JPH0282448A - Hydrogen storage alloy electrode and sealed alkaline storage battery with the electrode - Google Patents

Hydrogen storage alloy electrode and sealed alkaline storage battery with the electrode

Info

Publication number
JPH0282448A
JPH0282448A JP63232803A JP23280388A JPH0282448A JP H0282448 A JPH0282448 A JP H0282448A JP 63232803 A JP63232803 A JP 63232803A JP 23280388 A JP23280388 A JP 23280388A JP H0282448 A JPH0282448 A JP H0282448A
Authority
JP
Japan
Prior art keywords
electrode
alloy
hydride
charging
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63232803A
Other languages
Japanese (ja)
Other versions
JP2680628B2 (en
Inventor
Seiji Kameoka
亀岡 誠司
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63232803A priority Critical patent/JP2680628B2/en
Publication of JPH0282448A publication Critical patent/JPH0282448A/en
Application granted granted Critical
Publication of JP2680628B2 publication Critical patent/JP2680628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve cycle characteristic by constructing a hydrogen storage alloy electrode from an alloy participating in charging and discharging reaction to store and release hydrogen and a hydride which does not participate in the charging and discharging reaction and reacts on oxygen prior to the alloy. CONSTITUTION:A hydrogen storage alloy electrode consists of a mixture of an alloy participating in charging and discharging reaction to store and release hydrogen, and a hydride which does not participate in the charging and discharging reaction and can react on oxygen prior to the alloy. Therefore, the oxidation of the hydrogen storage alloy by the oxygen gas generated at the positive electrode during the charging proceeds with priority as the oxidation reaction at the hydride which does not participate in the charging and discharging reaction of the electrode. As a result, the oxidation of the alloy, participating in the charging and discharging reaction of the electrode to store and release hydrogen, is suppressed so that the electrode reaction is not prevented. Thus, cycle characteristic can be improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 蓄電池に関するものである。[Detailed description of the invention] (b) Industrial application fields It is related to storage batteries.

(ロ)従来の技術 水素吸蔵合金電極を負極として用いたアルカリ蓄電池、
例えばニッケル酸化物を含有せる正極と組み合せたニッ
ケルー水素蓄電池が、ニッケルーこの新型蓄電池では、
負極の水素吸蔵合金を適当に選択することにより、高エ
ネルギー密度化を計ることが可能である。
(b) Alkaline storage batteries using conventional technology hydrogen storage alloy electrodes as negative electrodes;
For example, a nickel-metal hydride battery combined with a positive electrode containing nickel oxide, and this new type of nickel-hydrogen battery,
By appropriately selecting a hydrogen storage alloy for the negative electrode, it is possible to achieve high energy density.

ここで負極に用いる水素吸蔵合金は、LaNi。The hydrogen storage alloy used for the negative electrode here is LaNi.

に代表されるCaCu5型六方品の結晶構造を有する希
土類系のものが、水素吸蔵量、耐アルカリ性の観点から
鋭意研究が進められている。電池内において前記水素吸
蔵合金は、アルカリ電解液にら発生する酸素ガスと接す
ることにより、合金劣化が起り易い傾向にある。
Rare earth materials having a CaCu5-type hexagonal crystal structure represented by the following are being intensively researched from the viewpoint of hydrogen storage capacity and alkali resistance. In a battery, the hydrogen storage alloy tends to deteriorate when it comes into contact with oxygen gas generated from an alkaline electrolyte.

詳述すると、充電時に正極から発生する酸素ガスは、水
素吸蔵合金電極上で主として水に還元される。しかし、
酸素ガスの一部は、負極を構成する水素吸蔵合金を酸化
する。この反応を、次に示す。
Specifically, oxygen gas generated from the positive electrode during charging is mainly reduced to water on the hydrogen storage alloy electrode. but,
A portion of the oxygen gas oxidizes the hydrogen storage alloy that constitutes the negative electrode. This reaction is shown below.

−)02+2M−H−1−(□O+M=il)−) 0
2+  M  −M−0−(21上記式において、(1
)式は主反応であって水生成を示すものであり、(2)
式は副反応であって水素吸蔵合金の酸化を示すものであ
る。尚、Mは水素を可逆的に吸蔵、放出せる水素吸蔵合
金、M −Hは水素吸蔵合金が水素を吸蔵している状態
、MOは水素吸蔵合金が酸化されている状態をそれぞれ
示している。
-)02+2M-H-1-(□O+M=il)-) 0
2+ M -M-0-(21 In the above formula, (1
) is the main reaction and indicates water production, and (2)
The formula is a side reaction and indicates the oxidation of the hydrogen storage alloy. Note that M represents a hydrogen storage alloy that can reversibly store and release hydrogen, M-H represents a state in which the hydrogen storage alloy stores hydrogen, and MO represents a state in which the hydrogen storage alloy is oxidized.

この(2)式の反応は、負極の水素吸蔵合金が水素に吸
蔵していない状態で発生しやすいと考えられる。この点
を解決すべく、例えば特公昭61−5264号公報に記
載されたように負極を予備元利することが可能となるが
、電池の製造工程を複雑にするという問題を有している
It is considered that the reaction of formula (2) is likely to occur in a state where the hydrogen storage alloy of the negative electrode does not store hydrogen. To solve this problem, it has become possible to use the negative electrode as a reserve, as described in Japanese Patent Publication No. 61-5264, for example, but this has the problem of complicating the battery manufacturing process.

(ハ) 発明が解決しようとする課題 本発明は前記問題点に鑑みてなされものであって、複雑
な製造工程を経ることなく、アルカリ電解液中での水素
吸蔵合金の酸化を抑制しようとするものである。更には
、電池内で発生せる酸素ガスの負極における消費反応を
円滑に促進させるべく、優先的に酸素と反応しうる水素
化物の負8i!ρ添加を提案するものである。このよう
にすることで、サイクル特性に優れた密閉型アルカリ蓄
電池を提供しつる。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and aims to suppress the oxidation of a hydrogen storage alloy in an alkaline electrolyte without going through a complicated manufacturing process. It is something. Furthermore, in order to smoothly promote the consumption reaction of oxygen gas generated in the battery at the negative electrode, negative 8i!, a hydride that can preferentially react with oxygen, is added. We propose the addition of ρ. By doing so, a sealed alkaline storage battery with excellent cycle characteristics can be provided.

(ニ)課題を解決するための手段 本発明の水素吸蔵合金電極は、電極の充放電反応に関与
して水素を吸蔵、放出せる合金と、電極の充放電反応に
は関与せず且つ前記合金よりも優先的に酸素と反応しう
る水素化物との混合物からなることを特徴とするもので
ある。
(d) Means for Solving the Problems The hydrogen storage alloy electrode of the present invention consists of an alloy that takes part in the charging and discharging reactions of the electrode and can occlude and release hydrogen, and an alloy that does not take part in the charging and discharging reactions of the electrode and It is characterized by being composed of a mixture of hydrides that can react preferentially with oxygen.

又、本発明の密閉型アルカリ蓄電池は、電極の充放電反
応に関与して水素を吸蔵、放出せる合金と、電極の充放
電反応には関与せず且つ前記合金よりも優先的に酸素と
反応しうる水素化物との混合物からなる水素吸蔵合金電
極と、正極と、アルカリ電極液とからなることを特徴と
するものである。
Furthermore, the sealed alkaline storage battery of the present invention includes an alloy that takes part in the charging and discharging reactions of the electrodes to store and release hydrogen, and an alloy that does not take part in the charging and discharging reactions of the electrodes and reacts with oxygen preferentially than the alloy. It is characterized by comprising a hydrogen storage alloy electrode made of a mixture with a hydride that can be used, a positive electrode, and an alkaline electrode solution.

5二で、前記合金としては、CaCu5型の結晶構造を
有する金属間化合物を主体とすることを特徴とする。
52, the alloy is mainly composed of an intermetallic compound having a CaCu5 type crystal structure.

又、前記水素化物としては、組成式ReN I X(但
し式中、Reは希土類元素、X 4ix≦3.5の値を
有するのである)で表わされる希土類−ニッケル系合金
の水素化物が好適する。
Further, as the hydride, a hydride of a rare earth-nickel alloy represented by the composition formula ReN I X (where Re is a rare earth element and has a value of .

(ホ)作用 本発明の構成とすることで、充電時に正極から発生する
酸素ガスによる水素吸蔵合金の酸化が、電極の充放電反
応には関与しない水素化物における酸化反応として、優
先的に進行する。その結果、電極の充放電反応に関与し
て水素を吸蔵、放出せる合金の酸化が、抑制され、電極
反応を阻害することがない。
(E) Effect With the configuration of the present invention, oxidation of the hydrogen storage alloy by oxygen gas generated from the positive electrode during charging proceeds preferentially as an oxidation reaction in hydrides that are not involved in the charging/discharging reaction of the electrode. . As a result, the oxidation of the alloy that is involved in the charging and discharging reactions of the electrodes and can store and release hydrogen is suppressed, and the electrode reactions are not inhibited.

また、正極で発生する酸素ガスが水素化物の水素と反応
し、水として前記酸素ガスが消費された場合、負極の充
放電反応に関与せる合金においては、前記酸素ガスの発
生に対応して負極も充電され続けているので前記酸素ガ
ス発生に相当する電気量だけ水素化物を生成し充電され
たことになる。
In addition, when oxygen gas generated at the positive electrode reacts with hydrogen in the hydride and the oxygen gas is consumed as water, in alloys involved in the charge/discharge reaction of the negative electrode, the negative electrode Since the battery continues to be charged, it means that hydride is generated and charged by the amount of electricity corresponding to the generation of oxygen gas.

その結果、負極が前記電気量だけ予備充電される。As a result, the negative electrode is precharged by the amount of electricity.

一方、酸素ガスが水素化物を直接酸化させ、酸化物等を
生成して前記酸素ガスが消費された場合にも、前述同様
、負極が予備充電される。
On the other hand, even when the oxygen gas directly oxidizes the hydride to generate oxides and the like and the oxygen gas is consumed, the negative electrode is precharged as described above.

したがって、負極においては水素化物と酸素ガスとの反
応と同時に、予備充電量である水素化物の生成が行なわ
れることになる。よって充放電反応に関与する合金の一
部は、水素化物として常に存在し、その結果、充電時の
負極における酸素ガス消費反応も円滑に進行し、電池の
長寿命化が図れる。
Therefore, at the negative electrode, simultaneously with the reaction between the hydride and oxygen gas, hydride, which is a pre-charge amount, is generated. Therefore, a part of the alloy involved in the charging/discharging reaction always exists as a hydride, and as a result, the oxygen gas consuming reaction at the negative electrode during charging also proceeds smoothly, making it possible to extend the life of the battery.

尚、電極の充放電反応に関与して水素を吸蔵、放出せる
合金としては、CaCu5型の結晶構造を有する金属間
化合物を主体とする合金が、電池容量の関係から、好適
するものである。
As an alloy that can store and release hydrogen by participating in the charging/discharging reaction of the electrode, an alloy mainly composed of an intermetallic compound having a CaCu5 type crystal structure is suitable from the viewpoint of battery capacity.

又、電極の充放電反応には関与せず且つ前記合金よりも
優先的に酸素と反応しうる水素化物として、組成式Re
Nix(但し式中、Reは希土類元素、XはX≦3.5
の値を有するものである)で表わされる希土類−ニッケ
ル系合金の水素化物を用いるのが、合金中における希土
類元素の含有率が高く酸素ガスと前記水素化物が反応し
やすいので、最適である。
In addition, as a hydride that does not participate in the charging/discharging reaction of the electrode and can react with oxygen preferentially than the alloy, the composition formula Re
Nix (wherein, Re is a rare earth element, X is X≦3.5
It is optimal to use a hydride of a rare earth-nickel alloy having a value of

(へ) 実施例 以下に、本発明の実施例を詳述する。(f) Examples Examples of the present invention will be described in detail below.

(合金の作製) M m 、N i、Co、Affの各市販原料(但し、
MmはLa、Ce、Nd、Pr、Sm等の希土類元素の
混合物である)を用い、アルゴン不活性雰囲気アーク炉
を使用して、M m N i 3CO1,5Aρo5の
組成を有する合金を作製した。
(Preparation of alloy) Commercially available raw materials M m , Ni, Co, and Aff (however,
Mm is a mixture of rare earth elements such as La, Ce, Nd, Pr, and Sm), and an alloy having a composition of M m N i 3CO1,5Aρo5 was produced using an argon inert atmosphere arc furnace.

(水素化物の作製) 同一の作製方法にてMmN i 、の組成を有する合金
を作製した。この合金を用い、水素ガスを吸蔵、放出さ
せるサイクルを数回行い、水素化による粉砕処理と、水
素化物の生成処理とを同時に行った。この水素化物の水
素吸蔵量は約0.5〜10重量%であり、その粒径は5
0μm以下であった。
(Preparation of hydride) An alloy having a composition of MmN i was prepared using the same method. Using this alloy, a cycle of occluding and releasing hydrogen gas was performed several times, and pulverization treatment by hydrogenation and hydride generation treatment were performed simultaneously. The hydrogen storage capacity of this hydride is approximately 0.5 to 10% by weight, and its particle size is 5% by weight.
It was 0 μm or less.

(水素吸蔵合金電極及び電池の作製) 前記合金を機械的に50μm以下に粉砕し、合金に対し
て10重量%の前記水素化物を添加して、均一に混合し
た。この混合物に、結着剤としてのによる水素吸蔵合金
電極を作製し、負極とした。
(Preparation of hydrogen storage alloy electrode and battery) The alloy was mechanically ground to 50 μm or less, and 10% by weight of the hydride was added to the alloy and mixed uniformly. A hydrogen storage alloy electrode was prepared using this mixture as a binder and used as a negative electrode.

尚、この負極の容量は、2.0Ahrである 。そして
この負極と1.2Ah rの焼結式ニッケル極及び不織
布からなるセパレータとを用い、捲回して渦巻電極体を
構成して、電池缶内に挿入し、電解液(30重量%KO
H)を注入後、封口を行い、本発明による密閉型アルカ
リ蓄電池を作製した。
Note that the capacity of this negative electrode is 2.0 Ahr. This negative electrode, a 1.2 Ah sintered nickel electrode, and a separator made of nonwoven fabric are then wound to form a spiral electrode body, which is inserted into a battery can, and an electrolytic solution (30 wt% KO
After injecting H), sealing was performed to produce a sealed alkaline storage battery according to the present invention.

そしてこの電池を本発明電池Aとした。This battery was designated as Invention Battery A.

「比較例」 水素化物を添加使用しない以外は、前記実施例と同様で
ある電池を作製し、比較電池Bとした。
"Comparative Example" A battery similar to that of the above example was prepared and designated as comparative battery B, except that no hydride was added.

そして、これらの本発明電池A及び比較電池Bを用い、
電池のサイクル特性及びサイクル数進行に伴う電池重量
減少量を比較した。第1図に電池のサイクル特性を、第
2図にサイクル数進行に伴う電池型j!、減少量を、そ
れぞれ示す。
Then, using these invention battery A and comparative battery B,
The cycle characteristics of the batteries and the amount of weight loss of the batteries as the number of cycles progressed were compared. Figure 1 shows the cycle characteristics of the battery, and Figure 2 shows the battery type j! as the number of cycles progresses. , respectively indicate the amount of decrease.

この時のサイクル条件は、電池容量に対し、IC(12
00mA>の電流で75分間充電し、ICの電流で電池
電圧が1,0■になる迄放電するというものである。
The cycle conditions at this time are IC(12
The battery is charged for 75 minutes with a current of 00mA>, and discharged with an IC current until the battery voltage reaches 1.0cm.

第1図、第2図の結果より、本発明電池Aは、比較電池
Bに比して、サイクル特性において優れたちのであるこ
とが理解される。本発明電池Aは、も 500サイクルを経過したものであって 電池容に 量の減少、電池重量の減少ともに観察されない。
From the results shown in FIGS. 1 and 2, it is understood that the battery A of the present invention is superior to the comparative battery B in cycle characteristics. Battery A of the present invention has undergone 500 cycles, and no decrease in battery capacity or battery weight was observed.

一方、比較電池Bは、サイクル初期から電池重量の減少
が観察されると共に、300サイクルあなりから電池容
量の減少が顕著となる。
On the other hand, in Comparative Battery B, a decrease in battery weight was observed from the beginning of the cycle, and a decrease in battery capacity became noticeable from around 300 cycles.

このような結果は、以下のような現象に基づくと推定さ
れる。即ち、本発明電池Aにおいて、予備の水素化を行
った水素化物MmNi、Hx は、安定な金属水素化物
であるので電池の充放電反応には関与しない。しかし、
負極において、充放電に関与せる合金よりも水素化物と
して添加形成された合金の方が希土類元素の含有率が高
いので、酸素と反応しやすく、充電時に正極から発生す
る酸素ガスと優先的に反応する。その結果、前記酸素ガ
スは、水素化物MmNi、Hxに吸蔵された水素と反応
して水を生成したり、この水素化物を酸化させたりする
。したがって、電極の充放電反応に関与する合金MmN
 13cO+5AJ2o、sの酸化を抑制することが可
能となる。加えて、負極へ添加せる水素化物が反応、消
費した酸素ガスに相当する電気量の水素化物が、前記作
用の項で詳述したメカニズムに従って、負極に生じ、予
備充貴電量としてM積される。この状態は正極のニッケ
ル優が完全に放電した時であっても観察され、負極を別
工程において予備充電を行ったものと同じ状態である。
Such a result is presumed to be based on the following phenomenon. That is, in the battery A of the present invention, the hydrides MmNi, Hx that have undergone preliminary hydrogenation are stable metal hydrides and do not participate in the charging and discharging reactions of the battery. but,
In the negative electrode, the alloy formed as a hydride has a higher content of rare earth elements than the alloy involved in charging and discharging, so it reacts more easily with oxygen and preferentially reacts with the oxygen gas generated from the positive electrode during charging. do. As a result, the oxygen gas reacts with the hydrogen occluded in the hydride MmNi, Hx to generate water or oxidize the hydride. Therefore, the alloy MmN involved in the charging and discharging reaction of the electrode
It becomes possible to suppress the oxidation of 13cO+5AJ2o,s. In addition, the hydride added to the negative electrode reacts, and hydride with an amount of electricity equivalent to the consumed oxygen gas is generated at the negative electrode according to the mechanism detailed in the above action section, and is multiplied by M as a precharge amount. . This state is observed even when the nickel-rich positive electrode is completely discharged, and is the same state as when the negative electrode is precharged in a separate process.

そして、このような状態が一旦形成されると、充電時の
酸素ガス消費反応も円滑に進行し、電極反応に関与せる
合金の酸化及び劣化を抑制することが可能となり、電池
のサイクル特性が向上する。
Once such a state is established, the oxygen gas consumption reaction during charging will proceed smoothly, making it possible to suppress oxidation and deterioration of the alloy involved in the electrode reaction, improving the battery's cycle characteristics. do.

尚1本発明の実施例において電極の充放電反応に関与せ
る合金として、M m N i 3Co 1.9Aρ。
In addition, in the embodiment of the present invention, M m N i 3Co 1.9Aρ is used as an alloy involved in the charging and discharging reaction of the electrode.

5を用いたが、これに限定されずLaNi2Co。5, but is not limited to LaNi2Co.

MmN i 1.2c OA 10.2M no6、M
mNi、C。
MmN i 1.2c OA 10.2M no6, M
mNi,C.

1、2SM n O,715、LaNi9、Lao、e
N do、zN i 。
1, 2SM n O, 715, LaNi9, Lao, e
N do, zN i.

CO2等のCaCu、型の結晶構造を有する希土類系の
合金も使用することが可能である。
Rare earth alloys having a CaCu-type crystal structure, such as CO2, can also be used.

又、電極の充放電反応には関与しない水素化物として、
MmN i 3の水素化物を用いたが、MmNi2、L
aN i 3. Lao、、Ceo、qN ii、Mm
N iz、qco、Lao、7Ndo、>N 1zco
、La。
In addition, as a hydride that does not participate in the charging/discharging reaction of the electrode,
Although the hydride of MmNi3 was used, MmNi2,L
aN i 3. Lao,,Ceo,qNii,Mm
N iz, qco, Lao, 7Ndo, >N 1zco
, La.

7N d o、 3N i 2.5M n 6.5等の
希土類系水素吸蔵合金等から構成される水素化物も使用
しうる。
A hydride made of a rare earth hydrogen storage alloy such as 7N do, 3N i 2.5M n 6.5, etc. may also be used.

(ト)  発明の効果 本発明によれば、電極の充放電反応に関与せる水素吸蔵
合金の酸化及び劣化を抑制すると共に、煩雑な電池の製
造工程を経ることなく負極に予備充電量を付与すること
ができる。したがって5水素吸蔵合金電極を備えた密閉
型アルカリ蓄電池のサイクル特性を向上させることが可
能となり、その工業的価値は極めて大きい。
(G) Effects of the Invention According to the present invention, oxidation and deterioration of the hydrogen storage alloy involved in the charging and discharging reactions of the electrode are suppressed, and a preliminary charge amount is provided to the negative electrode without going through a complicated battery manufacturing process. be able to. Therefore, it becomes possible to improve the cycle characteristics of a sealed alkaline storage battery equipped with a 5-hydrogen storage alloy electrode, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電池のサイクル特性比較図、第2図はサイクル
数進行に伴う電池重量減少量を示す図である。 A・・本発明電池、B・・・比較電池。
FIG. 1 is a comparison diagram of the cycle characteristics of the batteries, and FIG. 2 is a diagram showing the amount of decrease in battery weight as the number of cycles progresses. A: Battery of the present invention, B: Comparative battery.

Claims (6)

【特許請求の範囲】[Claims] (1)電極の充放電反応に関与して水素を吸蔵、放出せ
る合金と、電極の充放電反応には関与せず且つ前記合金
よりも優先的に酸素と反応しうる水素化物との混合物か
らなることを特徴とする水素吸蔵合金電極。
(1) A mixture of an alloy that takes part in the charging and discharging reactions of the electrode and can store and release hydrogen, and a hydride that does not take part in the charging and discharging reactions of the electrode and can react with oxygen preferentially than the alloy. A hydrogen storage alloy electrode characterized by:
(2)前記合金が、CaCu_5型の結晶構造を有する
金属間化合物を主体とすることを特徴とする請求項(1
)記載の水素吸蔵合金電極。
(2) Claim (1) characterized in that the alloy is mainly composed of an intermetallic compound having a CaCu_5 type crystal structure.
) described hydrogen storage alloy electrode.
(3)前記水素化物は、組成式ReNi_x(但し式中
、Reは希土類元素、xはx≦3.5の値を有するもの
である)で表わされる希土類−ニッケル系合金の水素化
物であることを特徴とする請求項(1)記載の水素吸蔵
合金電極。
(3) The hydride is a hydride of a rare earth-nickel alloy represented by the composition formula ReNi_x (where Re is a rare earth element and x has a value of x≦3.5). The hydrogen storage alloy electrode according to claim (1), characterized in that:
(4)電極の充放電反応に関与して水素を吸蔵、放出せ
る合金と、電極の充放電反応には関与せず且つ前記合金
よりも優先的に酸素と反応しうる水素化物との混合物か
らなる水素吸蔵合金電極と、正極と、アルカリ電解液と
からなることを特徴とする密閉型アルカリ蓄電池。
(4) A mixture of an alloy that takes part in the charging and discharging reactions of the electrode and can store and release hydrogen, and a hydride that does not take part in the charging and discharging reactions of the electrode and can react with oxygen preferentially than the alloy. A sealed alkaline storage battery characterized by comprising a hydrogen storage alloy electrode, a positive electrode, and an alkaline electrolyte.
(5)前記合金がCaCu_5型の結晶構造を有する金
属間化合物を主体とすることを特徴とする請求項(4)
記載の密閉型アルカリ蓄電池。
(5) Claim (4) characterized in that the alloy is mainly composed of an intermetallic compound having a CaCu_5 type crystal structure.
Sealed alkaline storage battery as described.
(6)前記水素化物は、組成式ReNi_x(但し式中
、Reは希土類元素、xはx≦3.5の値を有するもの
である)で表される希土類−ニッケル系合金の水素化物
であることを特徴とする請求項(4)記載の密閉型アル
カリ蓄電池。
(6) The hydride is a hydride of a rare earth-nickel alloy represented by the composition formula ReNi_x (wherein, Re is a rare earth element and x has a value of x≦3.5). The sealed alkaline storage battery according to claim 4, characterized in that:
JP63232803A 1988-09-16 1988-09-16 Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode Expired - Fee Related JP2680628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232803A JP2680628B2 (en) 1988-09-16 1988-09-16 Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232803A JP2680628B2 (en) 1988-09-16 1988-09-16 Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode

Publications (2)

Publication Number Publication Date
JPH0282448A true JPH0282448A (en) 1990-03-23
JP2680628B2 JP2680628B2 (en) 1997-11-19

Family

ID=16945011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232803A Expired - Fee Related JP2680628B2 (en) 1988-09-16 1988-09-16 Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode

Country Status (1)

Country Link
JP (1) JP2680628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660431B1 (en) 1999-02-24 2003-12-09 Matsushita Electric Industrial Co., Ltd. Hydrogen absorbing alloy electrode, electrode producing method and alkali storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690434A (en) * 1979-12-19 1981-07-22 Hitachi Ltd Optical information reproducing device
JPS57199903A (en) * 1981-06-03 1982-12-08 Matsushita Electric Ind Co Ltd Position detector
JPS5826331A (en) * 1981-08-11 1983-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS59152543A (en) * 1983-02-21 1984-08-31 Toshiba Corp Optical disk record reproducer
JPS618745A (en) * 1984-06-20 1986-01-16 Mitsubishi Electric Corp Optical information reproducing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690434A (en) * 1979-12-19 1981-07-22 Hitachi Ltd Optical information reproducing device
JPS57199903A (en) * 1981-06-03 1982-12-08 Matsushita Electric Ind Co Ltd Position detector
JPS5826331A (en) * 1981-08-11 1983-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS59152543A (en) * 1983-02-21 1984-08-31 Toshiba Corp Optical disk record reproducer
JPS618745A (en) * 1984-06-20 1986-01-16 Mitsubishi Electric Corp Optical information reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660431B1 (en) 1999-02-24 2003-12-09 Matsushita Electric Industrial Co., Ltd. Hydrogen absorbing alloy electrode, electrode producing method and alkali storage battery

Also Published As

Publication number Publication date
JP2680628B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JPH0282448A (en) Hydrogen storage alloy electrode and sealed alkaline storage battery with the electrode
JPH11111330A (en) Nickel-hydrogen storage battery
JPH05258748A (en) Hydride secondary battery
JPH01107465A (en) Manufacture of sealed alkaline secondary battery
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JP3198896B2 (en) Nickel-metal hydride battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2823271B2 (en) Hydrogen storage alloy electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPH03285270A (en) Alkaline storage battery
JP2975755B2 (en) Activation method of metal hydride storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH01132065A (en) Sealed alkaline storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2966467B2 (en) Method for producing electrode material for alkaline storage battery
JPH05144433A (en) Electrode with hydrogen storage alloy
JPS60119079A (en) Hydrogen absorption electrode
JP2680620B2 (en) Method of manufacturing alkaline storage battery and hydrogen storage alloy for alkaline storage battery
JPH02165563A (en) Enclosed alkaline storage battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees