JPH0283252A - Normal-pressure production of combined sintered material of zirconium oxycarbide and aluminum oxide - Google Patents

Normal-pressure production of combined sintered material of zirconium oxycarbide and aluminum oxide

Info

Publication number
JPH0283252A
JPH0283252A JP63235453A JP23545388A JPH0283252A JP H0283252 A JPH0283252 A JP H0283252A JP 63235453 A JP63235453 A JP 63235453A JP 23545388 A JP23545388 A JP 23545388A JP H0283252 A JPH0283252 A JP H0283252A
Authority
JP
Japan
Prior art keywords
powder
weight
aluminum oxide
al2o3
zrc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63235453A
Other languages
Japanese (ja)
Other versions
JPH0544427B2 (en
Inventor
Takamasa Ishigaki
隆正 石垣
Kimitoshi Satou
仁俊 佐藤
Yusuke Moriyoshi
佑介 守吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP63235453A priority Critical patent/JPH0283252A/en
Publication of JPH0283252A publication Critical patent/JPH0283252A/en
Publication of JPH0544427B2 publication Critical patent/JPH0544427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a combined sintered material of Zr oxycarbide and Al2O3 sintered at high temperature under normal pressure by embedding compressed powder of a mixture of ZrC powder having particle diameters in a specific range and Al2O3 powder in Al2O3 powder and sintering. CONSTITUTION:A mixture of (A) 15-50wt.% ZrC powder (particle diameter: 3-10mum) and (B) 85-50wt.% Al2O3 powder is compression molded to give compressed powder, which is embedded in Al2O3 powder. The embedded material is sintered normal pressure at 1,700-1,900 deg.C to give a high-density (93-97% relative density) combined sintered material of zirconium oxycarbide [ZrCxOy (0<x<1, 0<y<1, 0.5<=x+y<=1, 0.05<=y/x<=0.22)] and Al2O3. Addition of <=5wt.% based on Al2O3 of MgO or Y2O3 raises density of sintered material and improves oxidation resistance. The sintered material is useful as cutting tool material, wear-resistant material, heating element material useful in an oxidizing atmosphere and electroconductive material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はジルコニウムのオキシカーバイドと酸化アルミ
ニウムの複合焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a composite sintered body of zirconium oxycarbide and aluminum oxide.

この複合焼結体は切削工具用材料、耐摩耗材、酸化雰囲
気で使用可能な発熱体材料および電気伝導性材料として
有用なものである。
This composite sintered body is useful as a material for cutting tools, a wear-resistant material, a heating element material that can be used in an oxidizing atmosphere, and an electrically conductive material.

従来技術 Ah02は高強度、高硬度等の優れた特性を持つが、低
靭性であるという欠点を存している。そこで、高硬度、
高強度に加えて高靭性のZrCと複合化することにより
、機械的特性の優れたZrC−^1.0.複合セラミッ
クスとすることは知られている。
Conventional technology Ah02 has excellent properties such as high strength and high hardness, but has the drawback of low toughness. Therefore, high hardness,
By combining ZrC with high strength and high toughness, ZrC-^1.0. has excellent mechanical properties. It is known to use composite ceramics.

また、ZrCは電気伝導性に優れているが、耐酸化性が
劣る欠点を有する。そこで耐酸化性に優れた^1 to
ffと複合化することによって、両長所を兼ね備えたZ
rCAItO:+導電性セラミックスとすることも知ら
れている。
Further, although ZrC has excellent electrical conductivity, it has a drawback of poor oxidation resistance. Therefore, it has excellent oxidation resistance^1 to
Z that combines the advantages of both by combining with ff
It is also known to use rCAItO:+ conductive ceramics.

しかし、この複合セラミックスの焼結体はいずれも低温
で高加重をかけたホットプレス法によって製造している
。即ち、成分の一つであるZrCは難焼結性であるため
、焼結には加重が必要であり、高温ではA1.O,の蒸
発が顕著となるため、上記の方法によって製造していた
However, all of these composite ceramic sintered bodies are manufactured by a hot pressing method that applies high loads at low temperatures. That is, since ZrC, one of the components, is difficult to sinter, a load is required for sintering, and at high temperatures A1. Since the evaporation of O, becomes significant, it has been manufactured by the above method.

このように従来法によると高加重を必要とするため、製
造装置も高価となり、製造プロセスが複雑化し、それだ
け製造コストが高くなるとともに、複雑形状の焼結体を
つくることはできなかった。
As described above, the conventional method requires a high load, which makes the manufacturing equipment expensive, complicates the manufacturing process, increases the manufacturing cost, and makes it impossible to produce a sintered body with a complicated shape.

また得られる焼結体はZrC−A I□0.の二相系に
しかなり得なかった。
Moreover, the obtained sintered body has ZrC-A I□0. Only a two-phase system could be obtained.

また、常圧焼結法としては、圧粉体をAltO3粉末に
包埋して焼成すると焼結密度が上昇することは公知の事
実である。(本発明者らが発表した窯業協会昭和62年
年会講演予稿集p、455 )これは焼結雰囲気を制御
し、また圧粉体からの酸化アルミニウムの蒸発を防ぎ組
成変化のないようにして、緻密化を高めるためである。
Furthermore, as for the pressureless sintering method, it is a well-known fact that when a green compact is embedded in AltO3 powder and fired, the sintered density increases. (Proceedings of the 1986 annual meeting of the Ceramics Association, presented by the present inventors, p. 455) This controls the sintering atmosphere and prevents the evaporation of aluminum oxide from the green compact to prevent compositional changes. , in order to increase densification.

しかしながら、ZrCの粒径の最適化が検討されていな
かったため90%程度の相対密度が上限であった。
However, since optimization of the particle size of ZrC had not been considered, the upper limit was a relative density of about 90%.

発明の目的 本発明は従来法の欠点をなくすべくなされたもので、そ
の目的は炭化ジルコニウムと酸化アルミニウムを原料と
し、従来のものより高密度(相対密度93〜97%)で
、炭化ジルコニウムの炭素サイドを酸素で置換したジル
コニウムのオキシカーバイドと酸化アルミニウムからな
る特性の優れた複合焼結体を製造する方法を提供するに
ある。
Purpose of the Invention The present invention was made in order to eliminate the drawbacks of the conventional method.The purpose of the present invention is to use zirconium carbide and aluminum oxide as raw materials, and to have a higher density than the conventional method (relative density 93-97%). It is an object of the present invention to provide a method for producing a composite sintered body having excellent properties, which is made of zirconium oxycarbide whose sides are substituted with oxygen and aluminum oxide.

発明の構成 本発明は前記目的を達成すべく、特定範囲の粒径(3〜
10μm)をもつ炭化ジルコニウム粉末と、酸化アルミ
ニウム粉末を特定配合した圧粉体、あるいはこれに微量
の酸化マグネシウムあるいは酸化イツトリウム粉末を添
加した圧粉体をつくり、この圧粉体を酸化アルミニウム
粉末に包埋して、中性雰囲気または還元性雰囲気で、1
700〜1900“Cで常圧焼結すると、常圧焼結にも
かかわらず、従来法では得られなかった高密度の特性の
優れた複合焼結体が得られることを知見した。また得ら
れる焼結体はジルコニウムのオキシカーバイドと酸化ア
ルミニウムを含む複合焼結体であることがわかった。こ
れらの知見に基づいて本発明を完成した。
Structure of the Invention In order to achieve the above-mentioned object, the present invention has a particle size in a specific range (3 to 3).
A green compact is made by specifically blending zirconium carbide powder with a diameter of 10 μm) and aluminum oxide powder, or a compact is made by adding a small amount of magnesium oxide or yttrium oxide powder, and this green compact is wrapped in aluminum oxide powder. Bury it in a neutral or reducing atmosphere for 1
It has been found that when pressureless sintered at 700 to 1900"C, a composite sintered body with high density and excellent properties that could not be obtained by conventional methods can be obtained despite the pressureless sintering. It was found that the sintered body is a composite sintered body containing zirconium oxycarbide and aluminum oxide.The present invention was completed based on these findings.

本発明の要旨は、粒径3〜10μmの炭化ジルコニウム
粉末15〜50重量%と酸化アルミニウム粉末85〜5
0重量%の均質混合物、あるいは酸化アルミニウムに対
して5重量%以下の量の酸化マグネシウムあるいは酸化
イツトリウム粉末を添加した均質混合物を圧粉体に成形
し、この圧粉体を酸化アルミニウム粉末に包埋して、中
性または還元性雰囲気で、1700〜1900’Cで常
圧焼結することを特徴とするジルコニウムのオキシカー
バイドと酸化アルミニウムの複合焼結体の製造法にある
The gist of the present invention is that 15 to 50% by weight of zirconium carbide powder with a particle size of 3 to 10 μm and 85 to 5% of aluminum oxide powder
A homogeneous mixture containing 0% by weight of magnesium oxide or yttrium oxide powder, or a homogeneous mixture in which magnesium oxide or yttrium oxide powder is added in an amount of 5% by weight or less based on aluminum oxide, is formed into a compact, and this compact is embedded in aluminum oxide powder. The present invention provides a method for producing a composite sintered body of zirconium oxycarbide and aluminum oxide, which is characterized by sintering at 1700 to 1900'C under normal pressure in a neutral or reducing atmosphere.

本発明における炭化ジルコニウム粉末と酸化アルミニウ
ム粉末の配合割合は、炭化ジルコニウムが15〜50重
量%、酸化アルミニウムが85〜50重世%の範囲であ
る。炭化ジルコニウムが15重量%より少ないと得られ
る焼結体の靭性、電気伝導性、硬度が低くなり、50重
量%をこえると高緻密のものとならず耐酸化性も劣るも
のとなる。
The blending ratio of zirconium carbide powder and aluminum oxide powder in the present invention is in the range of 15 to 50% by weight of zirconium carbide and 85 to 50% by weight of aluminum oxide. If the content of zirconium carbide is less than 15% by weight, the toughness, electrical conductivity, and hardness of the obtained sintered body will be low, and if it exceeds 50% by weight, it will not be highly dense and the oxidation resistance will be poor.

原料の炭化ジルコニウムとしては、その粒径が3〜10
μmのものを使用することが必要である。
The particle size of the raw material zirconium carbide is 3 to 10
It is necessary to use μm.

粒径が3μ鴎より小さいと焼成中酸化アルミニウムの蒸
発量が多くなり高緻密な焼結体が得難く、また粒径がI
Oμ鴎を超えると焼結の進行が阻害される。従って、原
料粉末の混合中にも炭化ジルコニウム粉末が粉砕されて
3μm未満の粒径とならないようにすべきである。それ
にはボールミルで混合する場合、ナイロンポール等のポ
ールを用いることが好ましい。
If the particle size is smaller than 3 μm, the amount of aluminum oxide evaporated during firing will be large, making it difficult to obtain a highly dense sintered body, and if the particle size is smaller than I
If it exceeds Oμ, the progress of sintering will be inhibited. Therefore, it is necessary to prevent the zirconium carbide powder from being crushed to a particle size of less than 3 μm during mixing of the raw material powder. When mixing in a ball mill, it is preferable to use a pole such as a nylon pole.

酸化マグネシウムあるいは酸化イツトリウム粉末を加え
るのは、焼結体の密度を高くするためである。また添加
により耐酸化性が向上する。但し、添加量が5重量%を
こえると焼結密度の低下をまねく。
The purpose of adding magnesium oxide or yttrium oxide powder is to increase the density of the sintered body. The addition also improves oxidation resistance. However, if the amount added exceeds 5% by weight, the sintered density will decrease.

常圧焼結の温度は、1700℃より低いとAlx0iの
蒸発量は少ないが、焼結に必要な物質の駆動力が十分で
なく、焼結が進まない。1900℃をこえると、成形圧
粉体をA1□0.粉末に包埋してもAhO*の蒸発量が
多くなり、組成変化をもたらすばかりでなく、緻密な焼
結体が得られない、従って、1700〜1900℃の範
囲内で焼結することが必要である。雰囲気は中性または
還元性であることが必要で、それは、ZrCの焼結中の
酸化を防止するためである。
If the pressureless sintering temperature is lower than 1700° C., the amount of evaporation of AlxOi will be small, but the driving force of the substance required for sintering will not be sufficient, and sintering will not proceed. When the temperature exceeds 1900°C, the compacted powder becomes A1□0. Even if it is embedded in powder, the amount of evaporation of AhO* will increase, which will not only change the composition, but also make it impossible to obtain a dense sintered body.Therefore, it is necessary to sinter within the range of 1700 to 1900°C. It is. The atmosphere needs to be neutral or reducing in order to prevent oxidation of the ZrC during sintering.

本発明の方法で得られる焼結体は、炭化ジルコニウムの
炭素サイトを酸素で置換したジルコニウムのオキシカー
バイドZrC,IQ、 (Q < x < 1、o <
y <iで、0.5≦x+y≦1.0.05≦y八≦0
.22)と酸化アルミニウムの複合焼結体となる。
The sintered body obtained by the method of the present invention is a zirconium oxycarbide ZrC, IQ, in which the carbon sites of zirconium carbide are substituted with oxygen, (Q < x < 1, o <
y<i, 0.5≦x+y≦1.0.05≦y8≦0
.. 22) and aluminum oxide.

ZrCll0yにおいて、x+yは原料のZrCの不定
比性によって支配される。また炭素と酸素の比y/xは
焼結温度が低いと小さくなり、高いと大きくなる。本発
明において焼結温度が1700″Cのときy/x=0.
05.1900℃のときy/x=0.22となる。従っ
て、本発明の方法においては0.05≦y/x≦0.2
2のものが得られる。
In ZrCll0y, x+y is dominated by the non-stoichiometry of ZrC as a raw material. Further, the ratio y/x of carbon to oxygen becomes smaller when the sintering temperature is lower, and becomes larger when the sintering temperature is higher. In the present invention, when the sintering temperature is 1700''C, y/x=0.
05. At 1900°C, y/x=0.22. Therefore, in the method of the present invention, 0.05≦y/x≦0.2
2 things are obtained.

ZrC35重量%、Alz(h 65重量%の組成の出
発原料を用い、ZrCの粒度を変え、MgOまたはY、
0.を添加(^1tosの0.5重量%)した場合にお
ける焼結温度と得られる焼結体の相対密度の関係を示す
と第1図の通りである。
Using a starting material with a composition of 35% by weight of ZrC and 65% by weight of Alz (h), the particle size of ZrC was changed, and MgO or Y,
0. Figure 1 shows the relationship between the sintering temperature and the relative density of the obtained sintered body in the case of adding (0.5% by weight of ^1tos).

図中、ムはZrC粒度が3μ■以下、・はZrC粒度が
3〜10μ園、○はqgoを、口印はYtOsを添加し
た場合を示す。
In the figure, MU indicates that the ZrC particle size is 3μ or less, * indicates that the ZrC particle size is 3 to 10μ, ◯ indicates that qgo is added, and the stamp indicates that YtOs is added.

図が示すように、ZrC粒度が3〜10μmのものの方
が焼結密度が高い、 MgOまたはY2O,を配合する
と相対密度が上昇する。焼結温度が1900℃を超える
と焼結密度はあがらず、^120.の蒸発が多くなる。
As shown in the figure, ZrC with a grain size of 3 to 10 μm has a higher sintered density, and when MgO or Y2O is added, the relative density increases. When the sintering temperature exceeds 1900°C, the sintered density does not increase, and the temperature is 120. evaporation increases.

出発原料の組成及びZrCの粒度を変化させて1850
’Cで常圧焼結した場合における相対密度との関係を示
すと第2図の通りである。
1850 by varying the starting material composition and ZrC particle size.
Figure 2 shows the relationship with relative density in the case of pressureless sintering with 'C.

図中、ムは炭化ジルコニウムの粒径が3μm未満、・は
炭化ジルコニウムの粒径が3〜10μm10はMgO、
口はYzOs (AI!Oaの0.5重量%)を添加し
た場合を示す0図が示すように、炭化ジルコニウムは1
5重量%を必要とし、50重量%を超えると高緻密な焼
結体となり得ない。
In the figure, M indicates that the particle size of zirconium carbide is less than 3 μm, ・ indicates that the particle size of zirconium carbide is 3 to 10 μm, 10 indicates MgO,
As shown in the figure, which shows the case where YzOs (0.5% by weight of AI!Oa) is added, zirconium carbide is
5% by weight is required, and if it exceeds 50% by weight, a highly dense sintered body cannot be obtained.

第3図はZrC35重量%、At、0.65重量%の組
成の出発原料に添加するMgO、VtOsの量を変化さ
せて1850℃で常圧焼結した場合における相対密度と
の関係図である。図中・は無添加、図が示すように、−
goとy、o、ではMgOの添加効果がわずかに大きい
。また、添加量は5重量%までは効果があり、これを超
えると相対密度は低下してくる。
Figure 3 is a diagram showing the relationship between the relative density and the case where the amounts of MgO and VtOs added to a starting material having a composition of 35% by weight of ZrC and 0.65% by weight of At were sintered at 1850°C under normal pressure. . In the figure, ・ means no additives, as shown in the figure, −
The effect of MgO addition is slightly larger for go, y, and o. Further, the addition amount is effective up to 5% by weight, and if it exceeds this, the relative density will decrease.

第4図はMgOをAhOsに対し、0.5重量%添加し
た場合の焼結体の室温導電率とZrCx0.の量との関
係図を示す。本発明の方法による焼結体は電気伝導性が
優れていることが分かる。
FIG. 4 shows the room temperature conductivity of the sintered body when 0.5% by weight of MgO is added to AhOs and ZrCx0. A diagram showing the relationship between the amount of It can be seen that the sintered body produced by the method of the present invention has excellent electrical conductivity.

実施例1゜ 粒径3〜10μmのZrC粉末と平均粒径0.5μmの
A1.03粉末を使用し、ZrCの組成割合が35重量
%であるように秤量し、これにエタノールを加えナイロ
ンボールを用いて12時時間式混合した。この混合粉末
を乾燥させた後、−軸加工成形および静水圧プレスによ
ってベレット状の成形体とした。
Example 1゜ZrC powder with a particle size of 3 to 10 μm and A1.03 powder with an average particle size of 0.5 μm were weighed so that the composition ratio of ZrC was 35% by weight, ethanol was added to this, and a nylon ball was added. The mixture was mixed for 12 hours using a . After drying this mixed powder, it was made into a pellet-shaped molded body by -shaft molding and isostatic pressing.

この成形体をSiCるつぼ中でAIJs粉末に包埋して
、Ar気流中で高周波炉により1700〜1900℃で
加熱焼結した。
This compact was embedded in AIJs powder in a SiC crucible, and heated and sintered at 1700 to 1900° C. in a high frequency furnace in an Ar flow.

焼結中の試料の重量減は1%で以下で、焼結体の相対密
度は94〜96%と高いものであった。
The weight loss of the sample during sintering was less than 1%, and the relative density of the sintered body was as high as 94-96%.

これに対し、アルミナボールを用いてZrC粉を粒径1
〜3μmとしたものを使用し同様に焼結体を作ったとこ
ろ、焼成中の試料の重量減は2〜3%で焼結体の相対密
度は91〜92%と低下した。
On the other hand, using an alumina ball, ZrC powder was
When a sintered body was made in the same manner using a sample having a diameter of ~3 μm, the weight loss of the sample during firing was 2 to 3%, and the relative density of the sintered body decreased to 91 to 92%.

実施例2゜ 粒径3〜IOμmのZrC粉末と平均粒径0.5μmの
Altos粉末を使用し、ZrCの組成割合が15.3
5.50重量%であるように秤量し、さらにA1□03
に対して0.5重量%のMgO粉末(平均粒径0.2μ
m)あるいはY2O,粉末(平均粒径0.5μm)を添
加して混合粉末を作り、これにエタノールを加えてナイ
ロンボールを用いて12時時間式混合した。この混合粉
末を乾燥させた後、−軸加工成形および静水圧プレスに
よってペレット状の成形体とした。
Example 2゜ ZrC powder with a particle size of 3 to IO μm and Altos powder with an average particle size of 0.5 μm were used, and the composition ratio of ZrC was 15.3.
Weigh it so that it is 5.50% by weight, and further add A1□03
0.5% by weight of MgO powder (average particle size 0.2μ
m) or Y2O powder (average particle size 0.5 μm) was added to prepare a mixed powder, ethanol was added thereto, and the mixture was mixed using a nylon ball for 12 hours. After drying this mixed powder, it was made into a pellet-like molded body by -axial processing molding and isostatic pressing.

この成形体をSLCルツボ中でAltos粉末に包埋し
て、Ar気流中で高周波誘導加熱炉により1700〜1
900℃で加熱焼結した。これにより相対密度95%以
上の緻密な焼結体が得られた。
This compact was embedded in Altos powder in an SLC crucible and heated to 1,700 to 1
It was heated and sintered at 900°C. As a result, a dense sintered body with a relative density of 95% or more was obtained.

得られた焼結体について化学分析を行い、ZrCは酸素
が固溶したジルコニウムのオキシカーバイド(ZrCx
Oy )に変化していることが分かった。
A chemical analysis was performed on the obtained sintered body, and it was found that ZrC is zirconium oxycarbide in which oxygen is solidly dissolved (ZrCx
Oy ) was found to have changed.

ZrC35重世%、へIt0365重量%の原料組成、
及びMg00.5重量%を配合したものを前記と同様に
して1700℃21900’Cで焼成した焼結体の組成
は次の表1の通りであった。
Raw material composition of ZrC35 weight%, It0365 weight%,
and 00.5% by weight of Mg were mixed and fired at 1700° C. and 21900° C. The composition of the sintered body was as shown in Table 1 below.

実施例3゜ 粒径3〜10μ−のZrC粉末と平均粒径0.5μ情(
7)Al2O,粉末を使用し、ZrCが35.50重量
%の混合粉末ニMgOマたはy、off粉末(A l 
t Os (D 0 、5重量%)を添加し、実施例2
と同様にして圧粉成形体を作った。これを^ItOs 
N末に包埋し、Ar気流中で1850℃に加熱した。
Example 3 ZrC powder with a particle size of 3 to 10μ and an average particle size of 0.5μ
7) Using Al2O, powder, mixed powder with ZrC of 35.50% by weight, and MgO powder (Al2O, off powder)
Example 2
A powder compact was made in the same manner. This is ^ItOs
It was embedded in N powder and heated to 1850°C in an Ar flow.

焼結体の組成、相対密度、ピンカース硬度、靭性及び3
点曲げ強度は表2に示す通りであった。
Composition, relative density, Pinkers hardness, toughness, and 3
The point bending strength was as shown in Table 2.

表 出発原料の組成  焼成温度 ZrC35重量%    1700℃ + Altos 65重重景 焼結体の組成 Zrf’:o、 qs Oo、 os 35.1重量%
+ A1□os 64.踵量% 1900 ’C ZrCe、 at 06. +s 35.道量%十 AIzOs 64.7重世% ZrC34,踵量% + AhOs 64.7重量% + Mg00.5重量% 1700℃ ZrCo、 950o、 as 34.9重量%+ A1□o!64.這量% + MgOo、s 9% 1900℃ ZrCo、 820o、 re 35.0重量%+ ^hos 64.5重量% + MgOO,5重量% これが示すように、高硬度、高靭性、高強度であり、切
削工具、耐摩耗部材、構造材料等として適している。
Table Composition of starting raw material Firing temperature ZrC 35% by weight 1700°C + Altos 65 composition of sintered body Zrf': o, qs Oo, os 35.1% by weight
+ A1□os 64. Heel weight % 1900'C ZrCe, at 06. +s 35. Road weight% 10 AIzOs 64.7 weight% ZrC34, heel weight% + AhOs 64.7 weight% + Mg00.5 weight% 1700℃ ZrCo, 950o, as 34.9 weight% + A1□o! 64. Weight% + MgOO, s 9% 1900℃ ZrCo, 820o, re 35.0% by weight + ^hos 64.5% by weight + MgOO, 5% by weight As shown, it has high hardness, high toughness, and high strength. , suitable as cutting tools, wear-resistant members, structural materials, etc.

さらにY!0.を添加した焼結体を1500’Cで5時
間空気中に放置してその重量変化を測定することにより
耐酸化性を調べた。その結果は表3に示す通りであった
Furthermore, Y! 0. The oxidation resistance was examined by leaving the sintered body in the air at 1500'C for 5 hours and measuring the weight change. The results were as shown in Table 3.

表−3 ZrCo、 12oO,Iff 34.8重量%十 ^1t(h 64.2重量% + YzOs 1.0重量% 93.5 4.7 ZrCo、 5soo、 +、34.2重量%94.0 4.5 + AI、O! 62.9重量% + Yz(h 2.9重量% この結果が示すように重量変化も少ない。Table-3 ZrCo, 12oO, If 34.8% by weight ^1t (h 64.2% by weight + YzOs 1.0% by weight 93.5 4.7 ZrCo, 5soo, +, 34.2% by weight 94.0 4.5 + AI, O! 62.9% by weight + Yz (h 2.9% by weight As this result shows, the weight change is also small.

発明の効果 本発明はZrC粉末と^1803粉末とを原料とし、特
にZrC粉末の粒度を特定範囲のものを用い、この圧粉
体を酸化アルミニウム粉末に包埋して焼結することによ
り、常圧焼結で、従来法では得られなかった優れた特性
を有するZrCx0yとAhOsの複合焼結体を従来の
ものより高密度のものとして得られる効果を有する。
Effects of the Invention The present invention uses ZrC powder and ^1803 powder as raw materials, in particular, uses ZrC powder with a particle size within a specific range, and embeds this green compact in aluminum oxide powder and sinters it to produce a Pressure sintering has the effect of producing a composite sintered body of ZrCx0y and AhOs with a higher density than conventional ones, which has excellent properties that could not be obtained by conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法において、原料組成がZrC35
重量%、autos 65重量%の原料を用い、ZrC
の粒度を変え、MgOまたはY2O,を添加した場合に
おける焼結温度と得られる焼結体の相対密度との関係図
、第2図は原料ZrCの量及びその粒度と得られる焼結
体の相対密度との関係図、第3図はMgOまたはY2O
,の添加量と得られる焼結体の相対密度との関係図、第
4図はMgOをAh(hに対して0.5重量%添加した
焼結体の室温導電率とジルコニウムオキシカーバイド量
との関係図を示す。 第1図 第2図 凡峰温&  ’c 原料藤或 z (zrc +F) fitZ ’)第 図 M2O、Y203め外方0f AI203 += 4 + 3 r量2第 ヰ 図 複イ計丈免牽舌体の予且へ;
Figure 1 shows that the raw material composition is ZrC35 in the method of the present invention.
ZrC using raw materials of 65 wt%
Figure 2 shows the relationship between the sintering temperature and the relative density of the obtained sintered body when the particle size of ZrC is changed and MgO or Y2O is added. Relationship diagram with density, Figure 3 is MgO or Y2O
, and the relative density of the obtained sintered body. The relationship diagram is shown. Fig. 1 Fig. 2 Temperature &'c Raw material Fuji z (zrc +F) fitZ ') Fig. M2O, Y203 outward 0f AI203 += 4 + 3 r amount 2 Fig. To the preparation of the multi-meter length relief tongue body;

Claims (1)

【特許請求の範囲】 1)粒径3〜10μmの炭化ジルコニウム粉末15〜5
0重量%と酸化アルミニウム粉末85〜50重量%の混
合物を、圧粉体に成形し、この圧粉体を酸化アルミニウ
ム粉末に包埋して、中性または還元雰囲気で、1700
〜1900℃で常圧焼結することを特徴とするジルコニ
ウムのオキシカーバイドと酸化アルミニウムの複合焼結
体の製造方法。 2)粒径3〜10μmの炭化ジルコニウム15〜50重
量%と酸化アルミニウム粉末85〜50重量%の混合物
に、酸化アルミニウムに対して5重量%以下の量の酸化
マグネシウムあるいは酸化イットリウムを配合して圧粉
体に成形し、この圧粉体を酸化アルミニウム粉末に包埋
して、中性または還元雰囲気で、1700〜1900℃
で常圧焼結することを特徴とするジルコニウムのオキシ
カーバイドと酸化アルミニウムの複合焼結体の製造方法
[Claims] 1) Zirconium carbide powder with a particle size of 3 to 10 μm 15 to 5
A mixture of 0% by weight and 85 to 50% by weight of aluminum oxide powder was formed into a green compact, the green compact was embedded in aluminum oxide powder, and the mixture was heated to 1700% by weight in a neutral or reducing atmosphere.
A method for producing a composite sintered body of zirconium oxycarbide and aluminum oxide, which comprises sintering at a temperature of ~1900°C under normal pressure. 2) A mixture of 15 to 50% by weight of zirconium carbide with a particle size of 3 to 10 μm and 85 to 50% by weight of aluminum oxide powder is mixed with magnesium oxide or yttrium oxide in an amount of 5% by weight or less based on the aluminum oxide, and then compressed. The compacted powder is embedded in aluminum oxide powder and heated at 1700 to 1900°C in a neutral or reducing atmosphere.
A method for producing a composite sintered body of zirconium oxycarbide and aluminum oxide, which comprises sintering at normal pressure.
JP63235453A 1988-09-20 1988-09-20 Normal-pressure production of combined sintered material of zirconium oxycarbide and aluminum oxide Granted JPH0283252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235453A JPH0283252A (en) 1988-09-20 1988-09-20 Normal-pressure production of combined sintered material of zirconium oxycarbide and aluminum oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235453A JPH0283252A (en) 1988-09-20 1988-09-20 Normal-pressure production of combined sintered material of zirconium oxycarbide and aluminum oxide

Publications (2)

Publication Number Publication Date
JPH0283252A true JPH0283252A (en) 1990-03-23
JPH0544427B2 JPH0544427B2 (en) 1993-07-06

Family

ID=16986328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235453A Granted JPH0283252A (en) 1988-09-20 1988-09-20 Normal-pressure production of combined sintered material of zirconium oxycarbide and aluminum oxide

Country Status (1)

Country Link
JP (1) JPH0283252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254493A (en) * 2009-04-22 2010-11-11 Nikkato:Kk Conductive zirconia sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254493A (en) * 2009-04-22 2010-11-11 Nikkato:Kk Conductive zirconia sintered compact

Also Published As

Publication number Publication date
JPH0544427B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
KR20170061755A (en) Alumina complex ceramics composition and manufacturing method thereof
Giachello et al. Post-sintering of reaction-bonded silicon nitride
CN102267814A (en) Preparation method for high-porosity phosphate bonded silicon nitride porous ceramic
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
JPH0283252A (en) Normal-pressure production of combined sintered material of zirconium oxycarbide and aluminum oxide
US5098623A (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
KR20160129458A (en) Composition used for preparing electrically conductive SiC-BN composite ceramic and method for preparing electrically conductive SiC-BN composite ceramic using the same
JP2523487B2 (en) Sintered compact and manufacturing method thereof
JP2645894B2 (en) Method for producing zirconia ceramics
CN1256457C (en) Method for mfg. Al2O3\W composite meterial
JP3121996B2 (en) Alumina sintered body
JPS60131865A (en) Manufacture of silicon nitride ceramics
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPS6081062A (en) High strength ceramic material
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JPH0259469A (en) Production of titanium oxycarbide-aluminum oxide composite sintered body
JPS6121965A (en) Alumina sintered body and manufacture
JPS6121964A (en) Alumina sintered body and manufacture
JPS63147867A (en) Manufacture of silicon nitride sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term