JPH0282494A - Thin film electroluminescent element - Google Patents

Thin film electroluminescent element

Info

Publication number
JPH0282494A
JPH0282494A JP63232650A JP23265088A JPH0282494A JP H0282494 A JPH0282494 A JP H0282494A JP 63232650 A JP63232650 A JP 63232650A JP 23265088 A JP23265088 A JP 23265088A JP H0282494 A JPH0282494 A JP H0282494A
Authority
JP
Japan
Prior art keywords
luminous layer
thin film
iron group
emitting layer
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63232650A
Other languages
Japanese (ja)
Inventor
Koji Deguchi
浩司 出口
Seiichi Oseto
大瀬戸 誠一
Yoshiyuki Kageyama
喜之 影山
Masayoshi Takahashi
高橋 正悦
Kenji Kameyama
健司 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63232650A priority Critical patent/JPH0282494A/en
Publication of JPH0282494A publication Critical patent/JPH0282494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:In a film electroluminescent EL element which contains a compound of group II-VI element as parent material of a luminous layer, to enable light emission brightness to be elevated by putting the content of iron group element within the luminous layer below a specific amount. CONSTITUTION:In a film EL element which contains a compound of group II-VI element as parent material of a luminous layer 3, the content of iron group element in the luminous layer is set to below 100ppm. When the content of iron group element within the luminous layer exceeds 100ppm, the lowering of light emission brightness becomes great, and practicability disaperars. Though the manufacturing method for the luminous layer need not be limited especially, it is to be desired that the method and device with which iron group elements are not taken into the film should be used as far as possible at manufacturing of the luminous layer. But, as for a transparent electrode 2, an insulating layer 4, a resin electrode 5 being constituent materials of EL element other than the luminous layer, and luminous center, etc., to be added to the luminous layer parent material, the materials need not be limited especially.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は薄膜エレクトロルミネッセントパネルデイスプ
レィ等に用いられる薄膜エレクトロルミネッセント素子
(以下、薄膜EL索子と略J己する)(こ関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film electroluminescent element (hereinafter abbreviated as a thin film EL element) used in a thin film electroluminescent panel display, etc. It is related to

[従来の技術] 従来から、薄膜ELは、フラットパネルデイスプレィの
1つとして、盛んに研究されている。
[Prior Art] Thin film EL has been actively researched as a type of flat panel display.

薄膜EL素子の発光層は、主にII−VI族化合物(例
えば、Z n S % Z n S e 、Ca S 
、S r S %S rSeなど)を母体材料とし、発
光中心としてCeやEu等のような種々の希土類イオン
や、MnやCu等に代表される遷移金属イオンなどを添
加したものが良く用いられている。これら発光層材料の
一部はCRT用螢光体祠料としても研究、実用化されて
いる。
The light-emitting layer of a thin film EL device is mainly composed of II-VI group compounds (e.g., ZnS%ZnSe, CaS
, S r S % S rSe, etc.) as a host material, and various rare earth ions such as Ce and Eu, and transition metal ions such as Mn and Cu are added as luminescent centers. ing. Some of these light-emitting layer materials have been studied and put into practical use as phosphor abrasive materials for CRTs.

CRT用螢光体材料については鉄族元素がキラー中心と
して働き、輝度を低下させることが知られており、薄膜
ELにおいても類似の影響があるものと推定される。し
かし、CRTのカソードルミネッセンスとELとは発光
、特に励起機(tが異なるので薄膜EL素子の発光層中
に含まれる鉄族元素が具体的にどういう作用をするのか
、更に、輝度低下に対する定量的な影響といった点がま
ったく明らかにされておらず、したがって、従来はその
考慮、対策がまったくなされていなかった。
Regarding phosphor materials for CRTs, it is known that iron group elements act as killer centers and reduce brightness, and it is presumed that a similar effect will occur in thin film EL. However, CRT cathodoluminescence and EL differ in light emission, especially in the excitation mode (t). The impact of this phenomenon has not been clarified at all, and therefore no consideration or countermeasures have been taken in the past.

[発明が解決しようとする課題] 本発明は、発光輝度の高い薄膜EL索子を提供しようと
するものである。
[Problems to be Solved by the Invention] The present invention aims to provide a thin film EL cord with high luminance.

[課題を解決するための手段] 上記課題を解決するための本発明の構成は、特許請求の
範囲に記載のとおりII−VI族元素の化合物を発光層
の母体材料とする薄膜EL素子において、発光層中の鉄
族元素含有量が100ppIn以下である薄膜EL素子
である。
[Means for Solving the Problems] The structure of the present invention for solving the above problems is as follows: This is a thin film EL device in which the iron group element content in the light emitting layer is 100 ppIn or less.

本発明は実施例の記載からも明らかなように、発光層中
の鉄族元素含有量が1100ppを越えると発光輝度の
低ドが大きくなり、実用性がなくなるという発見に基づ
くものである。
As is clear from the description of the examples, the present invention is based on the discovery that when the iron group element content in the light emitting layer exceeds 1100 pp, the luminance decreases significantly and becomes impractical.

本発明の発光層の作製方法は、特に限定する必要はない
が、できるだけ鉄族元素が発光層作製時に、薄膜に取り
込まれない方法および装置を用いることが望ましい。し
かし、発光層以外のEL素子の構成材料である透明電極
や絶縁層、背面電極、そして発光層母体材料に添加され
る発光中心等については、本発明の効果を得るために、
特に材料を限定する必要がない。そのため、透明電極に
は、I T O(Indium Tin 0xide)
やZnO:A1等を用いることができる。
Although the method for producing the light-emitting layer of the present invention does not need to be particularly limited, it is desirable to use a method and apparatus in which iron group elements are not incorporated into the thin film as much as possible during the production of the light-emitting layer. However, in order to obtain the effects of the present invention, regarding the constituent materials of the EL element other than the light emitting layer, such as the transparent electrode, the insulating layer, the back electrode, and the luminescent center added to the light emitting layer base material,
There is no need to particularly limit the materials. Therefore, the transparent electrode is made of ITO (Indium Tin Oxide).
or ZnO:A1, etc. can be used.

絶縁層の材料としては、Y2O3,SiO2、Ta2e
s等の酸化物、Si3N4、BN。
Materials for the insulating layer include Y2O3, SiO2, Ta2e.
Oxides such as s, Si3N4, BN.

AIN等の窒化物及びそれらの複合膜などを用いること
ができ、また、PbTi0z、5rTi03、BaTi
O3等のペロブスカイト型やBaTa2O6等のタング
ステンブロンズ型のような強誘電体材料を用いることが
できる。
Nitride such as AIN and composite films thereof can be used, and PbTi0z, 5rTi03, BaTi
A ferroelectric material such as a perovskite type such as O3 or a tungsten bronze type such as BaTa2O6 can be used.

発光中心については、従来から用いられている希土類イ
オンや遷移金属イオンなどを用いることができる。
As for the luminescent center, conventionally used rare earth ions, transition metal ions, and the like can be used.

[実施例コ 以下、実施例によって、本発明を具体的に説明する。[Example code] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 ここでは、第1図に示したようなMIS構造を有するS
rS:Ce薄膜EL素子を作製した。
Example 1 Here, an S having an MIS structure as shown in FIG.
An rS:Ce thin film EL device was fabricated.

まず、ガラス基板1上にZnO: A 1透明電極層2
を形成し、次に発光層3であるSrS:Ce薄膜を電子
ビーム蒸着法を用いて、基板温度500℃で形成した。
First, a ZnO: A 1 transparent electrode layer 2 is formed on a glass substrate 1.
was formed, and then a SrS:Ce thin film, which is the light emitting layer 3, was formed using an electron beam evaporation method at a substrate temperature of 500°C.

この際、発光層中のFeの濃度がそれぞれ0.■、0,
05、O,OL  0.005%になるように蒸発源に
Feを添加した。なお、発光層中のFea度はSIMS
(2次イオン質量分光)を用いて測定した。
At this time, the concentration of Fe in the light emitting layer is 0. ■、0、
05, O, OL Fe was added to the evaporation source to make it 0.005%. In addition, the Fea degree in the light emitting layer is SIMS
(Secondary ion mass spectroscopy).

発光層3を形成後、絶縁層4どしてY2O3薄膜を電子
ビーム蒸着で形成し、最後に背面電極5として、Al″
4膜を形成した。
After forming the light emitting layer 3, a Y2O3 thin film is formed as the insulating layer 4 by electron beam evaporation, and finally, as the back electrode 5, Al'' is formed.
Four films were formed.

このようにして得られた種々のS rS : Ce薄膜
EL素子の発光輝度L60とFea度との関係を第2図
に示す。素子の励起には、1kHz。
FIG. 2 shows the relationship between the luminance L60 and the Fea degree of various S rS :Ce thin film EL devices obtained in this way. 1kHz for excitation of the element.

100μsの両極性パルス波電圧を印加した。発光輝度
L60は、led/m2を示す電圧にBOV印加した時
に得られた発光輝度とした。図からもわかるように、F
e9度が0.01%以上から、輝度の減少が起こる。
A 100 μs bipolar pulse wave voltage was applied. The luminance L60 was the luminance obtained when BOV was applied to the voltage representing led/m2. As you can see from the figure, F
When the e9 degree is 0.01% or more, the brightness decreases.

一方、他の鉄族元素であるNi、Coについても同様な
条件で素子を作製したが、いずれの場合もFeと同様に
、0.01%以上から、輝度の減少がみられた。
On the other hand, devices were fabricated using other iron group elements such as Ni and Co under similar conditions, but in both cases, a decrease in brightness was observed from 0.01% or more, similar to Fe.

実施例2 ここでは、第1図に示したようなMIS構造を有するC
aS : Eu薄膜EL素子を実施例1と同様な方法・
手順で作製した。発光層中のFe9度ついても実施例1
と同様な方法で、それぞれ0.1.0.05.0.01
.0.005%となるように作製し、SIMS(2次イ
オン質量分光)を用いてFe濃度を測定した。
Example 2 Here, a C
aS: Eu thin film EL device was manufactured using the same method as in Example 1.
It was made according to the procedure. Example 1 with 9 degrees of Fe in the light emitting layer
0.1.0.05.0.01 respectively
.. The Fe concentration was prepared to be 0.005%, and the Fe concentration was measured using SIMS (secondary ion mass spectroscopy).

このようにして得られたCaS : Eu薄膜EL素子
の発光輝度L60とFe濃度との関係を第3図に示す。
FIG. 3 shows the relationship between the luminance L60 of the CaS:Eu thin film EL device thus obtained and the Fe concentration.

素子の駆動およびL6oの定義については実施例1と同
様である。図からもわかるように、Fe濃度が0.01
%以上から、輝度の減少が起こる。
The driving of the element and the definition of L6o are the same as in the first embodiment. As can be seen from the figure, the Fe concentration is 0.01
% or more, a decrease in brightness occurs.

一方、他の鉄族元素であるNi5Coについても同様な
条件で素子を作製したが、いずれの場合もFeと同様に
、0.01%以上から、輝度の減少がみられた。
On the other hand, devices were fabricated using Ni5Co, another iron group element, under similar conditions, but in both cases, a decrease in brightness was observed from 0.01% or more, similar to Fe.

実施例3 ここでは、第1図に示したようなMIS構造を有するZ
nS:Mn薄膜EL索子を作製した。
Example 3 Here, Z having the MIS structure as shown in FIG.
An nS:Mn thin film EL cord was fabricated.

ガラス基板上にZnO: A Iを形成し、次に発光層
であるZ n S : M n薄膜を電子ビーム蒸告法
を用いて、基板温度200℃で形成し、その後、基板温
度500℃で熱処理を行った。発光層IJのFeの濃度
についてはそれぞれ0.1.0.05.0、旧、0.0
05%になるように蒸発源にFeを添加した。なお、発
光層中のFelQ度はSIMS(2次イオン質量分光)
を用いて測定した。
ZnO:AI was formed on a glass substrate, and then a ZnS:Mn thin film as a light emitting layer was formed using an electron beam evaporation method at a substrate temperature of 200°C, and then at a substrate temperature of 500°C. Heat treatment was performed. The concentration of Fe in the light-emitting layer IJ is 0.1, 0.05.0, old, and 0.0, respectively.
Fe was added to the evaporation source to give a concentration of 0.05%. In addition, the FelQ degree in the light emitting layer is determined by SIMS (secondary ion mass spectroscopy).
Measured using

発光層形成後、絶縁層としてY2O3薄膜を電子ビーム
蒸着で形成し、最後に背面電極として、AI薄膜を形成
した。
After forming the light emitting layer, a Y2O3 thin film was formed as an insulating layer by electron beam evaporation, and finally an AI thin film was formed as a back electrode.

このようにして得られたZ n S : M n薄膜E
L索子の発光輝度L60とFea度との関係を第4図に
示す。素子の駆動およびL60の定義については実施例
1と同様である。第4図からもわかるように、Fe濃度
が0.01%以上から、輝度の減少が起こる。
The thus obtained ZnS:Mn thin film E
FIG. 4 shows the relationship between the light emission brightness L60 of the L cord and the Fea degree. The driving of the element and the definition of L60 are the same as in the first embodiment. As can be seen from FIG. 4, the brightness decreases when the Fe concentration exceeds 0.01%.

一方、他の鉄族元素であるNi5Coについても同様な
条件で素子を作製したが、いずれの場合もFeと同様に
、0.01%以上から、輝度の減少がみられた。
On the other hand, devices were fabricated using Ni5Co, another iron group element, under similar conditions, but in both cases, a decrease in brightness was observed from 0.01% or more, similar to Fe.

[発明の効果] 以上説明したように、本発明により発光輝度が大で実用
性のあるEL索子を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a practical EL cord with high luminance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のEL索子の構造の一例を示す断面の
模式図、 第2〜4図は本発明のEL素子の発光層中の鉄の濃度と
発光層の発光輝度との関係を示すグラフである。
FIG. 1 is a schematic cross-sectional view showing an example of the structure of the EL element of the present invention, and FIGS. 2 to 4 show the relationship between the iron concentration in the light-emitting layer and the luminance of the light-emitting layer of the EL element of the present invention. This is a graph showing.

Claims (1)

【特許請求の範囲】[Claims] II−VI族元素の化合物を発光層の母体材料とする薄膜エ
レクトロルミネッセント素子において、発光層中の鉄族
元素含有量が100ppm以下であることを特徴とする
薄膜エレクトロルミネッセント素子。
1. A thin film electroluminescent device using a compound of group II-VI elements as a base material of a light emitting layer, characterized in that the content of iron group elements in the light emitting layer is 100 ppm or less.
JP63232650A 1988-09-19 1988-09-19 Thin film electroluminescent element Pending JPH0282494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232650A JPH0282494A (en) 1988-09-19 1988-09-19 Thin film electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232650A JPH0282494A (en) 1988-09-19 1988-09-19 Thin film electroluminescent element

Publications (1)

Publication Number Publication Date
JPH0282494A true JPH0282494A (en) 1990-03-23

Family

ID=16942621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232650A Pending JPH0282494A (en) 1988-09-19 1988-09-19 Thin film electroluminescent element

Country Status (1)

Country Link
JP (1) JPH0282494A (en)

Similar Documents

Publication Publication Date Title
US4751427A (en) Thin-film electroluminescent device
US6043602A (en) Alternating current thin film electroluminescent device having blue light emitting alkaline earth phosphor
JPS59146192A (en) El element
US6447654B1 (en) Single source sputtering of thioaluminate phosphor films
US6072198A (en) Electroluminescent alkaline-earth sulfide phosphor thin films with multiple coactivator dopants
US6403204B1 (en) Oxide phosphor electroluminescent laminate
JPS6346117B2 (en)
EP1537763B1 (en) Silicon oxynitride passivated rare earth activated thioaluminate phosphors for electroluminescent displays
US5612591A (en) Electroluminescent device
US7811678B2 (en) Low process temperature thin film phosphor for electroluminescent displays
JPH0282494A (en) Thin film electroluminescent element
JP3574829B2 (en) Inorganic electroluminescent material, inorganic electroluminescent device using the same, and image display device
JP2006524271A (en) Europium-doped gallium-indium oxide as a red-emitting electroluminescent phosphor material
JPS59101794A (en) Thin film electroluminescent element
US6707249B2 (en) Electroluminescent device and oxide phosphor for use therein
JP4516390B2 (en) Phosphor
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JPS6298597A (en) Thin film el device
JPS59146191A (en) Thin film electric field light emitting element
JPH0518238B2 (en)
JPH02272087A (en) Production of thin-film electroluminescence element
JPS61273894A (en) Thin film el element
JPH04366593A (en) Thin film el element and manufacture thereof
JPH11126690A (en) Manufacture of thin film electroluminescent element
JPH0888086A (en) El element and manufacture of el element