JPH0282733A - Spread spectrum signal demodulating circuit - Google Patents

Spread spectrum signal demodulating circuit

Info

Publication number
JPH0282733A
JPH0282733A JP63234123A JP23412388A JPH0282733A JP H0282733 A JPH0282733 A JP H0282733A JP 63234123 A JP63234123 A JP 63234123A JP 23412388 A JP23412388 A JP 23412388A JP H0282733 A JPH0282733 A JP H0282733A
Authority
JP
Japan
Prior art keywords
code
signal
output
phase
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63234123A
Other languages
Japanese (ja)
Inventor
Tatsuo Hiramatsu
達夫 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63234123A priority Critical patent/JPH0282733A/en
Publication of JPH0282733A publication Critical patent/JPH0282733A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correctly demodulate an information signal by controlling a phase modulating means to phase-modulate a reference signal from a reference signal generating means in accordance with the change direction of the output amplitude of a multiplying means. CONSTITUTION:The output of a multiplying means 14 to multiply an input signal and a code from a code preparing means 13 is extracted and held at a prescribed timing and compared with the output of the multiplying means 14 extracted before one timing. Based on the compared result, the phase relation of the input signal and the code from the code generating means 13 is decided and a phase modulating means 12 to output the reading clock signal of the code generating means 13 is controlled so as to synchronize the input signal and the code. Thus, without using a voltage control type oscillator, the synchronizing accuracy and demodulating accuracy can be improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はスペクトラム拡散信号復調回路に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a spread spectrum signal demodulation circuit.

(ロ)従来の技術 従来、情報信号よりも充分広いスペクトラム幅をもつ例
えば2道の疑似雑音符号(Pseudo No1seC
ode) (以下、PN符号と称す)でff1llされ
たキャリアを送信し、受信側では送信側で用いたのと同
一のPH10号で受信信号を乗算することにより元の情
報を復調する、所謂スペクトラム拡散通信が知られてい
る(例えば、電子科学1978年11月号参照)。
(b) Conventional technology Conventionally, for example, a two-way pseudo noise code (Pseudo No. 1seC) having a sufficiently wider spectrum width than the information signal
ode) (hereinafter referred to as PN code), and the receiving side demodulates the original information by multiplying the received signal by the same PH10 code used on the transmitting side. Diffusion communication is known (see, for example, the November 1978 issue of Denshi Science).

斯るスペクトラム拡散通信では、上述したように広スペ
クトラム幅を有するPN符号等で情報償号を変調してい
るため、情報信号を正確に復調するには受信側で生成す
る符号を送信側の符号と同期させる必要がある。
In such spread spectrum communication, as mentioned above, the information code is modulated using a PN code or the like having a wide spectrum width, so in order to accurately demodulate the information signal, the code generated on the receiving side must be the same as the code on the transmitting side. need to be synchronized with.

上記同期を取る方法としては、タウ・デイザ((Hu−
dither)法が知られている。斯るタウ・デイザ法
について第3図を参照して説明する。
As a method for achieving the above synchronization, Tau dither ((Hu-
dither) method is known. The tau dither method will be explained with reference to FIG.

第3図において、(1)はスペクトラム拡散信号が入力
される入力端子、(2)は電圧制御発振器(VCO) 
、(3)はVCO(z)の出力を低周波R[器(4)か
らの出力信号にて位相変調する位相変調器、(5)は位
相変調器(3)からの出力信号を読み出しクロック信号
とする符号発生器、(6)は入力端子(1)からのスペ
クトラム拡散信号と符号発生器(5)からの符号とを乗
算する第1乗算器、(7)は第1乗算器(6)の出力信
号を復調する復調器、(8)は復調器(7)からの信号
(第1乗算器の出力信号をエンベロープ検波した信号)
が供給されるバンドパスフィルタ(BPF)、(9)は
B P F (8)を通過した信号と低周波発振器(4
)からの出力信号とを乗算する第2乗算器、(10)は
第2乗算器(9)の出力信号が供給されるローパスフィ
ルタ(LPF)で、このL P F (10)を通過し
た信号は、制御信号としてV CO(2)に供給される
In Figure 3, (1) is the input terminal into which the spread spectrum signal is input, and (2) is the voltage controlled oscillator (VCO).
, (3) is a phase modulator that modulates the phase of the output of the VCO (z) with the output signal from the low frequency R[device (4), and (5) is a clock that reads the output signal from the phase modulator (3). (6) is a first multiplier that multiplies the spread spectrum signal from the input terminal (1) by the code from the code generator (5); (7) is the first multiplier (6) ), and (8) is the signal from the demodulator (7) (a signal obtained by envelope detection of the output signal of the first multiplier).
A band pass filter (BPF) (9) is supplied with the signal passed through B P F (8) and a low frequency oscillator (4
), a second multiplier (10) is a low-pass filter (LPF) to which the output signal of the second multiplier (9) is supplied, and the signal passed through this L P F (10) is is supplied to V CO (2) as a control signal.

さて、スペクトラム拡散通信では入力信号と符号との位
相関係に応じて第1乗算器からの出力信号のレベルが変
化することが知られており、その関係を第4図に示すと
共に第4図を参照して第3図回路の動作について説明す
る。
Now, in spread spectrum communication, it is known that the level of the output signal from the first multiplier changes depending on the phase relationship between the input signal and the code, and this relationship is shown in Figure 4. The operation of the circuit shown in FIG. 3 will be explained with reference to FIG.

今、符号系列の初期位置が第4図の点1aの位置にあり
、位相が進んで点1bに移るとすると、低周波発振器(
4)からの矩形波信号によって符号の相対位相は画点間
を往復し、これに伴って第1乗算器(6)の出力信号は
前記矩形波信号と同一周波数の振幅変調を受けることに
なる。
Now, if the initial position of the code sequence is at point 1a in Figure 4, and the phase advances and moves to point 1b, then the low frequency oscillator (
The relative phase of the code reciprocates between pixels due to the rectangular wave signal from 4), and accordingly, the output signal of the first multiplier (6) undergoes amplitude modulation at the same frequency as the rectangular wave signal. .

斯る振幅変調成分は、B P F (8)で抽出された
後、第2乗算器(9)において前記矩形波信号と乗算さ
れることにより、V CO(2)を制御するための、正
しい極性、レベルの直流信号成分に変換される。斯る直
流信号成分により、V CO(2)の出力は、相関が増
し、同期が生じる方向に符号系列の発生速度を変化させ
る。
Such amplitude modulation component is extracted by B P F (8) and then multiplied by the square wave signal in a second multiplier (9) to obtain the correct signal for controlling V CO (2). It is converted into DC signal components with polarity and level. Due to such a DC signal component, the output of the V CO (2) changes the rate of generation of the code sequence in a direction in which correlation increases and synchronization occurs.

尚、符号系列の相対位相が点2a、2b間で往復する場
合には、前記振幅変聞分の極性は逆になり、符号系列の
発生速度の変化も逆になる。
Note that when the relative phase of the code sequence reciprocates between points 2a and 2b, the polarity of the amplitude variation is reversed, and the change in the rate of generation of the code sequence is also reversed.

又、符号系列の相対位相が相関のピークを挟んで往復す
る場合、即ち点3a、 3b間で往復する場合には、第
1乗算器(6)の出力信号の振幅に変化を生じないため
、第2乗算器 (9)へ供給される振幅変聞分は存在せ
ず、V CO(2)の発振周波数、即ち符号系列の発生
速度は変化しない。
Furthermore, when the relative phase of the code sequence reciprocates across the correlation peak, that is, when it reciprocates between points 3a and 3b, there is no change in the amplitude of the output signal of the first multiplier (6). There is no amplitude variation component supplied to the second multiplier (9), and the oscillation frequency of the VCO (2), that is, the rate at which the code sequence is generated does not change.

(ハ)発明が解決しようとする課題 上述した従来の技術では、スペクトラム拡散信号の復調
時、入力信号と同期して符号を発生するため、VCOの
発振周波数を用いている。
(C) Problems to be Solved by the Invention In the conventional technology described above, the oscillation frequency of the VCO is used to generate a code in synchronization with the input signal when demodulating the spread spectrum signal.

しかしながら、一般にvcoは可変容量ダイオード等を
含んで構成されているため、温度ドリフト等の影響を受
は易く、動作が不安定になるという問題を有している。
However, since the VCO is generally configured to include a variable capacitance diode and the like, it is easily affected by temperature drift, etc., and has the problem of unstable operation.

(ニ)課題を解決するための手段 上記の点に鑑み、本発明は所定周波数の基準信号を発生
する基準信号発生手段と、この基準信号発生手段からの
基準信号を位相変調する位相変調手段と、この位相変調
手段からの出力信号に応じて疑似雑音符号等の符号を発
生する符号発生手段と、この符号発生手段からの符号と
入力信号とを乗算する乗算手段と、この乗算手段からの
出力を所定クロック信号に応じて保持すると共に該保持
出力と前記クロック信号の一周期前に保持された出力と
を比較する比較手段と、この比較手段からの出力信号に
基づき前記入力信号に対する前記符号の位相状態を判定
し、前記入力信号と前記符号とを同期させるよう前記位
相変調手段を制御する判定手段とを具備したことを特徴
とする。
(d) Means for Solving the Problems In view of the above points, the present invention provides a reference signal generating means for generating a reference signal of a predetermined frequency, and a phase modulating means for phase modulating the reference signal from the reference signal generating means. , a code generating means for generating a code such as a pseudo-noise code according to the output signal from the phase modulation means, a multiplication means for multiplying the code from the code generation means by an input signal, and an output from the multiplication means. a comparison means for holding the output signal according to a predetermined clock signal and comparing the held output with an output held one cycle before the clock signal; The present invention is characterized by comprising determining means for determining a phase state and controlling the phase modulating means to synchronize the input signal and the code.

好ましくは、位相変調手段が基準信号発生手段からの出
力信号をN分周(Nは整数)するプログラマブル分周器
を備えており、判定手段からの信号に基づき分周比を変
更するように成されていることを特徴とする。
Preferably, the phase modulation means includes a programmable frequency divider that divides the output signal from the reference signal generation means by N (N is an integer), and is configured to change the frequency division ratio based on the signal from the determination means. It is characterized by being

(ホ)作 用 本発明によれば、入力信号と符号発生手段からの符号と
を乗算する乗算手段の出力を所定タイミングで抽出保持
すると共に1タイミング前に抽出された乗算手段出力と
比較する。
(E) Operation According to the present invention, the output of the multiplication means for multiplying the input signal by the code from the code generation means is extracted and held at a predetermined timing, and is compared with the output of the multiplication means extracted one timing before.

この比較結果に基ずいて入力信号と符号発生手段からの
符号との位相関係を判定し、前記入力信号と前記符号と
を同期させるよう符号発生手段の読み出しタロツク信号
を出力する位相変調手段を制御する。
Based on the comparison result, the phase relationship between the input signal and the code from the code generation means is determined, and the phase modulation means for outputting the readout tarlock signal of the code generation means is controlled so as to synchronize the input signal and the code. do.

(へ)実施例 第1図は本発明の一実施例を示す図である。第1図にお
いて、(11)は所定周波数の基準信号を発生する、た
とえば水晶振動子を含む基準信号発生回路、(12)は
基準信号発生回路(11)からの基準信号を位相変調す
る位相変調回路で、第2図に示すごとくプログラマブル
分周器(12A )及び該分周器の分周比Nを設定する
N設定部(12B)より成る。
(F) Embodiment FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, (11) is a reference signal generation circuit that generates a reference signal of a predetermined frequency, including, for example, a crystal oscillator, and (12) is a phase modulation circuit that modulates the phase of the reference signal from the reference signal generation circuit (11). As shown in FIG. 2, the circuit consists of a programmable frequency divider (12A) and an N setting section (12B) for setting the frequency division ratio N of the frequency divider.

(13)は位相変調回路(12)からの出力信号を読み
出し信号として疑似雑音符号等の符号を発生する符号発
生器、(]4)は符号発生器(13)からの符号と入力
信号とを乗算する乗算器、(15)は乗算16(14)
の出力を復調する復調器、(16)は復Nu(15)か
らの信号(乗算器の出力手段をエンベロープ検波した信
号)が供給されるバンドパスフィルタ(BPF)、(1
7)は低周波発振器、(18)は低周波発振器(17)
からの出力信号をクロック信号とし、このタロツク信号
に応じて前記B P F (16)を通過した信号を保
持すると共に該保持出力と前記クロック信号の、−周期
前に保持された出力とを比較する回路で、第2図に示す
如くクロック信号(CLK信号)に応じて入力された信
号をサンプリングホールドするサンプルホールド部(1
9)と、サンプルホールド部(19)の出力を、lクロ
12分だけ遅延させる遅延回路部(20)と、遅延回路
部(2o)からの出力を保持する保持部(21)と、サ
ンプルホールド部(19)及び保持部(21)からの出
力を比較する比較器(22)より構成されている。(2
3)は比較回路(18)からの出力信号に基づき入力信
号に対する符号の位相状態を判定する判定回路で、第2
図に示す如くDフリップ70ツブ(24)にて構成され
ている。
(13) is a code generator that generates a code such as a pseudo noise code by using the output signal from the phase modulation circuit (12) as a readout signal; Multiplier that multiplies, (15) multiplies 16 (14)
The demodulator (16) demodulates the output of the demodulator (16), which is a bandpass filter (BPF) (1
7) is a low frequency oscillator, (18) is a low frequency oscillator (17)
The output signal from the clock signal is used as a clock signal, and the signal passed through the BPF (16) is held in response to this tarok signal, and the held output is compared with the output held -period ago of the clock signal. As shown in Figure 2, this circuit includes a sample hold section (1
9), a delay circuit section (20) that delays the output of the sample and hold section (19) by 12 clocks, a holding section (21) that holds the output from the delay circuit section (2o), and a sample and hold section (21) that holds the output from the delay circuit section (2o). It is composed of a comparator (22) that compares the outputs from the section (19) and the holding section (21). (2
3) is a determination circuit that determines the phase state of the code with respect to the input signal based on the output signal from the comparison circuit (18);
As shown in the figure, it is composed of 70 D flips (24).

次に、動作について説明するが、N設定部(13)にて
プログラマブル分周!(12A)に分周比Nが設定され
ているものとする。
Next, the operation will be explained. Programmable frequency division using the N setting section (13)! It is assumed that the frequency division ratio N is set in (12A).

さて、入力端子から入力されたスペクトラム拡散信号は
、乗算器(14)において符号発生器(13)がら出力
された符号と乗算され、その結果スペクトラム拡散信号
のキャリア成分(尚、キャリアが2相変調を受けている
場合には、2相変調されたキャリア成分)が導出される
Now, the spread spectrum signal input from the input terminal is multiplied by the code output from the code generator (13) in the multiplier (14), and as a result, the carrier component of the spread spectrum signal (the carrier is two-phase modulated) is multiplied by the code output from the code generator (13). , a two-phase modulated carrier component) is derived.

斯るキャリア成分は復調器(15)を経て出方端子より
導出される。又、前記キャリア成分のエンベロープはバ
ンドパスフィルタ(16)を介して比較回路(18)へ
供給される。
Such a carrier component passes through a demodulator (15) and is derived from an output terminal. Further, the envelope of the carrier component is supplied to a comparison circuit (18) via a bandpass filter (16).

斯る比較回路(18)では、第2図に示すごとくBP 
F (16)を通過した前記キャリア成分のエンベロー
プを低周波発振1!(17)からの出力信号(クロック
信号)に応じてサンプルホールド部(19)にてサンプ
リングホールドすると共に比較1iF(22)の非反転
入力端子に供給する。又、該サンプルホールド部(19
)の出力は、遅延回路部(2o)及び保持部(21)を
介して比較!(22)の反転入力端子にも供給されてい
る。
In such a comparison circuit (18), as shown in FIG.
The envelope of the carrier component that has passed through F (16) is subjected to low frequency oscillation 1! In response to the output signal (clock signal) from (17), it is sampled and held in the sample hold section (19) and is supplied to the non-inverting input terminal of the comparison 1iF (22). In addition, the sample hold section (19
) are compared via the delay circuit section (2o) and the holding section (21)! It is also supplied to the inverting input terminal of (22).

従って、比較! (22)は現在の乗算器出力振幅と1
クロツク前の乗算器出力振幅とを比較することになり、
当該比較器(22)の出力がHレベルのときには第4図
より明らかな如く入力信号と符号とが同期する方向にあ
り、またLレベルの時には入力信号と符号とが非同期の
方向にあることが示される。
Therefore, compare! (22) is the current multiplier output amplitude and 1
The amplitude of the multiplier output before the clock is compared.
As is clear from FIG. 4, when the output of the comparator (22) is at H level, the input signal and the code are in the synchronous direction, and when it is at the L level, the input signal and the code are in the asynchronous direction. shown.

そして、判定回路(23)となるDフリップ70ツブ(
24)は、比較!(22)の出力がLレベルに立ち上が
る毎にQ出力を反転することになる。
Then, a D flip 70 tube (
24) Compare! The Q output is inverted every time the output of (22) rises to L level.

而して、位相変調回路(12)を構成するN設定部(1
4)は、プログラマブル分周!(13)から分周出力が
発生する毎に判定回路(23)の出力を判別し、当該判
定回路(23)の出力信号がHレベルのとき、分周比の
変化方向を現在の方向(例えば、分周比を1加算する方
向)に維持し、一方判定回路(23)の出力信号がLレ
ベルのとき、分周比の変化方向を現在の方向と逆の方向
(分周比を1減算する方向)に反転する。
Thus, the N setting section (1) constituting the phase modulation circuit (12)
4) Programmable frequency division! From (13), the output of the determination circuit (23) is determined every time a frequency division output is generated, and when the output signal of the determination circuit (23) is at H level, the direction of change in the frequency division ratio is set to the current direction (e.g. , the direction in which the frequency division ratio is increased by 1), and when the output signal of the determination circuit (23) is at the L level, the direction of change in the frequency division ratio is maintained in the opposite direction to the current direction (the direction in which the frequency division ratio is subtracted by 1). direction).

斯くして、符号発生!(13)への読み出しクロック信
号を供給する位相変調回路の変調が制御され、符号発生
器(13)から発生される符号が送信(変調)時に用い
られた符号と同期するよう制御される。
Thus, a code is generated! (13) is controlled so that the code generated from the code generator (13) is synchronized with the code used during transmission (modulation).

(ト)発明の効果 本発明によれば、基準信号発生手段からの基準信号を位
相変調する位相変調手段を、乗算手段の出力振幅の変化
方向に応じて制御するようにしたので、電圧制御型発振
器を用いる必要がなく、同期精度、復調精度の向上を計
ることができる。
(G) Effects of the Invention According to the present invention, since the phase modulation means for phase modulating the reference signal from the reference signal generation means is controlled according to the direction of change in the output amplitude of the multiplication means, the voltage controlled type There is no need to use an oscillator, and synchronization accuracy and demodulation accuracy can be improved.

又、位相変調手段にプログラマブル分周器を設け、判定
手段の信号に基づいて前記プログラマブル分周器の分周
比を変更するようにすれば、簡単に且つデジタル的に位
相変調制御を行うことができ、実用的である。
Furthermore, by providing a programmable frequency divider in the phase modulation means and changing the frequency division ratio of the programmable frequency divider based on the signal from the determination means, it is possible to easily and digitally control the phase modulation. It is possible and practical.

【図面の簡単な説明】 第1図は本発明の一実施例を示す図、第2図はその要部
回路図、第3図は従来例を示す図、第4図は符号位相の
相対変化を示す図である。 (11)・・・基準信号発生回路、(12)・・・位相
変調回路、(13)・・・符号発生器、(14)・・・
乗算器、(15)・・・復調器、(16)・・・BPF
、(17)・・・低周波発振器、(18)・・・比較回
路、 (19)・・・サンプルホールド部、(2o)・
・・遅延回路、(21)・・・保持部、(23)・・・
判定回路、(24)・・・Dフリップ70ツブ。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 shows an embodiment of the present invention, Fig. 2 shows its main circuit diagram, Fig. 3 shows a conventional example, and Fig. 4 shows relative change in code phase. FIG. (11)... Reference signal generation circuit, (12)... Phase modulation circuit, (13)... Code generator, (14)...
Multiplier, (15)...Demodulator, (16)...BPF
, (17)...Low frequency oscillator, (18)...Comparison circuit, (19)...Sample hold section, (2o)...
...Delay circuit, (21)...Holding section, (23)...
Judgment circuit, (24)...D flip 70 tube.

Claims (2)

【特許請求の範囲】[Claims] (1)所定周波数の基準信号を発生する基準信号発生手
段と、この基準信号発生手段からの基準信号の位相を調
整することにより位相変調する位相変調手段と、この位
相変調手段からの出力信号に応じて疑似雑音符号等の符
号を発生する符号発生手段と、この符号発生手段からの
符号と入力信号とを乗算する乗算手段と、この乗算手段
からの出力を所定クロック信号に応じて保持すると共に
該保持出力と前記クロック信号の一周期前に保持された
出力とを比較する比較手段と、この比較手段からの出力
信号に基づき前記入力信号に対する前記符号の位相状態
を判定し、前記入力信号と前記符号とを同期させるよう
前記位相変調手段を制御する判定手段とを具備したこと
を特徴とするスペクトラム拡散信号復調回路。
(1) A reference signal generating means for generating a reference signal of a predetermined frequency, a phase modulating means for phase modulating the reference signal from the reference signal generating means by adjusting the phase thereof, and an output signal from the phase modulating means. code generating means for generating a code such as a pseudo-noise code in response to the code, multiplication means for multiplying the code from the code generating means by an input signal, and holding the output from the multiplication means in accordance with a predetermined clock signal. a comparing means for comparing the held output with an output held one cycle before the clock signal; and determining the phase state of the code with respect to the input signal based on the output signal from the comparing means, and determining the phase state of the code with respect to the input signal. A spread spectrum signal demodulation circuit comprising: determination means for controlling the phase modulation means so as to synchronize the signal with the code.
(2)位相変調手段は、基準信号発生手段からの出力手
段をN分周(Nは整数)するプログラマブル分周器を備
えており、判定手段からの信号に基づき分周比を変更す
るように成されていることを特徴とする請求項1記載の
スペクトラム拡散信号復調回路。
(2) The phase modulation means includes a programmable frequency divider that divides the frequency of the output means from the reference signal generation means by N (N is an integer), and changes the frequency division ratio based on the signal from the determination means. 2. The spread spectrum signal demodulation circuit according to claim 1, wherein the spread spectrum signal demodulation circuit comprises:
JP63234123A 1988-09-19 1988-09-19 Spread spectrum signal demodulating circuit Pending JPH0282733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234123A JPH0282733A (en) 1988-09-19 1988-09-19 Spread spectrum signal demodulating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234123A JPH0282733A (en) 1988-09-19 1988-09-19 Spread spectrum signal demodulating circuit

Publications (1)

Publication Number Publication Date
JPH0282733A true JPH0282733A (en) 1990-03-23

Family

ID=16965995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234123A Pending JPH0282733A (en) 1988-09-19 1988-09-19 Spread spectrum signal demodulating circuit

Country Status (1)

Country Link
JP (1) JPH0282733A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158337A (en) * 1984-08-29 1986-03-25 Nec Corp Synchronizing system of spread spectrum communication and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158337A (en) * 1984-08-29 1986-03-25 Nec Corp Synchronizing system of spread spectrum communication and its device

Similar Documents

Publication Publication Date Title
US5029181A (en) Automatic calibration device for direct spectrum spread receiver
US4651327A (en) Decoder for spectrum diffusion signals
KR900019417A (en) Spread Spectrum Demodulation Circuit
US4095226A (en) System for communication
EP0306941B1 (en) Variable bit rate clock recovery circuit
JPH0282733A (en) Spread spectrum signal demodulating circuit
US5077754A (en) Tau-dither circuit
US5903593A (en) Spread spectrum signal receiver
JPH03273724A (en) Spread spectrum communication system
JPS6373731A (en) Spread spectrum communication demodulator
JPS6028170B2 (en) Code synchronization method for reception of spread spectrum signals
JPS60224345A (en) Data transmission system
JPH04196939A (en) Spread spectrum signal demodulation circuit
JP3234446B2 (en) Spread spectrum signal demodulator
SU1046943A1 (en) Correlative receiver of complex phase-modulated signals
RU2024201C1 (en) Method for adaptive correction of multiposition signals
JPH066639Y2 (en) Spread spectrum signal demodulation circuit
JPS58129864A (en) Demodulator for phase modulated signal
JP2681664B2 (en) Spread spectrum receiver
JPH08149044A (en) Spread spectrum receiving device
JPH03283736A (en) Synchronizing circuit for modulator-demodulator
JPH0548570A (en) Spread spectrum signal synchronizing
JPS6075158A (en) Automatic phase control circuit
JPH0556055B2 (en)
JPH0724371B2 (en) Phase locked demodulator