JPH028340A - Aluminum alloy material for high strength spacer bar of heat exchanger and its manufacture - Google Patents
Aluminum alloy material for high strength spacer bar of heat exchanger and its manufactureInfo
- Publication number
- JPH028340A JPH028340A JP15798588A JP15798588A JPH028340A JP H028340 A JPH028340 A JP H028340A JP 15798588 A JP15798588 A JP 15798588A JP 15798588 A JP15798588 A JP 15798588A JP H028340 A JPH028340 A JP H028340A
- Authority
- JP
- Japan
- Prior art keywords
- alloy material
- heat exchanger
- aluminum alloy
- strength
- manufacture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 21
- 125000006850 spacer group Chemical group 0.000 title claims abstract description 14
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 238000001192 hot extrusion Methods 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- 238000010276 construction Methods 0.000 abstract 2
- 238000000034 method Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000000265 homogenisation Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Extrusion Of Metal (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、液化天然ガスや液化酸素の蒸発装置や石油化
学プラントなどの大型熱交換器に組込まれるスペーサ・
バーに用いられるアルミニウム合金材の製造法に関する
ものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a spacer and
The present invention relates to a method of manufacturing an aluminum alloy material used for bars.
[従来の技術]
アルミニウム熱交換器は、圧延板材を波形に成形加工さ
れたフィンと押出形材を切断したスペーサ・バーおよび
プレージングシートからなるチューブプレートを組立て
、580〜600℃でろう付けすることにより熱交換器
部分が製作されている。[Prior art] Aluminum heat exchangers are manufactured by assembling tube plates made of fins formed from rolled plate material into corrugated shapes, spacer bars cut from extruded sections, and plating sheets, and then brazed at 580 to 600°C. This is how the heat exchanger part is manufactured.
熱交換器フィンに使用されるアルミニウム合金は、前述
のようにろう付は組立時の580〜600℃に加熱され
るため強度が低下すること、および耐食性の点を考慮し
て純アルミニウム、A I −M n系の3003合金
およびAl−ZnMg系の7072合金が使用されてい
た。The aluminum alloy used for the heat exchanger fins is pure aluminum, A I, because as mentioned above, brazing is heated to 580 to 600 degrees Celsius during assembly, which reduces its strength, and from the viewpoint of corrosion resistance. -Mn based 3003 alloy and Al-ZnMg based 7072 alloy were used.
又、スペーサ・バーは熱交換には直接関与しないが、強
度と耐食性が必要であり、フィンに用いられている材料
と同じ材料か用いられていた。Also, although the spacer bar does not directly participate in heat exchange, it must have strength and corrosion resistance, and the same material as that used for the fins was used.
[発明か解決しようとする課題]
液化天然ガスや液化酸素の蒸発装置や石油化学プラント
などの熱交換器は、最近大型化されたため、長尺のスペ
ーサ・バーとなると3003合金の押出材のように耐力
が5kgr/ll1m2程度では腰折れが生じ、ハンド
リングが困難となり、組立てが煩雑となるばかりでなく
、組立て精度が低下するという問題があった。腰折れを
防1にするには断面形状を大きくする方法もあるが、交
換器の熱効率の点からこれを大きくできないという制約
がある。[Invention or problem to be solved] Heat exchangers for liquefied natural gas and liquefied oxygen evaporators and petrochemical plants have recently become larger, so long spacer bars are made of extruded materials such as 3003 alloy. If the yield strength is about 5 kgr/1 m2, the bending occurs, making handling difficult, making assembly complicated, and reducing assembly accuracy. One way to prevent buckling is to increase the cross-sectional shape, but there is a restriction that this cannot be increased due to the thermal efficiency of the exchanger.
そこで本発明は、熱間押出材の耐力が8kg1’/+u
m2以上の高強度熱交換器スペーサ・バー用アルミニウ
ム合金材を提供するものである。Therefore, in the present invention, the yield strength of the hot extruded material is 8 kg1'/+u
The present invention provides an aluminum alloy material for high-strength heat exchanger spacer/bars having a diameter of m2 or more.
[課題を解決するための手段]
本発明は、上記課題を解決するもので、下記の発明より
なる。[Means for Solving the Problems] The present invention solves the above problems and consists of the following inventions.
(1) M n : 1.0〜1.7%、Cu :
0.05〜0.40%、S i : 0.15〜0.8
0%、F e : 0.2〜0.6%を含み、残りA
lと不純物よりなり、耐力が8kg1’/m112以上
である高強度熱交換器用スペーサ・バー用アルミニウム
合金材。(1) Mn: 1.0-1.7%, Cu:
0.05-0.40%, Si: 0.15-0.8
0%, Fe: 0.2-0.6%, remaining A
An aluminum alloy material for spacers and bars for high-strength heat exchangers, which is made of aluminum and impurities and has a yield strength of 8 kg1'/m112 or more.
(2) M n : 1.0〜1.7%、Cu :
0.05〜0.40%、S i : 0.I5〜0.8
0%、F e : 0.2〜0.6%を含み、残りA
lと不純物よりなる合金材を400〜530℃で2〜4
8時間の均質化処理を行い、熱間押出することにより耐
力が8kgf/12以上とする高強度熱交換器用スペー
サ・バー用アルミニウム合金材の製造法。(2) Mn: 1.0-1.7%, Cu:
0.05-0.40%, Si: 0. I5~0.8
0%, Fe: 0.2-0.6%, remaining A
An alloy material consisting of l and impurities is heated at 400 to 530℃ for 2 to 4
A method for producing an aluminum alloy material for a spacer/bar for a high-strength heat exchanger, which has a yield strength of 8 kgf/12 or more by performing an 8-hour homogenization treatment and hot extrusion.
上記合金成分および製造条件の限定理由は下記のとおり
である。The reasons for limiting the above alloy components and manufacturing conditions are as follows.
M n : M nは鋳造時にアルミニウム中に固溶し
、強度の向上に寄与する。下限未満ではこの効果が小さ
く、上限を超えると押出性が低下したり、巨大金属間化
合物が晶出する問題がある。したがって、Mnの含有量
は1.0〜1.7%とする。Mn: Mn forms a solid solution in aluminum during casting and contributes to improving strength. If it is less than the lower limit, this effect will be small, and if it exceeds the upper limit, there will be problems such as deterioration of extrudability or crystallization of giant intermetallic compounds. Therefore, the Mn content is set to 1.0 to 1.7%.
Cu:微量のCuの添加は強度の向上に寄与する。下限
未満ではこの効果が小さく、上限を超えると耐食性が低
下する。したがって、Cuの含有量は0.05〜0.4
%とする。Cu: Addition of a trace amount of Cu contributes to improving strength. Below the lower limit, this effect is small, and above the upper limit, the corrosion resistance decreases. Therefore, the Cu content is 0.05 to 0.4
%.
Si:Siの添加は強度の向上に寄与する。下限未満で
はこの効果が小さく、上限を超えると押出性が低下する
。したがって、Siの含有量は0.15〜0,8%とす
る。Si: Addition of Si contributes to improving strength. Below the lower limit, this effect is small, and above the upper limit, the extrudability decreases. Therefore, the Si content is set to 0.15 to 0.8%.
Fe:Feは鋳造時にAl−Fe−Mn系の晶出物を形
成するため、Feff1が上限を超えると固溶M n
Enが減少して強度か低下する。Fe: Fe forms Al-Fe-Mn system crystallized products during casting, so if Feff1 exceeds the upper limit, solid solution Mn
As En decreases, the strength also decreases.
下限未満の場合には結晶粒が粗大化しやすい。したがっ
て、Feの含有量は 0.2〜0.6%とする。If it is less than the lower limit, crystal grains tend to become coarse. Therefore, the Fe content is set to 0.2 to 0.6%.
均質化処理条件:
鋳塊の均質化処理温度が530℃を超えると、押出Hの
組織が再結晶し易く、強度が低下する。Homogenization treatment conditions: When the homogenization treatment temperature of the ingot exceeds 530°C, the structure of the extruded H is likely to recrystallize, resulting in a decrease in strength.
均質化処理温度が530℃以下の場合には、押出材の組
織が再結晶し難いため、強度は高くなるか、均質化処理
温度が400℃未満の場合には押出性か低下する。した
がって、均質化処理温度は400〜530℃とする。又
、時間は下限未満では押出性が低下し、上限を越えると
再結晶を起こし易く強度が低下する場合がある。したか
って2〜48時間とする。If the homogenization treatment temperature is 530°C or less, the structure of the extruded material is difficult to recrystallize, so the strength will increase, or if the homogenization treatment temperature is less than 400°C, the extrudability will decrease. Therefore, the homogenization treatment temperature is set at 400 to 530°C. Moreover, if the time is less than the lower limit, extrudability deteriorates, and if it exceeds the upper limit, recrystallization tends to occur and the strength may decrease. Ideally, it will take 2 to 48 hours.
[実施例] つぎに本発明を具体的な実施例に基づいて説明する。[Example] Next, the present invention will be explained based on specific examples.
実施例1
第1表に示すNo、1およびNo、13に示した組成を
有する合金材料を、150nvφの鋳型に鋳込み、種々
の均質化条件で処理した後、通常の押出温度で断面5+
nmX 10n+n+の角+4に押出した。引張試験は
JIS Z 2201に規定する 9A号試験片に
準じ、押出材そのままの両端部をつかみ、試験した。そ
の結果を第1表に示す。第1表中、No、1〜12は同
一組成の合金材料に対して均質化処理条件と押出温度を
変えた例でNo、1〜7が本発明の実施例、No、8〜
12が比較例を示す。Example 1 Alloy materials having the compositions shown in No. 1 and No. 13 shown in Table 1 were cast into a 150 nvφ mold, treated under various homogenization conditions, and then heated to a cross section of 5+ at a normal extrusion temperature.
Extruded to corner +4 of nmX 10n+n+. The tensile test was carried out in accordance with the No. 9A test piece specified in JIS Z 2201, by gripping both ends of the extruded material as it was. The results are shown in Table 1. In Table 1, Nos. 1 to 12 are examples in which the homogenization treatment conditions and extrusion temperature were changed for alloy materials of the same composition, Nos. 1 to 7 are examples of the present invention, and Nos. 8 to
12 shows a comparative example.
又、No、13〜18は他の同一組成の合金材料に対し
て均質化処理条件と押出温度を変えた例で、No、13
〜1Gか本発明の実施例、No、17.18が比較例を
示す。In addition, Nos. 13 to 18 are examples in which the homogenization treatment conditions and extrusion temperature were changed for other alloy materials of the same composition.
~1G represents an example of the present invention, and No. 17.18 represents a comparative example.
均質化処理温度を低くしたN o、 9は耐力が9.7
kgf/mm2と高いが、押出力か大きくなり押出か困
難で好ましくない。また、均質化処理時間を短くしたN
o、8も耐力 9.1kgf/m川2を得ることができ
るか、押出か困難で好ましくない。No. 9 with a lower homogenization temperature has a yield strength of 9.7
Although it is as high as kgf/mm2, the extrusion force becomes large and extrusion is difficult, which is not preferable. In addition, N
No. 8 is also unfavorable because it is difficult to obtain a yield strength of 9.1 kgf/m river 2 or to extrude it.
又、均質化処理温度を530°Cより高く上げたNo、
lo−12,17,18の場合は、いずれも耐力が5.
9、56、4.9、6.0、5,7と低く好ましくない
。In addition, No. where the homogenization temperature was raised higher than 530°C,
In the case of lo-12, 17, and 18, the yield strength is 5.
9, 56, 4.9, 6.0, 5,7, which is unfavorable.
一方、本発明の実施例の場合はいずれも耐力が8kgr
/mm2を超え、その他の試験結果も良好で、高強度熱
交換器スペーサ・バー用のアルミニウム合金として適し
たものである。On the other hand, in the case of the embodiments of the present invention, the yield strength is 8 kgr.
/mm2, and other test results were also good, making it suitable as an aluminum alloy for high-strength heat exchanger spacer bars.
実施例2
アルミニウム合金の組成を種々変えたものについて、実
施例1と同様な試験を行い、その結果を第2表に示す。Example 2 The same tests as in Example 1 were conducted using aluminum alloys with various compositions, and the results are shown in Table 2.
第2表中、No、19〜22は本発明の実施例で、NO
,23〜28は比較例を示す。In Table 2, Nos. 19 to 22 are examples of the present invention;
, 23 to 28 show comparative examples.
No、23はMn含有量か0.7%と少なく、耐力8k
gr/mm’を得ることができなかった。No、24は
、Fe含有量か多く、Cu含有量も少ないため耐力8k
gr/mm ’を得ることができながった。No. 23 has a low Mn content of 0.7% and a yield strength of 8k.
gr/mm' could not be obtained. No. 24 has a high Fe content and low Cu content, so the yield strength is 8k.
gr/mm' could not be obtained.
No、25はFe含有量が多く、CuおよびSi含有量
か少ないため耐力8kgf/mm 2を得ることができ
なかった。No. 25 had a high Fe content and low Cu and Si contents, so it was not possible to obtain a yield strength of 8 kgf/mm 2 .
N o、26はSi含有量か少なく、均熱化温度が旨い
ため耐力8kgf’/mm’を得ることができなかった
。No. 26 had a low Si content and a poor soaking temperature, so it was not possible to obtain a yield strength of 8 kgf'/mm'.
N o、27はSi含有量が高く、Fe含有量が低いた
め、耐力は9.1kgf/mm2と目標値を得ているが
、Si含有量か多いため押出性が悪く、また、Fe含も
量が少ないため結晶粒が粗大化し、耐食性が低下するの
で好ましくない。No. 27 has a high Si content and a low Fe content, so the target value of yield strength is 9.1 kgf/mm2, but the extrudability is poor due to the high Si content, and the Fe content is also low. Since the amount is small, the crystal grains become coarse and corrosion resistance decreases, which is not preferable.
No、28は耐力8kgf/mm2以上を得られるが、
Cu含有量が多いため、耐食性が低下するので好ましく
ない。No. 28 can obtain proof stress of 8 kgf/mm2 or more,
Since the Cu content is high, corrosion resistance decreases, which is not preferable.
一方、本発明の実施例の場合は、いずれも耐力が8kg
1’/mm2を超え、その他の試験結果も良好で、高強
度熱交換器スペーサ・バー用のアルミニウム合金として
適したものである。On the other hand, in the case of the examples of the present invention, the yield strength is 8 kg.
1'/mm2 and other test results were also good, making it suitable as an aluminum alloy for high-strength heat exchanger spacer bars.
[発明の効果]
本発明によれば、熱間押出祠の耐カ8kgf/+I1m
’以上を有する高強度の材料が得られ、そのものは熱交
換器スペーサ・バーに用いて組立て時の腰折れがなく、
熱交換器の組立てを容易にしかも精度よく仕上げること
ができる。[Effect of the invention] According to the present invention, the force resistance of the hot extrusion mill is 8 kgf/+I1m.
A high-strength material with the above properties can be obtained, and can be used for heat exchanger spacer bars without bending during assembly.
It is possible to easily assemble a heat exchanger and finish it with high precision.
特許出願人 住友軽金属工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭 宏Patent applicant: Sumitomo Light Metal Industries, Ltd. Agent Patent Attorney Hidetake Komatsu Agent Patent Attorney Hiroshi Asahi
Claims (2)
40%、Si:0.15〜0.80%、Fe:0.2〜
0.6%を含み、残りAlと不純物よりなり、耐力が 8kgf/mm^2以上であることを特徴とする高強度
熱交換器用スペーサ・バー用アルミニウム合金材。(1) Mn: 1.0-1.7%, Cu: 0.05-0.
40%, Si: 0.15~0.80%, Fe: 0.2~
An aluminum alloy material for a spacer bar for a high-strength heat exchanger, characterized by containing 0.6%, remaining Al and impurities, and having a yield strength of 8 kgf/mm^2 or more.
40%、Si:0.15〜0.80%、Fe:0.2〜
0.6%を含み、残りAlと不純物よりなる合金材を 400〜530℃で2〜48時間の均質化処理を行い、
熱間押出することにより耐力が8kgf/mm^2以上
とすることを特徴とする高強度熱交換器用スペーサ・バ
ー用アルミニウム合金材の製造法。(2) Mn: 1.0-1.7%, Cu: 0.05-0.
40%, Si: 0.15~0.80%, Fe: 0.2~
An alloy material containing 0.6% and the remaining Al and impurities is homogenized at 400 to 530°C for 2 to 48 hours,
A method for producing an aluminum alloy material for a spacer/bar for a high-strength heat exchanger, characterized in that the material has a yield strength of 8 kgf/mm^2 or more by hot extrusion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15798588A JPH028340A (en) | 1988-06-28 | 1988-06-28 | Aluminum alloy material for high strength spacer bar of heat exchanger and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15798588A JPH028340A (en) | 1988-06-28 | 1988-06-28 | Aluminum alloy material for high strength spacer bar of heat exchanger and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH028340A true JPH028340A (en) | 1990-01-11 |
JPH036975B2 JPH036975B2 (en) | 1991-01-31 |
Family
ID=15661722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15798588A Granted JPH028340A (en) | 1988-06-28 | 1988-06-28 | Aluminum alloy material for high strength spacer bar of heat exchanger and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH028340A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997006284A1 (en) * | 1995-08-07 | 1997-02-20 | Alcan International Limited | Aluminium alloy |
JP2009174052A (en) * | 2007-12-26 | 2009-08-06 | Aisin Keikinzoku Co Ltd | Aluminum alloy for heat exchanger |
EP2330226A1 (en) * | 2009-12-03 | 2011-06-08 | Rio Tinto Alcan International Limited | High strenght aluminium alloy extrusion |
-
1988
- 1988-06-28 JP JP15798588A patent/JPH028340A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997006284A1 (en) * | 1995-08-07 | 1997-02-20 | Alcan International Limited | Aluminium alloy |
JP2009174052A (en) * | 2007-12-26 | 2009-08-06 | Aisin Keikinzoku Co Ltd | Aluminum alloy for heat exchanger |
EP2330226A1 (en) * | 2009-12-03 | 2011-06-08 | Rio Tinto Alcan International Limited | High strenght aluminium alloy extrusion |
US8313590B2 (en) | 2009-12-03 | 2012-11-20 | Rio Tinto Alcan International Limited | High strength aluminium alloy extrusion |
Also Published As
Publication number | Publication date |
---|---|
JPH036975B2 (en) | 1991-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5743642B2 (en) | Aluminum alloy brazing sheet | |
JP3333600B2 (en) | High strength Al alloy fin material and method of manufacturing the same | |
JPH028340A (en) | Aluminum alloy material for high strength spacer bar of heat exchanger and its manufacture | |
JPH11241136A (en) | High corrosion resistant aluminum alloy, clad material thereof, and its production | |
JPH01195263A (en) | Manufacture of al-alloy fin material for heat exchanger | |
JPH09302434A (en) | Aluminum alloy material for brazing, excellent in pitting resistance, and its production | |
JPS6280246A (en) | Al alloy material for heat exchanger excellent in strength at high temperature | |
JPH032343A (en) | Aluminum alloy for heat-exchanger fin | |
JPS5934782B2 (en) | Manufacturing method of droop-resistant aluminum alloy plate | |
JPH05305307A (en) | Manufacture of high strength aluminum alloy clad fin stock for heat exchanger | |
JPS63161137A (en) | High tensile aluminum alloy having excellent heat resistance | |
JPH0313550A (en) | Production of high strength aluminum alloy fin material for heat exchanger | |
JPH03197652A (en) | Production of aluminum alloy fin material for brazing | |
JPS63153251A (en) | Manufacture of thin aluminum sheet for brazing | |
JPH0237992A (en) | Production of thin aluminum sheet for brazing | |
JPH06145862A (en) | Heat exchanger made of al alloy constituted of high strength fin material | |
JPH04371541A (en) | Aluminum alloy for heat exchanger piping | |
JP2002256403A (en) | Method of producing fin material for use in heat exchanger | |
JP2781025B2 (en) | Aluminum alloy for heat exchanger fins | |
JPS6372857A (en) | Manufacture of thin aluminum sheet for brazing | |
JPS63213646A (en) | Thin composite fin material made of high-strength al alloy for heat exchanger excellent in sacrificial anode effect | |
JPH0313549A (en) | Production of high strength aluminum alloy fin material for heat exchanger | |
JPH0313548A (en) | Production of high strength aluminum alloy fin material for heat exchanger | |
JP5360879B2 (en) | Aluminum alloy extruded tube for high strength heat exchangers with excellent extrudability | |
JPH04103738A (en) | High strength aluminum alloy excellent in brazability |