の糸切れが起り易い等の欠点がある。
In this method, in order to carry out melt spinning with a compound having a metal sulfonate group coexisting in the polyester spinning raw material, it must be specially prepared from the raw material stage. There are disadvantages such as abrasion and thread breakage during spinning.

更に、特開昭48−54299号公報にはポリアミド繊
維の無電解メッキ方法が記載されており、この方法は、
ポリアミド繊維を物理的又は化学的にエツチングするこ
となくN−アルコキシメチルナイロンのアルコール溶液
をナイロン繊維に付着させ、次いで溶剤のアルコールの
沸点以上の温度で急激に乾燥させるものであって、この
方法では、乾燥時にアルコールが速やかに気化し、微細
な気泡となってN−アルコキシメチルナイロンの表面か
ら離脱し、N−アルコキシメチルナイロンがナイロン繊
維にしっかりと接着される。N−アルコキンメチルナイ
ロンの表面はアルコールの気化逸散により表面は微細な
凹凸状態となるので、重クロム酸と硫酸の混合液による
化学エツチングを行なうことなく、直接無電解メッキす
ることにより金属メッキ層を形成させることが可能とな
る。
Furthermore, JP-A No. 48-54299 describes a method for electroless plating of polyamide fibers, and this method includes the following steps:
In this method, an alcohol solution of N-alkoxymethyl nylon is attached to nylon fibers without physically or chemically etching the polyamide fibers, and then rapidly dried at a temperature higher than the boiling point of the solvent alcohol. During drying, the alcohol quickly vaporizes and becomes fine bubbles that separate from the surface of the N-alkoxymethyl nylon, thereby firmly adhering the N-alkoxymethyl nylon to the nylon fibers. The surface of N-alcoquine methyl nylon becomes minutely uneven due to vaporization and dissipation of alcohol, so metal plating can be achieved by direct electroless plating without chemical etching using a mixture of dichromic acid and sulfuric acid. It becomes possible to form layers.

しかし、この方法は、N−アルコキシメチルナイロンの
溶媒としてアルコールを使い、その上アルコールの沸点
以上に急激に加熱気化させる工程を必要とするので、火
災の危険性及び有機溶剤による環境汚染等の欠点を有し
ている。
However, this method uses alcohol as a solvent for N-alkoxymethyl nylon and requires a step of rapidly heating and vaporizing it above the boiling point of the alcohol, resulting in disadvantages such as the risk of fire and environmental pollution caused by organic solvents. have.

発明が解決しようとする課題 本発明の目的は、ポリエステル系、ポリ塩化ビニリデン
系、ポリ塩化ビニル系、ポリアミド系、アクリル系等の
合成繊維を含有する繊維構造物の無電解メッキにおける
前記欠点を解消するため、無電解メッキすべき基材表面
を簡単で、温和な条件により活性化する新規な方法を提
供することにある。
Problems to be Solved by the Invention The purpose of the present invention is to eliminate the above-mentioned drawbacks in electroless plating of fiber structures containing synthetic fibers such as polyester, polyvinylidene chloride, polyvinyl chloride, polyamide, and acrylic fibers. Therefore, it is an object of the present invention to provide a new method for activating the surface of a substrate to be electrolessly plated under simple and mild conditions.

本発明の目的はまた、化学的エツチング又は物理的処理
によって被メッキ物の表面を粗化しなければ密着性の良
いメッキが困難な基材を対象にして、該メッキ物の物理
的強力の低下等の欠点がなく且つ堅固に密着する金属膜
を連続的に得る方法を提供するにある。
Another object of the present invention is to reduce the physical strength of the plated material, targeting base materials on which it is difficult to plate with good adhesion unless the surface of the plated material is roughened by chemical etching or physical treatment. It is an object of the present invention to provide a method for continuously obtaining a metal film that is firmly adhered to the metal film without the above drawbacks.

課題を解決するI;めの手段 本発明によれば、ポリ塩化ビニル系、ポリ塩化ビニリデ
ン系、ポリエステル系、ポリアミド系、アクリル系等の
合成繊維を含有する繊維構造物の表面に無電解メッキ法
により金属皮膜を形成させるに当り、適宜脱脂、精練し
た繊維構造物に無電解メッキに先立ち予めアンモニア、
脂肪族アミン系化合物又はアミノ酸又はその塩類の溶液
を付与し乾燥することを特徴とする無電解メッキ法によ
る金属被覆繊維構造物の製造方法が提供される。
Means for Solving the Problems According to the present invention, an electroless plating method is applied to the surface of a fiber structure containing synthetic fibers such as polyvinyl chloride, polyvinylidene chloride, polyester, polyamide, and acrylic fibers. In order to form a metal film, ammonia, ammonia,
Provided is a method for producing a metal-coated fiber structure using an electroless plating method, which comprises applying a solution of an aliphatic amine compound, an amino acid, or a salt thereof and drying it.

本発明に従い繊維構造物を前処理するために使用される
物質(以下、前処理剤という)としては、液体アンモニ
ア又はアンモニア水;更に有機化合物として脂肪族アミ
ン系化合物、例えば、第1脂肪族アミン、第2脂肪族ア
ミン、第3脂肪族アミン、第4アンモニウム脂肪族化合
物、又はアジノ、アゾ、アゾキシ、ジアゾ、ジアゾアミ
ノ、ジアゾニウム、ヒドラジ、ヒドラジノ、ヒドラゾ、
ヒドラジノ、オキ7アミ/、オキシイミ/、イミノ等の
塩基性含窒素基を分子中に少なくとも1つ含む脂肪族化
合物が挙げられ、これらは単量体又は多量体のいずれの
形態であってもよい。
Substances used to pretreat the fiber structure according to the invention (hereinafter referred to as pretreatment agents) include liquid ammonia or aqueous ammonia; further organic compounds include aliphatic amine compounds, such as primary aliphatic amines; , secondary aliphatic amine, tertiary aliphatic amine, quaternary ammonium aliphatic compound, or azino, azo, azoxy, diazo, diazoamino, diazonium, hydrazi, hydrazino, hydrazo,
Examples include aliphatic compounds containing at least one basic nitrogen-containing group in the molecule, such as hydrazino, oximi/, oximi/, and imino, and these may be in the form of monomers or multimers. .

また、本発明においては、アミノ酸又、はその塩類も前
処理剤として使用でき、例えば、グリシン、サルコシン
、ジメチルグリシン、ベタイン、エチレンジアミンテト
ラ酢酸、ヒダントイン酸、クレアチン、アラニン、α−
アミノ酪酸、バリン、ロイシン、α−アミノカプリル酸
、セリン、シクロセリン、α−オキシアラニン、システ
ィン、リジン、アルギニン、アルギノコハク酸、アミノ
マロン酸、アスパラギン酸、α、αジアミノコハク酸、
コハク酸イミド、グルタミン等及びそれらのナトリウム
塩等が挙げられる。
In the present invention, amino acids or their salts can also be used as pretreatment agents, such as glycine, sarcosine, dimethylglycine, betaine, ethylenediaminetetraacetic acid, hydantoic acid, creatine, alanine, α-
Aminobutyric acid, valine, leucine, α-aminocaprylic acid, serine, cycloserine, α-oxyalanine, cysteine, lysine, arginine, arginosuccinic acid, aminomalonic acid, aspartic acid, α, α-diaminosuccinic acid,
Examples include succinimide, glutamine, and their sodium salts.

本発明の方法に使用されるアンモニア、脂肪族アミン系
化合物又はアミノ酸又はその塩類の溶液の濃度は一般に
0.1g/l〜50g/l、好ましくは0.5g/+2
〜25g/lの範囲内、そしてpHは一般に、4〜10
、好ましくは5〜9の範囲内とすることができる。該溶
液を調製するための溶媒としては、水、アルコール類又
は水とアルコール類との混合溶媒が挙げられ、これらの
中から上記の前処理用物質の良溶媒となるものが選択使
用される。
The concentration of the solution of ammonia, aliphatic amine compound or amino acid or its salts used in the method of the present invention is generally 0.1 g/l to 50 g/l, preferably 0.5 g/+2
~25 g/l and the pH is generally between 4 and 10
, preferably within the range of 5 to 9. Examples of the solvent for preparing the solution include water, alcohols, and mixed solvents of water and alcohols, and those that serve as a good solvent for the above-mentioned pretreatment substance are selected from among these.

また、該溶液には適宜カチオン系、ノニオン系又は両性
界面活性剤を含有せしめて合成繊維の表面濡れ性を向上
させることもできる。
Moreover, the surface wettability of the synthetic fibers can be improved by appropriately containing a cationic, nonionic or amphoteric surfactant in the solution.

前処理剤による処理時の温度は一般に10〜80℃1好
ましくは20〜45℃の範囲とするのがよい。
The temperature during treatment with the pretreatment agent is generally in the range of 10 to 80°C, preferably 20 to 45°C.

更に、上記溶液を付与した繊維の乾燥温度は常温〜10
0℃の範囲内、そして生産性を勘案すると50〜100
℃の範囲内が好ましい。
Furthermore, the drying temperature of the fibers to which the above solution has been applied is room temperature to 10
Within the range of 0℃, and considering productivity, 50 to 100
It is preferably within the range of °C.

処理液の付与は該繊維構造物を連続式、バッチ式又はス
プレー法等で均一に繊維表面上に付与できる方法であれ
ば特に制限はしないが、生産性の面から連続式が好まし
い。
Application of the treatment liquid is not particularly limited as long as the fiber structure can be uniformly applied onto the fiber surface by a continuous method, a batch method, a spray method, etc., but a continuous method is preferable from the viewpoint of productivity.

本発明において処理液を均一に付与することができれば
、繊維表面に均一で密着性の良いメッキ金属膜を形成せ
しめることができるが、繊維は前もって脱脂、精練を施
こしておくことが好ましく、更に化学エツチング等を併
用することもできる。
In the present invention, if the treatment liquid can be uniformly applied, a uniform plated metal film with good adhesion can be formed on the fiber surface, but it is preferable that the fiber be degreased and refined in advance. Chemical etching etc. can also be used in combination.

本発明でいう繊維構造物とは、ポリ塩化ビニル系、ポリ
塩化ビニリデン系、ポリエステル系、ポリアミド系、ポ
リプロピレン等の合成繊維又は合成繊維に50%以下の
天然繊維又は再生繊維を混合したフィラメント、糸、綿
、トオ、織物、編物、不織布などを意味する。
The fiber structure referred to in the present invention refers to synthetic fibers such as polyvinyl chloride, polyvinylidene chloride, polyester, polyamide, and polypropylene, or filaments or yarns made of synthetic fibers mixed with 50% or less of natural fibers or regenerated fibers. , refers to cotton, fabric, woven fabric, knitted fabric, non-woven fabric, etc.

上記の如く本発明の方法に従い前処理された繊維構造物
の無電解メッキは、それ自体既知の方法に従い、通常無
電解メッキに使用されているメッキ浴組成を適用して実
施することができる。
Electroless plating of the fibrous structure pretreated according to the method of the present invention as described above can be carried out according to a method known per se by applying a plating bath composition that is normally used for electroless plating.

次に、実施例を掲げて、本発明の方法を更に具体的に説
明する。
Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例1 ポリエステルフィラメント紗(糸径40ミクロン 13
5メツシュ/インチ)をノニオン界面活性剤(ノイゲン
WS−20;第−工業製薬製)5g / Q水溶液中で
50℃で30分間脱脂、精練後乾燥した。
Example 1 Polyester filament gauze (thread diameter 40 microns 13
5 mesh/inch) was degreased in a 5 g/Q aqueous solution of a nonionic surfactant (Noigen WS-20; manufactured by Dai-Kogyo Seiyaku Co., Ltd.) at 50° C. for 30 minutes, scoured, and then dried.

次に、170℃の雰囲気で1分間皺とりのためヒートセ
ット後28%アンモニア水LOg/l水溶液中に25℃
で1分間浸漬、乾燥した。
Next, after heat setting in an atmosphere of 170°C for 1 minute to remove wrinkles, it was placed in a 28% ammonia water LOg/l aqueous solution at 25°C.
Soaked in water for 1 minute and dried.

その後、次の条件により無電解銅メッキを行なっIこ 
After that, electroless copper plating was performed under the following conditions.
.

メッキ触媒として塩化パラジウムと塩化錫の混合液(キ
ャタリスI−A−30;奥野製薬製)150rtrQと
塩酸160m(2水6901Qの混合液を調製した。
As a plating catalyst, a mixed solution of 150 rtrQ of palladium chloride and tin chloride (Catalys I-A-30; manufactured by Okuno Pharmaceutical Co., Ltd.) and 160 m of hydrochloric acid (2 water 6901Q) was prepared.

前記前処理したポリエステル紗をこの溶液に25℃で2
分間浸漬後、水洗、次に活性化浴として硫酸50a[と
水950mQの混合液に45℃で3分間浸漬、塩化錫を
溶解除去後、塩化パラジウムを繊維に固着させた。
The pretreated polyester gauze was added to this solution at 25°C for 2 hours.
After being immersed for a minute, it was washed with water, and then immersed for 3 minutes at 45°C in a mixture of 50a of sulfuric acid and 950mQ of water as an activation bath to dissolve and remove tin chloride, and then fix palladium chloride to the fibers.

次いで、水洗して、過剰の硫酸等を洗い去った後、下記
組成の無電解鋼メッキ浴に28℃で3分間浸漬したとこ
ろ均一な銅メッキ膜が形成された。
Next, after washing with water to remove excess sulfuric acid and the like, it was immersed in an electroless steel plating bath having the following composition at 28° C. for 3 minutes, and a uniform copper plating film was formed.

硝酸銅              15g/(2炭酸
水素ナトリウム       1(Jtt酒石酸塩  
          30 〃水酸化ナトリウム   
     20 〃38%ホルマリン液      1
00m12/4pH:11.5 形成された銅層は25%o−w−fであり、表面電気抵
抗は0.3Ω/ c m以下であって良好な金属膜が形
成され、本発明による前処理方法が極めて効果のあるこ
とが確認された。
Copper nitrate 15g/(sodium bicarbonate 1(Jtttartrate)
30 Sodium hydroxide
20 38% formalin solution 1
00m12/4 pH: 11.5 The copper layer formed was 25% o-w-f, the surface electrical resistance was 0.3Ω/cm or less, and a good metal film was formed, and the pretreatment according to the present invention The method was found to be extremely effective.

比較例1 実施例1と同様に脱脂、精練、ヒートセット後、28%
アンモニア水10g/l水溶液中に25℃で1分間浸漬
後、水洗、乾燥した。
Comparative Example 1 After degreasing, scouring, and heat setting as in Example 1, 28%
After being immersed in a 10 g/l ammonia solution at 25° C. for 1 minute, it was washed with water and dried.

その後実施例1と同様の条件で無電解銅メッキ浴に28
℃で5分間浸漬したが、部分的に斑状の銅膜が析出した
のみであった。
Thereafter, it was placed in an electroless copper plating bath for 28 hours under the same conditions as in Example 1.
Although the sample was immersed at ℃ for 5 minutes, only a patchy copper film was deposited in some areas.

形成された銅膜の量は2%owfに過ぎず、表面電気抵
抗は10”Ω/ c m以上の不良導体であっlこ 。
The amount of copper film formed was only 2% owf, and the surface electrical resistance was 10''Ω/cm or more, making it a poor conductor.

実施例2 ポリ塩化ビニリデンフィラメントメツシュ(糸ff10
.1mm、60メツシュ/インチ)をノニオン界面活性
剤(ノイゲンws−2o;第−工業製薬製)5g/12
水溶液中で40℃、60分間脱脂、精練、水洗した。
Example 2 Polyvinylidene chloride filament mesh (thread ff10
.. 1mm, 60 mesh/inch) and 5g/12 of nonionic surfactant (Noigen WS-2O; manufactured by Dai-Kogyo Seiyaku Co., Ltd.)
Degreasing, scouring, and washing with water were carried out in an aqueous solution at 40° C. for 60 minutes.

その後、ポリアミン(ハイフィックス;大日本製薬製)
3g/l水溶液をpH5,5に調整後、上記フィラメン
トメツシュを25℃で2分間浸漬し乾燥後、無電解銅メ
ッキを行なった。
After that, polyamine (Hifix; manufactured by Dainippon Pharmaceutical Co., Ltd.)
After adjusting the pH of the 3 g/l aqueous solution to 5.5, the filament mesh was immersed at 25° C. for 2 minutes and dried, followed by electroless copper plating.

無電解メッキを実施例1と同様に行なった結果、均一な
メッキ膜が得られた。
As a result of performing electroless plating in the same manner as in Example 1, a uniform plating film was obtained.

メッキ銅膜の量は18%owfで、表面電気抵抗は0.
3Ω/ c mであり、良好な導電性金属膜が得られ、
本発明による前処理方法が効果のあることを確認した。
The amount of plated copper film was 18% owf, and the surface electrical resistance was 0.
3Ω/cm, and a good conductive metal film was obtained.
It was confirmed that the pretreatment method according to the present invention is effective.

比較例2 実施例2と同様にノニオン界面活性剤(ノイゲンws=
2Q;第−工業製薬製)5g/(2水溶液中で脱脂、精
練、水洗後、乾燥した。
Comparative Example 2 Same as Example 2, nonionic surfactant (Noigen ws=
2Q; manufactured by Dai-Kogyo Seiyaku Co., Ltd.) 5 g/(2) Degreased in an aqueous solution, scoured, washed with water, and then dried.

その後、実施例1と同様の無電解銅メッキ浴に10分間
浸漬したが、銅膜の形成は皆無であった。
Thereafter, it was immersed in the same electroless copper plating bath as in Example 1 for 10 minutes, but no copper film was formed.

当然のことながら表面電気抵抗は10”07cm以上で
あり、不良導体であった。
Naturally, the surface electrical resistance was 10"07 cm or more, indicating that it was a poor conductor.

実施例3 ポリ塩化ビニルフィラメントメツシュ(糸径0゜12m
m、50メツシュ/インチ)を、ノニオン界面活性剤(
メイセリンX0−7 ;開成化学製)5g/(2の水溶
液中で50℃160分間脱脂、精練、水洗後乾燥した。
Example 3 Polyvinyl chloride filament mesh (thread diameter 0° 12m)
m, 50 mesh/inch) and a nonionic surfactant (
Meiselin X0-7 (manufactured by Kaisei Kagaku) 5 g/(2) was degreased in an aqueous solution of 2 at 50° C. for 160 minutes, scoured, washed with water, and then dried.

次に、エチレンジアミンテトラ酢酸ナトリウムIg/l
水溶液をpH7,5に調整後、上記フィラメントメツシ
ュを25℃で1分間浸漬し乾燥後、at解ニッケルメッ
キを行なった。
Next, sodium ethylenediaminetetraacetate Ig/l
After adjusting the pH of the aqueous solution to 7.5, the filament mesh was immersed at 25° C. for 1 minute, dried, and then subjected to atomized nickel plating.

メッキ条件は次の通りである。The plating conditions were as follows.

メッキ触媒として塩化パラジウム塩酸溶液(キャタリス
ト0PC80;奥野製薬製)50mQと塩r11160
mQ 、 水790m12 ノR合液ヲ調181 Lり
Palladium chloride hydrochloric acid solution (Catalyst 0PC80; manufactured by Okuno Pharmaceutical) 50mQ and salt r11160 as a plating catalyst
mQ, 790 m12 of water, 181 L of combined liquid.

先に処理した塩化ビニルメツシュを上記の溶液にて25
°c12分間浸漬、水洗した。
The previously treated vinyl chloride mesh was soaked in the above solution for 25 minutes.
Soaked at °C for 12 minutes and rinsed with water.

次いで、硫酸50mQと水950mQの混合液に45℃
で3分間浸漬、水洗し付着している硫酸等を除去した。
Next, a mixture of 50 mQ of sulfuric acid and 950 mQ of water was heated at 45°C.
It was immersed in water for 3 minutes and washed with water to remove adhering sulfuric acid, etc.

その後、下記組成の無電解ニッケルメッキ浴に32℃1
6分間浸漬した結果、均一なニッケル膜を形成すること
ができた。
After that, it was placed in an electroless nickel plating bath with the following composition at 32°C.
As a result of immersion for 6 minutes, a uniform nickel film could be formed.

析出したニッケルメッキ量は22%owfで、表面電気
抵抗は2.2Ω/ c mであり、導電性の良好なもの
が得られ、本発明による前処理方法が優れていることを
確認した。
The amount of nickel plating deposited was 22% owf, and the surface electrical resistance was 2.2 Ω/cm, confirming that the pretreatment method according to the present invention was excellent, with good conductivity.

ニッケルメッキ浴組成 次亜リン酸ニッケル       28g/lホウ酸 
            12//硫酸アンモニウム 
        3  tt酢酸ナトリウム     
      5 〃pH:6.0 比較例3 実施例3と同様、脱脂、精練した塩化ビニルフィラメン
ト紗を実施例3と同様条件で無電解ニッケル浴に15分
間浸漬したが、部分的にニッケルメッキ層が析出したの
みで、表面電気抵抗は10”Ω/ c m以上で不良導
体であった。
Nickel plating bath composition Nickel hypophosphite 28g/l boric acid
12//ammonium sulfate
3 tt sodium acetate
5 〃pH: 6.0 Comparative Example 3 Similar to Example 3, degreased and refined vinyl chloride filament gauze was immersed in an electroless nickel bath for 15 minutes under the same conditions as Example 3, but the nickel plating layer was partially removed. It was only deposited, and the surface electrical resistance was 10''Ω/cm or more, indicating that it was a poor conductor.

実施例4 ポリ塩化ビニルフィラメントメツンユ(糸径0゜12m
m、50メツシュ/インチ)をノニオン界面活性剤(メ
イセリンX0−7 、開成化学製)5g/lの水溶液中
で50℃160分間脱脂、精練、水洗後、乾燥した。
Example 4 Polyvinyl chloride filament yarn (thread diameter 0° 12m)
50 meshes/inch) was degreased in an aqueous solution of 5 g/l of a nonionic surfactant (Meiselin X0-7, manufactured by Kaisei Chemical Co., Ltd.) at 50° C. for 160 minutes, scoured, washed with water, and then dried.

次に、3−クロル−2−ヒドロキシプロビルトリメチル
アンモニウムクロライド0.8g/l水溶液をpH8,
0に調整後、上記フィラメントメツシュを30℃で1分
間浸漬し、乾燥後、実施例1と同じ無電解メッキ条件で
銅メッキ浴に25℃で5分間浸漬したところ、均一な銅
メッキ膜を形成した。
Next, a 0.8 g/l aqueous solution of 3-chloro-2-hydroxypropyltrimethylammonium chloride was added at pH 8,
After adjusting to 0, the filament mesh was immersed at 30°C for 1 minute, dried, and then immersed in a copper plating bath at 25°C for 5 minutes under the same electroless plating conditions as in Example 1, resulting in a uniform copper plating film. Formed.

析出した銅層は20%0・W−fで、表面電気抵抗は0
.3Ω/ c m以下の良好な結果が得られ、本発明に
よる前処理方法が効果のあることを確認した。
The deposited copper layer has a concentration of 20%0.W-f and a surface electrical resistance of 0.
.. A good result of 3Ω/cm or less was obtained, confirming that the pretreatment method according to the present invention is effective.

実施例5 ナイロンフィラメント紗(糸径45ミクロン、160メ
ツシュ/インチ)をノニオン界面活性剤(ノイゲンWS
−50;第−工業製薬製)5g/l水溶液中で、50℃
60分間脱脂、精練、水洗後、乾燥した。
Example 5 Nylon filament gauze (thread diameter 45 microns, 160 meshes/inch) was coated with a nonionic surfactant (Neugen WS).
-50; Dai-Kogyo Seiyaku Co., Ltd.) in a 5 g/l aqueous solution at 50°C
After degreasing for 60 minutes, scouring, and washing with water, it was dried.

次にアラニン1g/lとノニオン界面活性剤にッサノニ
オンし;日本油脂製)O,1g/lとを含んだ水溶液中
に上記フィラメント紗を27℃で1分間浸漬し乾燥した
Next, the filament gauze was immersed for 1 minute at 27° C. in an aqueous solution containing 1 g/l of alanine and 1 g/l of O, a nonionic surfactant (manufactured by Nippon Oil & Fats Co., Ltd.), and dried.

その後、実施例1の無電解メッキ条件で銅メッキ浴に2
8℃13分間浸漬し、均一な銅メッキ膜を得た。
Thereafter, 2
It was immersed at 8°C for 13 minutes to obtain a uniform copper plating film.

析出した銅層は26%o−w−fで、表面電気抵抗は0
.20/ c mであり良好なメッキ膜が得られ、本発
明による前処理方法が優れていることを確認した。
The deposited copper layer has a density of 26% o-w-f and a surface electrical resistance of 0.
.. 20/cm and a good plating film was obtained, confirming that the pretreatment method according to the present invention is excellent.

実施例6 ポリプロピレンフィラメントメツシュ(糸径0゜1mm
、50メツシュ/インチ)をノニオン界面活性剤(ノイ
ゲンWS−50;第−工業製薬)5g/α水溶液中で4
5℃160分間脱脂、精練、水洗後、p H5,0に調
整したベタイン型両性活性剤にフサ2フ228フ、日本
油脂製)Ig/l水溶液中に25℃1分間浸漬乾燥した
Example 6 Polypropylene filament mesh (thread diameter 0°1 mm
, 50 meshes/inch) in a 5 g/α aqueous solution of a nonionic surfactant (Noigen WS-50; Dai-Kogyo Seiyaku).
After degreasing, scouring, and washing with water at 5°C for 160 minutes, it was immersed and dried at 25°C for 1 minute in an aqueous solution of Ig/l of a betaine type amphoteric activator (Fusa 2F 228F, manufactured by NOF Corporation) adjusted to pH 5.0.

その後、実施例3と同じメッキ条件で無電解ニッケルメ
ッキ浴に35℃で6分間浸漬した結果、均一なニッケル
膜の形成が得られた。
Thereafter, it was immersed in an electroless nickel plating bath at 35° C. for 6 minutes under the same plating conditions as in Example 3, resulting in the formation of a uniform nickel film.

メッキ金属層は25%o−w−fで、表面電気抵抗は2
.1Ω/ c mで導電性が良好であり、本発明による
前処理方法の効果を確認した。
The plated metal layer is 25% o-w-f, and the surface electrical resistance is 2.
.. The conductivity was good at 1Ω/cm, confirming the effectiveness of the pretreatment method according to the present invention.

比較例4 ポリプロピレンフィラメントメツシュ(糸径0゜1mm
、50メツシュ/インチ)をノニオン界面活性剤(ノイ
ゲンWS−50;第−工業製薬)5g / Q水溶液中
で45℃、60分間脱脂、精練、水洗後、pH5,0に
調整したベタイン型両性活性剤にフサ2フ228フ、日
本油脂製)1g/α水溶液中に25°011分間浸漬し
水洗後乾燥しIこ 。
Comparative Example 4 Polypropylene filament mesh (thread diameter 0°1 mm
, 50 mesh/inch) in a 5 g/Q aqueous solution of a nonionic surfactant (Neogen WS-50; Dai-Kogyo Seiyaku) at 45°C for 60 minutes, scouring, washing with water, and adjusting the pH to 5.0. It was immersed in a 1g/α aqueous solution (Fusa 2F 228F, manufactured by NOF) for 25°C for 11 minutes, washed with water, and then dried.

その後、実施例3のメッキ条件で無電解ニッケルメッキ
浴に35℃で15分間浸漬したが、斑状にニッケル層が
析出した。
Thereafter, it was immersed in an electroless nickel plating bath at 35° C. for 15 minutes under the plating conditions of Example 3, but a nickel layer was deposited in a patchy manner.

メッキ金属層は3%o−w−fで、表面電気抵抗は10
12Ω/ c m以上であり不良導体であった。
The plated metal layer is 3% o-w-f, and the surface electrical resistance is 10
It was 12Ω/cm or more and was a poor conductor.

実施例7 ポリ塩化ビニリデンフィラメントメツシュ(糸径0.1
 mm、 60メツ・217インチ)ヲノニオン界面活
性剤(ソイセリンX0−フ、明成化学製)5g/l水溶
液中で40℃160分間脱脂、精練、水洗、乾燥した。
Example 7 Polyvinylidene chloride filament mesh (thread diameter 0.1
Degreasing, scouring, washing with water, and drying were performed at 40° C. for 160 minutes in a 5 g/l aqueous solution of a nonionic surfactant (Soycerin

その後、ポリオキシエチレンアルキルアミンにッサンナ
イミーン2205 ;日本油脂製)Ig/aのアルコー
ル溶液中に25℃で1分間浸漬し乾燥した。
Thereafter, it was immersed in an alcoholic solution of polyoxyethylene alkylamine (Ssannaimeen 2205; Nippon Oil & Fats Co., Ltd.) Ig/a at 25° C. for 1 minute and dried.

次に、実施例1と同じメッキ条件を用いて、無電解鋼メ
ッキ浴に28°c、 3分間浸漬して均一な銅メッキ膜
を形成した。
Next, using the same plating conditions as in Example 1, it was immersed in an electroless steel plating bath at 28°C for 3 minutes to form a uniform copper plating film.

析出した銅層は22%0・w−fで、表面電気抵抗は0
.3Ω/ c m以下であり良好な導電体が得られ、本
発明による前処理方法が優れた効果のあることを確認し
た。
The deposited copper layer has a density of 22%0·wf and a surface electrical resistance of 0.
.. 3Ω/cm or less, a good conductor was obtained, and it was confirmed that the pretreatment method according to the present invention has an excellent effect.

実施例8 ポリニスエルフィラメント紗(糸径40ミクロン、I3
5メツシュ/インチ)をノニオン界面活性剤(タイセリ
ンX0−フ;明成化学製)5g/l水溶液中で50℃1
30分間脱脂、精練、水洗後乾燥した。
Example 8 Polyester filament gauze (thread diameter 40 microns, I3
5 mesh/inch) in a 5 g/l aqueous solution of a nonionic surfactant (Tycerin X0-F; manufactured by Meisei Chemical) at 50°C.
It was degreased for 30 minutes, scoured, washed with water, and then dried.

次に、170℃の雰囲気で1分間皺とりのためヒートセ
ット後、苛性ソーダ5 g/l水溶液中、浴比l:50
で80℃、60分間減量処理し水洗、乾燥した。ポリエ
ステル紗の減量率は4%であっIこ 。
Next, after heat setting in an atmosphere of 170°C for 1 minute to remove wrinkles, a bath ratio of 1:50 in a 5 g/l aqueous solution of caustic soda was applied.
The sample was subjected to weight reduction treatment at 80°C for 60 minutes, washed with water, and dried. The weight loss rate of polyester gauze is 4%.

次にpH8,0に調整したコハク酸イミド3g/l水溶
液中に上記処理したポリエステル紗を25°OS 1分
間浸漬し乾燥した。
Next, the treated polyester gauze was immersed in a 3 g/l aqueous solution of succinimide adjusted to pH 8.0 at 25° OS for 1 minute and dried.

次いで、実施例1と同じ無電解メッキ条件で無電解銅メ
ッキ浴に28°0.2分間浸漬して均一な銅メッキ膜を
形成した。
Next, it was immersed in an electroless copper plating bath at 28 degrees for 0.2 minutes under the same electroless plating conditions as in Example 1 to form a uniform copper plating film.

析出した銅層は28%o−w−fで、表面電気抵抗は0
,2Ω/ c m以下であり良好な金属皮膜が得られ、
本発明の方法が極めて効果のあることを確認した。
The deposited copper layer has a density of 28% o-w-f and a surface electrical resistance of 0.
, 2Ω/cm or less and a good metal film can be obtained,
It has been confirmed that the method of the present invention is extremely effective.

比較例5 実施例8で減量処理したポリエステル紗を実施例1と同
じ無電解メッキ条件で無電解鋼メッキ浴に28℃、5分
間浸漬したが、不均一な銅メッキ皮膜が形成されたのみ
であった。
Comparative Example 5 The polyester gauze subjected to the weight loss treatment in Example 8 was immersed in an electroless steel plating bath at 28°C for 5 minutes under the same electroless plating conditions as in Example 1, but only an uneven copper plating film was formed. there were.

析出した銅層は11%o−w−fで、表面電気抵抗は3
00Ω/ c mであり不満足な結果であっIこ 。
The deposited copper layer has a density of 11% o-w-f and a surface electrical resistance of 3.
00Ω/cm, which is an unsatisfactory result.

効果 以上、詳述したように、本発明は、無電解メッキ法によ
って均一なメッキの難かしいポリ塩化ビニル、ポリ塩化
ビニリデン、ポリエステル、ポリアミド、ポリオレフィ
ン等の合成繊維を含有する繊維構造物に導電性付与を目
的として無電解メッキを行なうに先立って、脱脂、精練
後アンモニア、脂肪族アミン系化合物又はアミノ酸又は
その塩類の水、アルコール類又はそれらの混合物等の如
き溶媒中の0.1g/l〜50g/l、好ましくは0.
5g/l〜25g/l濃度の溶液に該繊維構造物を浸漬
し乾燥後、無電解メッキ触媒を付与し、通常の無電解メ
ッキ浴に浸漬することにより、繊維構造物表面に均一な
金属膜を容易に形成し得る無電解メッキ方法を提供する
ものである。
Effects As detailed above, the present invention provides electrical conductivity to fiber structures containing synthetic fibers such as polyvinyl chloride, polyvinylidene chloride, polyester, polyamide, and polyolefin, which are difficult to uniformly plate using an electroless plating method. Prior to electroless plating for the purpose of coating, after degreasing and scouring ammonia, aliphatic amine compounds or amino acids or their salts are added in a solvent such as water, alcohols or mixtures thereof from 0.1 g/l. 50 g/l, preferably 0.
The fibrous structure is immersed in a solution with a concentration of 5 g/l to 25 g/l, dried, applied with an electroless plating catalyst, and immersed in a normal electroless plating bath to form a uniform metal film on the surface of the fibrous structure. An object of the present invention is to provide an electroless plating method that can easily form a .

Claims (1)

【特許請求の範囲】 1、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリエ
ステル系、ポリアミド系等の合成繊維を含有する繊維構
造物の表面に無電解メッキ法で金属皮膜を形成させるに
当り、適宜脱脂、精練された繊維構造物に予めアンモニ
ア、脂肪族アミン系化合物、又はアミノ酸又はその塩類
の単量体又は多量体溶液を付与し乾燥した後、無電解メ
ッキ法で金属皮膜を形成させることを特徴とする金属被
覆繊維構造物の製造方法。 2、アンモニア、脂肪族アミン系化合物又はアミノ酸又
はその塩類の溶液中の濃度が0.1g/l〜50g/l
の範囲内にある特許請求の範囲第1項記載の方法。 3、アンモニア、脂肪族アミノ系化合物又はアミノ酸又
はその塩類の溶液が水、アルコール類又は水とアルコー
ル類との混合溶媒中の溶液である特許請求の範囲第1項
記載の方法。 4、アンモニア、脂肪族アミノ系化合物又はアミノ酸又
はその塩類の溶液のpHが4〜10の範囲内にある特許
請求の範囲第1項記載の方法。 5、アンモニア、脂肪族アミノ系化合物又はアミノ酸又
はその塩類の溶液の温度が10〜80℃の範囲内にある
特許請求の範囲第1項記載の方法。
[Claims] 1. When forming a metal film by electroless plating on the surface of a fiber structure containing synthetic fibers such as polyvinyl chloride, polyvinylidene chloride, polyester, polyamide, etc., as appropriate. A monomer or polymer solution of ammonia, an aliphatic amine compound, or an amino acid or its salts is applied in advance to a degreased and refined fiber structure, and after drying, a metal film is formed by electroless plating. A method for producing a metal-coated fiber structure characterized by: 2. The concentration of ammonia, aliphatic amine compound or amino acid or its salts in the solution is 0.1 g/l to 50 g/l
The method of claim 1 within the scope of. 3. The method according to claim 1, wherein the solution of ammonia, an aliphatic amino compound, an amino acid, or a salt thereof is a solution in water, an alcohol, or a mixed solvent of water and alcohol. 4. The method according to claim 1, wherein the pH of the solution of ammonia, an aliphatic amino compound, or an amino acid or a salt thereof is within the range of 4 to 10. 5. The method according to claim 1, wherein the temperature of the solution of ammonia, an aliphatic amino compound, or an amino acid or a salt thereof is within the range of 10 to 80°C.
JP19611888A 1988-08-08 1988-08-08 Production of metal-coated fiber structure Pending JPH0284541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19611888A JPH0284541A (en) 1988-08-08 1988-08-08 Production of metal-coated fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19611888A JPH0284541A (en) 1988-08-08 1988-08-08 Production of metal-coated fiber structure

Publications (1)

Publication Number Publication Date
JPH0284541A true JPH0284541A (en) 1990-03-26

Family

ID=16352540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19611888A Pending JPH0284541A (en) 1988-08-08 1988-08-08 Production of metal-coated fiber structure

Country Status (1)

Country Link
JP (1) JPH0284541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240966B2 (en) 2002-09-05 2007-07-10 A-Dec, Inc. Headrest support and adjustment mechanism
JP2007301243A (en) * 2006-05-12 2007-11-22 Okamura Corp Headrest device of chair
JP2015214735A (en) * 2014-05-13 2015-12-03 住江織物株式会社 Plated fiber and production method thereof
JP6865984B1 (en) * 2020-07-07 2021-04-28 竹本油脂株式会社 Synthetic fiber treatment agent and carbon fiber precursor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240966B2 (en) 2002-09-05 2007-07-10 A-Dec, Inc. Headrest support and adjustment mechanism
JP2007301243A (en) * 2006-05-12 2007-11-22 Okamura Corp Headrest device of chair
JP2015214735A (en) * 2014-05-13 2015-12-03 住江織物株式会社 Plated fiber and production method thereof
JP6865984B1 (en) * 2020-07-07 2021-04-28 竹本油脂株式会社 Synthetic fiber treatment agent and carbon fiber precursor
WO2022009857A1 (en) * 2020-07-07 2022-01-13 竹本油脂株式会社 Treating agent for synthetic fibers, and synthetic fibers
JP2022014692A (en) * 2020-07-07 2022-01-20 竹本油脂株式会社 Treatment agent for synthetic fiber and carbon fiber precursor

Similar Documents

Publication Publication Date Title
JP2902109B2 (en) Catalytic water-soluble polymer film for metal coating
US5411795A (en) Electroless deposition of metal employing thermally stable carrier polymers
JPS58104170A (en) Method of activating substrate surface for electroless plating
CA1169720A (en) Process for activating surfaces for currentless metallization
US5082734A (en) Catalytic, water-soluble polymeric films for metal coatings
JPH07110921B2 (en) Selective catalytic activation of polymer films
JPH08504241A (en) Electrolessly plated aramid surface and method for making the surface
US4278435A (en) Process for the partial metallization of textile structures
US4568570A (en) Process for activating substrates for electroless metallization
KR100229836B1 (en) A process for making electroless plated aramid surfaces
JP3746072B2 (en) Batch plating of aramid fibers
JPH0284541A (en) Production of metal-coated fiber structure
US5279899A (en) Sulfonated polyamides
JPH02301568A (en) Method for coating synthetic resin structure with metal
JP2747321B2 (en) Method for producing metal-coated synthetic resin structure
JPH0247547B2 (en)
JPH0762311B2 (en) Method for producing metal-coated fiber
JPH0274672A (en) Production of metal-coated fibrous structure
JPH07173636A (en) Production of electroless-plated fiber
JPS6221869A (en) Production of electroless plating fiber
JPH03104873A (en) Electroless plating method for electric insulator
JP2017155383A (en) Method for producing plated fiber
KR20100123315A (en) Aramid fiber and method for manufacturing the same
WO1993004215A1 (en) Catalytic emulsions for electroless deposition
JP2007254764A (en) Metal coated polymer material and method for manufacturing the same