JPH0283729A - Parallel multiplier - Google Patents

Parallel multiplier

Info

Publication number
JPH0283729A
JPH0283729A JP23728588A JP23728588A JPH0283729A JP H0283729 A JPH0283729 A JP H0283729A JP 23728588 A JP23728588 A JP 23728588A JP 23728588 A JP23728588 A JP 23728588A JP H0283729 A JPH0283729 A JP H0283729A
Authority
JP
Japan
Prior art keywords
adder
adders
digit
stage
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23728588A
Other languages
Japanese (ja)
Inventor
Yukio Kadowaki
幸男 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP23728588A priority Critical patent/JPH0283729A/en
Publication of JPH0283729A publication Critical patent/JPH0283729A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the addition at high speed with a circuit of a small scale by using a full adder which connects adders in a tree structure and adds the output of the adder of a first stage with a carry signal and adding 4 data input terminals to those adders forming a tree structure. CONSTITUTION:The adders 1 and 2 set on the 1st stage of an i-th digit perform the addition at every 7 bits supplied in parallel and process 14 bits in all. Then the adders 1 and 2 send the sums S1 and S2 to an adder 3 of a 2nd stage. Furthermore the adder 1 sends a 1-bit carrier signal C1a which is carried up to the (i+1)-th digit and a 1-bit carry signal C2a carried up to the (i+2)-th digit to the adders 30 and 35 respectively. While the adder 2 sends the carry signals C1b and C2b to the adders 30 and 35. An unprocessed bit out of the inner product of 15 bits, both sums S1 and S2, and each bit of carry signals C1a', C1b' and C2b' received from the adder of the 1st stage are inputted to the adder 3 and added together. This sum S3 is sent to a full adder 4 and at the same time the carry signals C3d and C3e are sent to the full adders 31 and 36 and added with the sums S3 received from the adders 30 and 35 respectively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多ビツト加算器と全加算器を用いることで回
路規模が小さくかつ高速な部分積加算が行なえる並列乗
算器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a parallel multiplier that is small in circuit scale and can perform high-speed partial product addition by using a multi-bit adder and a full adder.

[従来の技術とその課題] 並列乗算器が発生する部分積の加算を処理する方法の一
例として、第4図に示すように全加算器50のみを複数
段に備えトリー構造を形成するものがある。
[Prior art and its problems] As an example of a method for processing addition of partial products generated by parallel multipliers, there is a method that includes only full adders 50 in multiple stages and forms a tree structure, as shown in FIG. be.

これは、3ビット信号がパラレルに供給されて、和と繰
り上がりの信号(区内ではCと記す。)とを送出する全
加算器を使用するもので、例えば乗数と被乗数との乗算
を実行し、例えばi桁目の部分積が15ビツトからなる
場合、1段目には5個の全加算器50を設け、それぞれ
の全加算器50が送出する和と、i−1桁目に備わる不
図示の全加算器が送出する繰り上げ信号とが、2段目に
設けられる3個の全加算器50にそれぞれ送出される。
This uses a full adder that is supplied with 3-bit signals in parallel and sends out a sum and carry signal (indicated as C in the area), and for example, multiplies a multiplier by a multiplicand. For example, if the i-th partial product consists of 15 bits, five full adders 50 are provided in the first stage, and the sum sent by each full adder 50 and the i-1st partial product are A carry signal sent by a full adder (not shown) is sent to each of the three full adders 50 provided in the second stage.

以下同様に順次複数段に接続され、6段目の全加算器5
0にて最終の加算結果Sが得られる。尚、第4図はi桁
目のみについて記載しているが、i十1桁目、i+2桁
目・・・・・・又、i−1桁目、i〜2桁目・・・・・
・にも同じ構成にてなる回路が存在するものである。
The following are connected sequentially to multiple stages in the same way, and the full adder 5 in the sixth stage
The final addition result S is obtained at 0. Although Fig. 4 describes only the i-th digit, the i-11th digit, i+2nd digit, i-1st digit, i-2nd digit, etc.
・There is also a circuit with the same configuration.

このように全加算器のみを使用した従来の部分積加算は
、全加算器に3ビツトの信号しか送出できないことより
回路を形成する全加算器の段数が多くなり、必然的に配
線数が増え形成される回路が大きくなるという問題点が
あった。
In conventional partial product addition using only full adders, the number of stages of full adders forming the circuit increases because only 3-bit signals can be sent to the full adders, which inevitably increases the number of wires. There was a problem that the formed circuit became large.

一方、全加算器を用いず4ビツト以」二の信号が供給さ
れる多ビツト加算器を読み出し専用メモリ(以下ROM
と略す)テーブルで実現し、前述したトリー構造を形成
することも考えられるが、本発明の並列乗算器に使用す
るような4ビツトないし7ビツトなどのような小ビット
数の加算器をROMで実現しようとすると回路構成面積
が大きくなり、集積回路化して1デツプに納めることは
非常に困難である。
On the other hand, instead of using a full adder, a multi-bit adder to which signals of 4 bits or more are supplied is used as a read-only memory (hereinafter referred to as ROM).
Although it is conceivable to implement the adder with a table (abbreviated as "abbreviated") and form the above-mentioned tree structure, it is also possible to implement the adder with a small number of bits, such as 4 bits or 7 bits, as used in the parallel multiplier of the present invention, using a ROM. Attempting to realize this would require a large circuit area, and it would be extremely difficult to integrate it into a single layer.

本発明は」二連したような問題点を解決するためになさ
れたらので、回路を構成する規模が小さく、かつ高速に
部分積の加算計算を行なうことができる並列乗算器を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention was made in order to solve the two problems, and therefore, an object of the present invention is to provide a parallel multiplier that has a small circuit structure and can perform addition calculations of partial products at high speed. shall be.

[課題を解決するための手段] 本発明は、加算器をトリー構造となるよう接続し、さら
に終段の加算器が送出する加算結果とキャリー信号とを
加算する1個の全加算器を備えた乗算器であって、トリ
ー構造をなす前記加算器は4以上のデータ入力端子を有
することを特徴とする。
[Means for Solving the Problems] The present invention connects adders in a tree structure and further includes one full adder that adds the addition result sent from the final adder and a carry signal. The multiplier is characterized in that the adder having a tree structure has four or more data input terminals.

[作用] へ繰り上がるキャリー信号を送出する。尚、加算器lは
、第2図に示すように、データが供給される7つの入力
端子AないしG1縦横それぞれ7個ずつマトリックス状
に配されたNヂャンネルのl・ランジスタ10、トラン
ジスタ10が送出する信号を増幅する7個のセンスアン
プ11、N A N I)回路12及び13、インバー
タ14を備えた半導体素子よりなる回路である。そして
各列に設けられる入力端子AないしGは、l・ランンス
タIOのゲートが接続されるそれぞれの共通線に一対一
に接続され、各行において、トランジスタ10のドレイ
ンが接続されるそれぞれの共通線は、各行毎に設けられ
るセンスアンプ11に接続される。例えばセンスアンプ
Ilaの正論理出力線20とセンスアンプllbの負論
理出力線21とがNAND回路12aの入力側に接続さ
れ、センスアンプ11bの正論理出力線22とセンスア
ンプllcの負論理出力線23とがNΔND回路+2b
の入力側に接続され、以下同様に順次センスアンプ11
とNΔND回路12とが接続される。尚、センス加算器
は、4ビット以、l二の信号を処理し、1つの全加算器
に供給される信号が3ビツトになるまで複数段設けられ
る。加算器は4ビツト以」二の信号を処理するから段数
が少なくなり演算速度が高速化する。全加算器は1つの
み使用され、パラレルに供給される前記3ビツトの信号
を加算する。
[Operation] Sends a carry signal to be carried forward. As shown in FIG. 2, the adder L has N-channel L transistors 10 and transistors 10, which are arranged in a matrix with seven input terminals A to G1 each in the vertical and horizontal directions, to which data is supplied. This circuit is made up of a semiconductor element and includes seven sense amplifiers 11, NAN I) circuits 12 and 13, and an inverter 14, which amplify the signals. The input terminals A to G provided in each column are connected one-to-one to the respective common lines to which the gates of the l-runstars IO are connected, and in each row, the respective common lines to which the drains of the transistors 10 are connected are , are connected to sense amplifiers 11 provided for each row. For example, the positive logic output line 20 of the sense amplifier Ila and the negative logic output line 21 of the sense amplifier llb are connected to the input side of the NAND circuit 12a, and the positive logic output line 22 of the sense amplifier 11b and the negative logic output line of the sense amplifier llc are connected to the input side of the NAND circuit 12a. 23 is NΔAND circuit +2b
The sense amplifier 11 is connected to the input side of the sense amplifier 11 in the same way.
and the NΔAND circuit 12 are connected. Note that the sense adder processes signals of 4 bits or more, and is provided in multiple stages until the signal supplied to one full adder becomes 3 bits. Since the adder processes signals of 4 bits or more, the number of stages is reduced and the calculation speed is increased. Only one full adder is used and adds the 3-bit signals supplied in parallel.

[実施例] 本発明の一実施例を示す第1図(a)及び第1図(b)
は、並列乗算器にて乗算を行った際、例えば1折目の部
分積が15ビットの場合について、7ピツトの加算器(
図内ではA D I)と記す。)112及び3と全加算
器(図内ではFAと記す。)4とを備え、トリー構造を
形成した図である。尚、第1図(1))は第1図(a)
につながるものであり、第1図(a)には1+2桁目よ
り」−位、第1図(b)にはi−2折目より下位は記載
していないが、同様に存在するものである。
[Example] Figures 1(a) and 1(b) showing an example of the present invention
When multiplication is performed using a parallel multiplier, for example, when the partial product of the first fold is 15 bits, a 7-pit adder (
In the figure, it is written as ADI). ) 112 and 3 and a full adder (denoted as FA in the figure) 4, forming a tree structure. In addition, Fig. 1 (1)) is Fig. 1 (a)
Although the "-" position from the 1st + 2nd digit is not shown in Figure 1 (a) and the position lower than the i-2 fold is not shown in Figure 1 (b), it exists similarly. be.

本実施例における加算器1.2及び3は、パラレルに供
給される7ヒツトのデータを加算して和、1桁」1位へ
繰り−にがろキャリー信号及び2桁上位アンプI1gの
正論理出力線24はインバータ14の入力端に接続され
る。そして入力端子AないしGより供給された信号の和
S°を送出するNAND回路13aにはNΔND回路1
2a、12c。
In this embodiment, adders 1, 2 and 3 add the data of 7 data supplied in parallel, sum it up, carry it to the 1st place, and the positive logic of the carry signal and the 2-digit upper amplifier I1g. Output line 24 is connected to the input end of inverter 14. The NAND circuit 13a sends out the sum S° of the signals supplied from the input terminals A to G.
2a, 12c.

+2e及びインバータ14の出力側が接続され、前記キ
ャリー信号CIを送出するNAND回路13bにはNA
ND回路12b、  I 2c、  12f及びインバ
ータ14の出力側が接続され、前記キャリー信号C2を
送出するNAND回路13cにはNΔND回路12d、
  I 2e、  I 2f及びインバータ14の出力
側が接続される。
+2e and the output side of the inverter 14 are connected to the NAND circuit 13b which sends out the carry signal CI.
The NAND circuit 13c, which is connected to the output side of the ND circuits 12b, I2c, and 12f and the inverter 14 and sends out the carry signal C2, includes an NΔAND circuit 12d,
I 2e, I 2f and the output side of the inverter 14 are connected.

このような構成の加算器1.2及び3において入力端子
AないしGのずべてにOのデータが供給されたとき、セ
ンスアンプIlaないしIlgのすべての正論理出力は
0の信号を送出し、センスアンプIlaないしIlgの
すべての負論理出力はlの信号を送出するのでNAND
回路12aないしI2r及びインバータ14はすへて1
の信号を送出する。又、入力端子AないしGのいずれか
一つに1のデータか供給されたとき、センスアンプ1I
aの正論理出力はIの信号を送出し、センスアンプIl
bの負論理出力はIの信号を送出していることより、N
AND回路12aのみがOの信号を送出する。同様に、
入力端子AないしGの2つに1のデータが供給されたと
き、NAND回路I2bのみがOの信号を送出する。入
力端子AないしGに供給されるlのデータが増すごとに
以下類に0の信号を送出するNAND回路12が変化し
、入力端子AないしGのすべてに1のデータが供給され
たとき、インバータ14のみが0の信号を送出するもの
である。そしてNAND回路13は、NAND回路12
及びインバータ14が送出する信号により和S°とキャ
リー信号C1及びC2を出力する。
When O data is supplied to all of the input terminals A to G in the adders 1.2 and 3 having such a configuration, all the positive logic outputs of the sense amplifiers Ila to Ilg send out a 0 signal, Since all the negative logic outputs of the sense amplifiers Ila to Ilg send out l signals, NAND
The circuits 12a to I2r and the inverter 14 are all
The signal is sent out. Also, when data of 1 is supplied to any one of the input terminals A to G, the sense amplifier 1I
The positive logic output of a sends out the signal of I, and the sense amplifier Il
Since the negative logic output of b sends the signal of I, N
Only the AND circuit 12a sends out an O signal. Similarly,
When data of 1 is supplied to two input terminals A to G, only the NAND circuit I2b sends out a signal of O. Every time the data of l supplied to the input terminals A to G increases, the NAND circuit 12 that sends out a 0 signal to the following groups changes, and when data of 1 is supplied to all of the input terminals A to G, the inverter Only 14 transmits a 0 signal. And the NAND circuit 13 is the NAND circuit 12
The sum S° and carry signals C1 and C2 are output based on the signals sent by the inverter 14.

尚、上述した7ビツトの信号が供給される加算器1.2
及び3と同様に構成することで、4ビツトないし6ビツ
トの多ビツト加算器を作成することもできる。
Note that the adder 1.2 to which the above-mentioned 7-bit signal is supplied
A 4-bit to 6-bit multi-bit adder can also be created by configuring the adder in the same manner as 3 and 3.

第1図(a)及び(b)に示す本実施例の並列乗算器は
、ある桁の部分積が15ビツトよりなる場合で1段目の
加算器40及び45のキャリー信号出力端子が接続され
る。i桁目に備わる加算器3の和出力端子3aは、全加
算器4の入力側に接続され、加算器3のキャリー信号出
力端子3b及び3cは、i+1桁目及びi+2桁目に備
わる全加算器3I及び36に接続される。全加算器4の
入力側には11桁目及びi−2桁目に備わる加算器41
及び46のキャリー信号出力端子が接続され、i桁目に
備わる全加算器4の和出力端子4a及びキャリー信号出
力端子4bは、キャリー信号の伝搬を高速に処理する公
知のCLA又はC5A3に接続される。
In the parallel multiplier of this embodiment shown in FIGS. 1(a) and (b), when the partial product of a certain digit consists of 15 bits, the carry signal output terminals of adders 40 and 45 in the first stage are connected. Ru. The sum output terminal 3a of the adder 3 provided at the i-th digit is connected to the input side of the full adder 4, and the carry signal output terminals 3b and 3c of the adder 3 are connected to the full addition terminal 3a provided at the i+1st digit and the i+2nd digit. 3I and 36. On the input side of the full adder 4, an adder 41 is provided at the 11th digit and the i-2nd digit.
and 46 carry signal output terminals are connected, and the sum output terminal 4a and carry signal output terminal 4b of the full adder 4 provided at the i-th digit are connected to a known CLA or C5A3 that processes carry signal propagation at high speed. Ru.

上記のような構成である本発明の並列乗算器において、
i桁目の1段目に備わる加算器1及び2にて、それぞれ
パラレルに供給される7ビツトずつの加算処理か実行さ
れ計14ビットが処理される。加算器1は、加算した結
果である和Slを、加算器2は同じく和S2をそれぞれ
i桁目の2段目に備わる加算器3へ送出する。又、加算
器lは1桁上位のi+1桁日ぺ繰り上がる1ビツトにて
あり、1段目に備えられる、7ビツトを処理する、2個
の加算器l及び2と、2段目に備えられる、7ビツトを
処理する、1個の加算器3と、3段目に備えられる1個
の全加算器4と、4段目に備えられるキャリールックア
ヘッド(以下CL Aと略す)又はキャリーセレクトア
ダー(以下C9Aと略す)5とを備えている。
In the parallel multiplier of the present invention having the above configuration,
Adders 1 and 2 provided at the first stage of the i-th digit each perform addition processing of 7 bits each supplied in parallel, processing a total of 14 bits. The adder 1 sends the sum Sl, which is the result of the addition, and the adder 2 sends the sum S2, respectively, to the adder 3 provided at the second stage of the i-th digit. Also, the adder 1 is the 1st higher digit (i+1 digit) carried forward by 1 bit, and the adder 1 is provided in the first stage and processes 7 bits, and the adder 2 is provided in the second stage. one adder 3 that processes 7 bits, one full adder 4 provided in the third stage, and a carry look ahead (hereinafter abbreviated as CL A) or carry select provided in the fourth stage. The adder (hereinafter abbreviated as C9A) 5 is provided.

i桁目の1段目に備えられる、前述した7ビツトのデー
タ用加算器1及び2の和出力端子1a及び2aは、2段
目に備えられる、加算器1及び2と同一の構成と機能と
を有する加算器3の入力側に接続され、i+1にて示さ
れる1桁上位への加算器l及び2の繰り上げ信号出力端
子1b、2bは、i+1桁目に設けられる2段目の加算
器30の入力側へ接続される。i+2にて示される2桁
上位への繰り上げ信号出力端子1c、2cは、i+2桁
目に設けられる2段目の加算器35の入力側へ接続され
る。2段目に備わる加算器3の入力側には、前記15ビ
ツトの残り1ビツトが供給されるとともにi−1桁目及
びi−2桁目の部分積を加算するなるキャリー信号C1
aと、2桁上位のi+2桁目へ繰り上がる1ビツトにて
なるキャリー信号C2aとをi+1桁目及びi+2桁目
の2段目に備わる加算器30及び35へそれぞれ送出し
、同様に加算器2もキャリー信号C,1b及びC2bを
前記上位の2段目の加算器30及び35へ送出する。
The sum output terminals 1a and 2a of the aforementioned 7-bit data adders 1 and 2 provided in the first stage of the i-th digit have the same configuration and function as adders 1 and 2 provided in the second stage. The carry signal output terminals 1b and 2b of the adders 1 and 2 to the upper digit indicated by i+1 are connected to the input side of the adder 3 having It is connected to the input side of 30. Carry-up signal output terminals 1c and 2c to the upper two digits indicated by i+2 are connected to the input side of a second-stage adder 35 provided at the i+2nd digit. The input side of the adder 3 provided at the second stage is supplied with the remaining 1 bit of the 15 bits and a carry signal C1 for adding the partial products of the i-1st digit and the i-2nd digit.
a and a 1-bit carry signal C2a that is carried up to the i+2nd digit, which is two higher digits, to the adders 30 and 35 provided in the second stage of the i+1st digit and the i+2nd digit, respectively. 2 also sends carry signals C, 1b and C2b to the adders 30 and 35 in the second stage of the higher order.

i桁目の2段目に備わる加算器3には、前述した15ビ
ツトからなる部分積の内処理されていない残りの1ビツ
トと、前述した加算器l及び2が送出する和Sl及びS
2の各1ビツトずっと、11桁目及びi−2桁目の1段
目に設けられる加算器40及び45が送出するキャリー
信号C1a’、C1b’、C2a’、C2b’の各1ビ
ツトずつの計7ビツトがパラレルに供給されるので、こ
れらのデータは、7ビツトの加算器1個で処理できる。
The adder 3 provided at the second stage of the i-th digit receives the unprocessed remaining 1 bit of the aforementioned 15-bit partial product and the sums Sl and S sent by the aforementioned adders I and 2.
2, and one bit each of the carry signals C1a', C1b', C2a', and C2b' sent by the adders 40 and 45 provided in the first stage of the 11th digit and the i-2nd digit. Since a total of 7 bits are supplied in parallel, these data can be processed by a single 7-bit adder.

よって加算器3はこれらデータの加算を行ない和S3を
次段の全加算器4へ送出するとともに、i+1桁目及び
i+2桁目の3段目に備わる全加算器31及び36へキ
ャリー信号C3d及びC,3eを送出する。次段に供給
されるデータは、加算器3が送出する和S3の1ビツト
と、i−1桁目及びi−2桁目の2段目に備わる加算器
4I及び46が送出する1ビツトずつのキャリー信号C
3d’及びC3e°であることより、供給されるビット
数は計3ビットとなり、これらのデータは全加算器1個
にて処理できる。よってi桁目に備わる全加算器4は、
処理結果である和Sとキャリー信号Cを次段の例えばC
L A 5に送出する。CLA5は、下位桁からのキャ
リー信号の伝搬を高速に行ない最終の加算値Fを送出す
る。
Therefore, the adder 3 adds these data and sends the sum S3 to the full adder 4 at the next stage, and also sends the carry signal C3d and the full adder 31 and 36 provided in the third stage for the i+1st digit and the i+2nd digit. Send C, 3e. The data supplied to the next stage is 1 bit of the sum S3 sent out by the adder 3, and 1 bit each sent out by the adders 4I and 46 provided in the second stage for the i-1st and i-2nd digits. carry signal C
3d' and C3e°, the total number of bits supplied is 3 bits, and these data can be processed by one full adder. Therefore, the full adder 4 provided at the i-th digit is
The sum S and carry signal C, which are the processing results, are sent to the next stage, for example, C.
Send to LA 5. CLA5 propagates the carry signal from the lower digits at high speed and sends out the final addition value F.

このように、■5ビットの部分積加算が3段に設けた加
算器と1つのCLA又はCSAによって実現できるので
、従来例に比べ回路規模が小さくかつ高速な計算が可能
となる。
In this way, (1) 5-bit partial product addition can be realized using three stages of adders and one CLA or CSA, making it possible to perform calculations with a smaller circuit size and higher speed than in the conventional example.

」二連の説明は、部分積が15ビツトの場合だが、第1
表に示す部分積が4ビツトからなる場合を例にとり第1
図に示す加算器の説明をする。
” The two series of explanations are for the case where the partial product is 15 bits, but the first
Taking as an example the case where the partial product shown in the table consists of 4 bits, the first
The adder shown in the figure will be explained.

第1表は、X4X3X2X、の4ビツトからなる被乗数
とY、Y3Y2Y、の4ビツトからなる乗数との乗算を
行った場合を示している。
Table 1 shows the case where a 4-bit multiplicand of X4X3X2X is multiplied by a 4-bit multiplier of Y, Y3Y2Y.

例えばi桁目の部分積I  X、Y、は端子P、に供給
され、部分積2X3Y2は端子P2に供給される。
For example, the i-th partial product IX,Y is supplied to the terminal P, and the partial product 2X3Y2 is supplied to the terminal P2.

他の部分積3.4についても同様に端子P3、))4に
供給され加算が行なわれ、加算結果は全加算器4から出
力される。
The other partial products 3.4 are similarly supplied to the terminals P3, ))4 for addition, and the addition results are output from the full adder 4.

第  1  表 4X3 →−)Y4Y、。Table 1 4X3 →-)Y4Y,.

X、Y、 lX、、Y IX4Y21 X、、Y、1X2Y、lX4Y、1X3
Y31 X2Y31X、Y3十)  X4Y4 X3Y
41X2Y41 XIY4X2   XI 2  Y X、Y、  X、Y IY2 Q、  Q10.I  Q、l   C41C31Q、
   Q被乗数 乗数 部分積1 部分積2 部分積3 部分積4 積 第3図はi桁目の部分積り月9ビットからなる場合を示
しており、図示していないが、i桁目より」三位及び下
位には同じ構成及び機能を備えた回路が設(Jられてい
る。
X, Y, lX,, Y IX4Y21 X,, Y, 1X2Y, lX4Y, 1X3
Y31 X2Y31X, Y30) X4Y4 X3Y
41X2Y41 XIY4X2 XI 2 Y X, Y, X, Y IY2 Q, Q10. I Q, l C41C31Q,
Q Multiplicand Multiplier Partial Product 1 Partial Product 2 Partial Product 3 Partial Product 4 Product Figure 3 shows the case where the partial product of the i-th digit consists of 9 bits. A circuit with the same configuration and function is provided at the lower level.

1段目にはパラ1ノルに供給される7ビツトの信号を処
理する2個の加算器1゛及び2°と、パラレルに供給さ
れる5ビツトの信号を処理する1個の加算器6が備えら
れ、2段目には同様に7ビツトを処理する加算器3°が
1個備えられ、3段目には同様に5ビツトを処理する加
算器7が1個備えられ、4段目には全加算器4゛が備え
られ、5段目にはCLA又はC5A3が備えられている
The first stage includes two adders 1' and 2° that process the 7-bit signal supplied to the parallel 1-nor, and one adder 6 that processes the 5-bit signal that is supplied in parallel. The second stage is equipped with one adder 3° that similarly processes 7 bits, the third stage is equipped with one adder 7 that similarly processes 5 bits, and the fourth stage is equipped with one adder 3° that similarly processes 7 bits. is equipped with a full adder 4', and the fifth stage is equipped with CLA or C5A3.

本実施例も前述した実施例と基本的に同じ構成を成すも
ので、部分積のビット数が増えたことで、1段目及び3
段目に5ビツトの加算器6及び7を追加したものである
This embodiment also basically has the same configuration as the above-mentioned embodiment, and because the number of bits of the partial product has increased, the first and third stages
5-bit adders 6 and 7 are added to each stage.

1段目に備わる7ビツトの信号を処理する加算器1′及
び2′並びに5ビツトの信号を処理する加算器6が送出
する1ビツトにてなる和Sビ、S2“及びS6と、本桁
より1桁及び2桁下位の1段目に設けられる不図示の加
算器が送出するそれぞれ1ビツトにてなるキャリー信号
C1a”、C1b”、02a”及びC2b”とがi桁目
の2段目に備わる7ビツトの信号を処理する加算器3゛
に送出される。尚、2段目には、前述したキャリー信号
CIa″C1b”、C2a”、C2b”の他に、前記キ
ャリー信号C1a”等を送出する前記加算器よりキャリ
ー信号C6a”及びC6b’が送出されるが、加算器3
′が7ビツト処理のためキャリー信号C6a′及びC6
b’は、1桁目の3段目に設けられる加算器7に送出さ
れる。尚、i桁目より下位桁に備わる1段目の加算器が
1桁目の3段目に備イつる加算器へ送出するキャリー信
号は、上述ではi桁目より1桁下位に備わる加算器から
のキャリー信号C6a゛とi桁目より2桁下位に備わる
加算器からのキャリー信号C6b’としたがこれに限る
ことはなく、前記キャリー信号Cla”、C1b”等を
任意に組み合わずことができる。そしてi桁目の2段目
に備わる加算器3゛は、lビットにてなる和S3’をi
桁目の3段目に設けられる加算器7へ送出するとともに
、木桁より1桁及び2桁上位の3段目に備えられる不図
示の加算器へキャリー信号C3°a及びC3°bを送出
する。
Adders 1' and 2' that process a 7-bit signal provided in the first stage and adder 6 that processes a 5-bit signal send out a 1-bit sum SBI, S2'', and S6, and this digit. Carry signals C1a'', C1b'', 02a'' and C2b'', each consisting of 1 bit, are sent out by adders (not shown) provided in the first stage of the 1st and 2nd digits lower than the i-digit second stage. It is sent to the adder 3' which processes the 7-bit signal provided in the 7-bit signal.In addition to the carry signals CIa"C1b", C2a", and C2b" mentioned above, the carry signal C1a" etc. are sent to the second stage. Carry signals C6a'' and C6b' are sent out from the adder that sends out the adder 3.
' is a 7-bit process, so the carry signals C6a' and C6
b' is sent to the adder 7 provided at the third stage of the first digit. Note that the carry signal that the first stage adder provided in the lower digit than the i-th digit sends to the third stage adder provided in the first digit is the carry signal that is sent to the adder provided in the third stage lower than the i-th digit. The carry signal C6a' from the adder and the carry signal C6b' from the adder located two digits lower than the i-th digit are used, but the present invention is not limited to this, and the carry signals Cla'', C1b'', etc. may not be arbitrarily combined. can. Then, the adder 3' provided in the second stage of the i-digit digit adds the sum S3' consisting of l bits to i
The carry signals C3°a and C3°b are sent to the adder 7 provided in the third stage of the digit, and the carry signals C3°a and C3°b are sent to the adders (not shown) provided in the third stage one and two digits higher than the wooden digit. do.

よってi桁目の3段目に備わる加算器7には前述のキャ
リー信号C6a’、C6b’と、前記和S3”と、本桁
より1桁及び2桁下位の2段目に備えられる不図示の加
算器が送出するキャリー信号C3°a°及びC3°b′
とがそれぞれ1ビツトずつ計5ビットの信号がパラレル
に供給される。そして加算器7は、供給される信号の加
算を行ない和S7をi桁目の4段目に設けられる全加算
値4゛へ送出する。
Therefore, the adder 7 provided in the third stage of the i digit receives the aforementioned carry signals C6a' and C6b', the sum S3'', and the adder 7 provided in the second stage (not shown) which is one and two digits lower than this digit. The carry signals C3°a° and C3°b' sent out by the adder of
A total of 5-bit signals, 1 bit each, are supplied in parallel. Then, the adder 7 adds the supplied signals and sends the sum S7 to the total sum value 4' provided in the fourth stage of the i-th digit.

全加算器4°には、前記和S7と、本桁より1桁及び2
桁下位の3段目に備えられる不図示の加算器が送出する
キャリー信号C7a’及びC7b゛とがそれぞれlビッ
トずつ計3ビットの信号力、くパラレルに供給され、全
加算器4′は供給された信号の加算を行ない和Sとキャ
リー信号Cを例えばCLA5に送出し、CLA5は加算
処理を実行し最終の加算値Fを送出する。
The full adder 4° contains the sum S7, one digit from this digit, and two digits.
Carry signals C7a' and C7b' sent out by an adder (not shown) provided in the third stage of the lower digit are supplied in parallel with a total of 3 bits of signal power of 1 bit each, and the full adder 4' is supplied with The added signals are added and the sum S and carry signal C are sent to, for example, CLA5, which executes the addition process and sends out the final added value F.

このように部分積が19ビツトからなる場合でも、4段
の加算器と1つのCLA又はCSAによって部分積加算
が実現でき回路規模が小さくかつ高速な計算が可能とな
る。
Even when the partial products consist of 19 bits in this way, partial product addition can be realized using four stages of adders and one CLA or CSA, making it possible to perform high-speed calculations with a small circuit scale.

尚、−船釣に部分積がNビットからなり7ビツの信号し
か処理できない全加算器のみにより加算回路を構成する
のではなく、4ビツト以上の信号を処理できる加算器を
用いたことにより、加算回路を構成する段数が少なくな
る。よって回路を構成する規模が小さくなるとともに、
加算計算を高速に行なうができる。
Furthermore, instead of configuring the adding circuit only with a full adder whose partial product consists of N bits and can only process a 7-bit signal, by using an adder that can process a signal of 4 bits or more, The number of stages configuring the adder circuit is reduced. Therefore, the scale of the circuit becomes smaller, and
Addition calculations can be performed quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び第1図(b)は、本発明の一実施例を
示すブロック図、第2図は、本発明の並列乗算器に使用
する加算器の構成を示す図、第3図は、本発明の他の実
施例を示すブロック図、第4図は、従来の部分積加算を
行なう回路のブロック図である。 1ないし3・・・加算器、 4・・・全加算器、 5 ・CL A又はC8A。
1(a) and 1(b) are block diagrams showing one embodiment of the present invention, FIG. 2 is a diagram showing the configuration of an adder used in the parallel multiplier of the present invention, and FIG. 3 is a block diagram showing an embodiment of the present invention. This figure is a block diagram showing another embodiment of the present invention, and FIG. 4 is a block diagram of a conventional circuit for performing partial product addition. 1 to 3... Adder, 4... Full adder, 5 ・CL A or C8A.

Claims (1)

【特許請求の範囲】[Claims] (1)加算器をトリー構造となるよう接続し、さらに終
段の加算器が送出する加算結果とキャリー信号とを加算
する1個の全加算器を備えた乗算器であって、トリー構
造をなす前記加算器は4以上のデータ入力端子を有する
ことを特徴とする並列乗算器。
(1) A multiplier in which adders are connected in a tree structure and further includes one full adder that adds the addition result sent by the final stage adder and a carry signal, which has a tree structure. A parallel multiplier, wherein the adder has four or more data input terminals.
JP23728588A 1988-09-21 1988-09-21 Parallel multiplier Pending JPH0283729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23728588A JPH0283729A (en) 1988-09-21 1988-09-21 Parallel multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23728588A JPH0283729A (en) 1988-09-21 1988-09-21 Parallel multiplier

Publications (1)

Publication Number Publication Date
JPH0283729A true JPH0283729A (en) 1990-03-23

Family

ID=17013120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23728588A Pending JPH0283729A (en) 1988-09-21 1988-09-21 Parallel multiplier

Country Status (1)

Country Link
JP (1) JPH0283729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139613A (en) * 1994-11-15 1996-05-31 Nec Corp Code coincidence detecting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139613A (en) * 1994-11-15 1996-05-31 Nec Corp Code coincidence detecting system

Similar Documents

Publication Publication Date Title
JPS61502288A (en) X×Y bit array multiplier/accumulator circuit
US5426598A (en) Adder and multiplier circuit employing the same
Haveliya A Novel Design for High Speed Multiplier for Digital Signal Processing Applications
EP0113391B1 (en) Digital multiplier and method for adding partial products in a digital multiplier
JPH0456339B2 (en)
GB1496935A (en) Adders and multipliers
US5231415A (en) Booth's multiplying circuit
GB1195410A (en) Binary Multipliers
JPS62280930A (en) Digital multiplier
US6065033A (en) Wallace-tree multipliers using half and full adders
JPH0283729A (en) Parallel multiplier
GB2187013A (en) Digital companding circuit
JPH02501246A (en) high speed multiplier circuit
CA2055900C (en) Binary tree multiplier constructed of carry save adders having an area efficient floor plan
US6742011B1 (en) Apparatus and method for increasing performance of multipliers utilizing regular summation circuitry
JPS6349835A (en) Arithmetic processor
JPH0326857B2 (en)
US20030033343A1 (en) Carry-ripple adder
JPS6378229A (en) Unit circuit for multiplier
JP2607735B2 (en) Multiplier partial product addition method
JPH0375903B2 (en)
JPS63271527A (en) Two-dimensional adder array system
JPH01134528A (en) Multiplier
JPS61221823A (en) Multiplicand sine extending system for recode type multiplier circuit
JPH1063484A (en) Digital multiplier