JPH0281997A - Fluid pressure generating device and operating method thereof - Google Patents

Fluid pressure generating device and operating method thereof

Info

Publication number
JPH0281997A
JPH0281997A JP23538588A JP23538588A JPH0281997A JP H0281997 A JPH0281997 A JP H0281997A JP 23538588 A JP23538588 A JP 23538588A JP 23538588 A JP23538588 A JP 23538588A JP H0281997 A JPH0281997 A JP H0281997A
Authority
JP
Japan
Prior art keywords
fluid
groove
stationary
rotating shaft
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23538588A
Other languages
Japanese (ja)
Inventor
Hiromi Ino
展海 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP23538588A priority Critical patent/JPH0281997A/en
Publication of JPH0281997A publication Critical patent/JPH0281997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent generation of noise and vibration by providing a rotary shaft forming in its circumferential surface a grooved part consisting of many grooves tilting with respect to a direction of the axial center, stationary cylindrical surface part arranged being opposed to the peripheral part of this grooved part with a narrow space, suction port of fluid and its delivery port. CONSTITUTION:A stationary circumferential surface part 10 is formed being opposed to a grooved part 4 on a rotary shaft forming many grooves 3, in the inside of a main unit 1. Now in a condition that a valve 7 is closed, when the rotary shaft 2 is rotated in the counterclockwise direction as viewed from the right side, a pressure of fluid is generated in groove space 11, supporting the rotary shaft 2 in its own weight by a dynamic pressure effect of fluid while allowing the fluid, while its pressure is gradually increased, to flow from the side of a reservoir part 9 toward the side of a delivery port 6 into the groove space 11 reaching a steady condition. Next the fluid, when the valve 7 is opened, is accumulated once in the reservoir part 9 from a suction port 5 via a communication hole 8, and next the fluid passes through the groove space 11 generating a flow of the fluid toward the delivery port 6.

Description

【発明の詳細な説明】 〔発明の1コ的〕 (産業上の利用分野) 本発明は流体潤滑理論に基づく流体圧力発生装置及びそ
の運転IJ法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Aspects of the Invention] (Field of Industrial Application) The present invention relates to a fluid pressure generating device based on fluid lubrication theory and an IJ method for operating the same.

(従来の技術) 従来の流体圧力発生装置例えば遠心式圧縮様は、設計点
の圧縮比より大きな圧縮比で運転するとり−ジング現象
を起し運転が不能になる。すなわち冷!II]装貿にお
いて、悉発圧カが設計値に維持されていても凝縮圧力が
設語圧力より高くなるとサージング現象を起してしまう
− また一方、容積型圧縮機は、凝縮圧力(温度)が上背す
ると圧tI6mの吐出圧力もそれにつれてどこまでも上
貸し、遂には圧縮機の破損または電動別のオーバーロー
ドを引起してしまう。容積型圧縮機は吐出側管系の弁を
誤って全開状態のままで運転すると吐出圧力が異常に高
くなり大事故を惹起するおそれがある。
(Prior Art) Conventional fluid pressure generating devices, such as centrifugal compression type devices, cause a loss phenomenon when operated at a compression ratio greater than the design point compression ratio, making operation impossible. In other words, cold! II] Even if the condensing pressure is maintained at the design value, a surging phenomenon occurs when the condensing pressure becomes higher than the nominal pressure. When the pressure increases, the discharge pressure of tI6m increases accordingly, eventually causing damage to the compressor or overload of the electric motor. If a positive displacement compressor is operated with the valve of the discharge side piping system in the fully open state by mistake, the discharge pressure will become abnormally high, which may cause a serious accident.

このような現象は液体を扱うポンプにおいてら全く同様
である。
This phenomenon is exactly the same in pumps that handle liquids.

また遠心型及び容積型の総ての圧縮機、ポンプには騒音
振動が発生し、これを全く除去することはできない。
In addition, all centrifugal and positive displacement compressors and pumps generate noise and vibration, which cannot be completely eliminated.

(発明が解決しようとする課題) 従来技術においては前記のように種々の問題がある。(Problem to be solved by the invention) The prior art has various problems as described above.

本発明は流体潤滑理論に基づく流体圧力発生装置により
前記の問題点を除去することを目的とするものである。
The present invention aims to eliminate the above-mentioned problems by using a fluid pressure generating device based on fluid lubrication theory.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の流体圧力発生装置は前記の目的を)構成するた
めに次のAないしEの構成庖右する。
(Means for Solving the Problems) The fluid pressure generating device of the present invention has the following configurations A to E in order to achieve the above object.

(△) 軸心方向に対して傾斜する多数の渦からなる溝
部を円周面に形成した回転軸、前記溝部の外周部と狭い
間隙をおいて対向配置される静止円筒面部及び流体の吸
入口、吐出口を有し、前記回転軸の回転により前記溝部
と静止円筒面部との間の満空間に誘起される流体の動圧
効果を利用して前記回転軸の自重を支持するとともに前
記溝空間の一端より他端に向けて流体を流通せしめ前記
吸入口より流体を吸入し加圧して前記吐出口より吐出さ
せること。
(△) A rotating shaft in which a groove formed by a large number of vortices inclined with respect to the axial direction is formed on the circumferential surface, a stationary cylindrical surface part disposed opposite to the outer periphery of the groove with a narrow gap, and a fluid inlet. , has a discharge port, supports the weight of the rotary shaft by utilizing the dynamic pressure effect of the fluid induced in the full space between the groove and the stationary cylindrical surface by the rotation of the rotary shaft, and also supports the groove space. The fluid is caused to flow from one end to the other end, and the fluid is sucked through the suction port, pressurized, and discharged from the discharge port.

なお前記装置において、溝部を回転軸の円周面に代えて
対向する静止円筒面部の円周面に溝が該円筒面部の軸心
方向に対し傾斜するように形成することもでき、更にこ
れらの装置において、回転軸に代えて静止軸を設け、ま
た静止円筒面部に代えて回転円筒面部を設けることもで
きる。
In the above device, instead of the groove on the circumferential surface of the rotating shaft, the groove may be formed on the circumferential surface of the opposing stationary cylindrical surface so as to be inclined with respect to the axial direction of the cylindrical surface. In the device, a stationary shaft can be provided in place of the rotating shaft, and a rotating cylindrical surface can be provided in place of the stationary cylindrical surface.

(B)  軸心方向に対して傾斜する多数の溝からなる
溝部を円周面に形成した回転軸、前記溝部の外周部と狭
い間隙をおいて対向配置される静止円筒面部及び流体の
吸入口、吐出口を有するとともに、前記回転軸にカラー
部を設け、前記溝部に隣接するカラー部の表面に多数の
ラセン状の溝または半径方向に対して傾斜する直線状の
湾からなる溝部を形成し、前記カラー部の溝部の表面と
狭い間隙をおいて静止平面部を対向配置し、前記回転軸
の回転により回転軸の館;2!溝部と前記静止円筒面部
との間の溝空間及びカラー部の前記溝部と前記静止平面
部との間の溝空間に誘起される流体の動圧効果を利用し
て、前記回転軸の自重を前記静止円筒部により支持し、
また軸方向の推力を前記静止平面部により支持するとと
もに、回転軸部分の前記溝空間及びカラー部分の前記溝
空間を通じて流体を流通せしめ、前記吸入口より流体を
吸入し加圧して前記吐出口より吐出させること。
(B) A rotating shaft having a circumferential surface formed with a groove portion consisting of a large number of grooves inclined with respect to the axial direction, a stationary cylindrical surface portion disposed facing the outer periphery of the groove portion with a narrow gap, and a fluid inlet. , having a discharge port, a collar portion provided on the rotating shaft, and a groove portion consisting of a large number of spiral grooves or linear bays inclined with respect to the radial direction formed on the surface of the collar portion adjacent to the groove portion. , a stationary plane part is arranged opposite to the surface of the groove part of the collar part with a narrow gap therebetween, and the rotation shaft is rotated by the rotation of the rotary shaft; 2! Using the dynamic pressure effect of the fluid induced in the groove space between the groove and the stationary cylindrical surface part and the groove space between the groove of the collar part and the stationary plane part, the dead weight of the rotating shaft is reduced by the Supported by a stationary cylindrical part,
Further, the thrust in the axial direction is supported by the stationary plane part, and the fluid is made to flow through the groove space of the rotating shaft part and the groove space of the collar part, and the fluid is sucked from the suction port and pressurized, and then the fluid is forced to flow from the discharge port. To exhale.

なお前記装置において、回転軸の溝部を回転軸の円周面
に代えて対向する静止円筒面部の内周面に溝が該円筒部
の軸心方向に対し傾τ1するように形成し、またカラー
部の溝部をカラー部の表面に代えて対向する静止平面部
の表面に形成することもでき、更にこれらの装置におい
て、回転する回転軸及びカラー部に代えて静止する軸及
びカラー部を設け、静止円筒面部及び静止平面部に代え
て回転円筒面部及び回転平面部を設けることt)Cきる
In the above device, the groove of the rotating shaft is replaced with the circumferential surface of the rotating shaft, and a groove is formed on the inner circumferential surface of the opposing stationary cylindrical surface so as to be inclined τ1 with respect to the axial direction of the cylindrical portion, and the collar is Instead of the surface of the collar part, the groove part of the part can also be formed on the surface of the opposing stationary plane part, and in these devices, a stationary shaft and collar part are provided instead of the rotating shaft and collar part, Providing a rotating cylindrical surface section and a rotating plane section in place of the stationary cylindrical surface section and stationary plane section t)C.

(C)  回転側円筒体の多層円筒部と静止側円筒体の
多層円筒部を同心状態に組合せ交Hに狭い間隙を以て対
向配置させて2層以上の円筒状の狭い空間を形成し、互
いに対向する円筒部の外表面または内表面の何れか一方
の円n部表面上に該円筒部の軸心り向に対して傾斜する
多数の活からなる溝部を形成するとともに、流体の吸入
口、吐出口をhし、前記回転側円筒体の回転により前記
溝部と対向円筒部の円筒面との間の満空間に;誘起され
る流体の動圧効果を利用して、回転側円筒体の自重を支
持するとともに、多数の前記溝空間を通じて流体を流通
せしめ、前記吸入口より流体を吸入し加圧して前記吐出
口より吐出させること。
(C) The multilayer cylinder part of the rotating cylinder body and the multilayer cylinder part of the stationary cylinder body are concentrically combined and arranged opposite to each other with a narrow gap in the intersection H to form a cylindrical narrow space of two or more layers, facing each other. On either the outer surface or the inner surface of the cylindrical portion, a groove portion consisting of a large number of grooves inclined with respect to the axial direction of the cylindrical portion is formed, and a fluid inlet and discharge port are formed. h the outlet, and the rotation of the rotating cylindrical body fills the space between the groove and the cylindrical surface of the opposing cylindrical part; using the dynamic pressure effect of the induced fluid, the dead weight of the rotating cylindrical body is reduced. While supporting the fluid, the fluid is allowed to flow through the plurality of groove spaces, and the fluid is sucked through the suction port, pressurized, and discharged from the discharge port.

(D)  密閉型の電動機回転子の両側の回転軸におい
て、その円周面に軸心り向に対して傾斜する多数の溝を
形成した溝部を適宜の間隔をおいて2個以上直列に配置
し、一方、前記溝部の外周部と狭い間隙をおいて静止円
筒面部を前記溝部と対向するように適宜の間隔をおいて
2個以上直列に配置するとともに、溝部の流体出口を中
間冷却器の流体入口に接続し、前記中間冷部器の流体出
口を次段の溝部の流体入口に接続し、更に、前記の溝部
と溝部との間の回転軸の円周面に前記の両溝部における
流体の流れの方向とは逆方向の流れを誘起するような傾
斜を有する多数の溝からなるバイパス防止用の溝部を形
成すること。
(D) Two or more grooves formed in the circumferential surface of the rotary shaft on both sides of a sealed electric motor rotor with a large number of grooves inclined with respect to the axial direction are arranged in series at appropriate intervals. On the other hand, two or more stationary cylindrical surfaces are arranged in series at an appropriate interval so as to face the groove with a narrow gap between them and the outer periphery of the groove, and the fluid outlet of the groove is connected to the intercooler. The fluid outlet of the intermediate cooling unit is connected to the fluid inlet of the next groove, and the fluid in both grooves is connected to the circumferential surface of the rotating shaft between the grooves. To form a bypass prevention groove section consisting of a large number of grooves having an inclination that induces a flow in a direction opposite to that of the flow direction.

(E)  密閉グ1の電動機回転子の両側の回転軸にお
いて、その円周面に軸心方向に対して傾斜する多数の溝
を形成した溝部を配置し、これに続いてカラー部を配r
し、該カラー部の両側表面に多数のラセン状の溝または
゛ヒ径方向に対しで傾斜した直線状の溝からなる溝部を
形成し、−1ノ回転軸に設けられた前記溝部の外周部表
面と狭い間隙をおいて静止円筒面部を、またカラー部の
前記両側表面の溝部と狭い間隙をおいて対向する静止平
面部をそれぞれ配置し、前記のような回転軸とカラー部
の組及び静止円筒面部と静止平面部の組を2組以上前記
回転軸上に直列に配列するとともに、前記カラー部の溝
部の流体出口を中間冷FJl器の流体入口に接続し、前
記中間冷FII器の流体出口を次段のカラー部の溝部の
流体人口に接続し、さらに各カラー部の外周部表面上に
前記回転軸の各溝部における流体の流れ方向とは逆方向
の流れを誘起するような傾斜を有する多数の溝からなる
バイパス防止用の溝部を形成すること。
(E) On the rotating shaft on both sides of the motor rotor of the sealing ring 1, a groove portion having a large number of grooves inclined with respect to the axial direction is arranged on the circumferential surface, followed by a collar portion.
A groove portion consisting of a large number of helical grooves or linear grooves inclined with respect to the radial direction is formed on both surfaces of the collar portion, and an outer peripheral portion of the groove portion provided on the -1 axis of rotation is formed. A stationary cylindrical surface part is arranged with a narrow gap from the surface, and a stationary flat part facing the grooves on both sides of the collar part with a narrow gap, respectively, and the rotating shaft and collar part pair and stationary part are arranged as described above. Two or more sets of a cylindrical surface part and a stationary plane part are arranged in series on the rotating shaft, and the fluid outlet of the groove part of the collar part is connected to the fluid inlet of the intermediate cooling FJl vessel, and the fluid of the intermediate cooling FII vessel is connected to the fluid outlet of the groove of the collar part. The outlet is connected to the fluid population of the groove of the next collar part, and the outer peripheral surface of each collar part is further provided with an inclination that induces a flow in a direction opposite to the flow direction of the fluid in each groove of the rotating shaft. To form a bypass prevention groove portion consisting of a large number of grooves.

なお(D)または(E)の多段式流体圧力発生装置にお
いて、バイパス防IL用の溝部を、回転軸またはカラー
部の外周部表面に代えて前記回転軸またはカラー部の外
周部表面に対向する静止円筒面部に形成することもでき
る。
In the multi-stage fluid pressure generating device of (D) or (E), the groove for bypass prevention IL is opposed to the outer peripheral surface of the rotating shaft or the collar instead of the outer peripheral surface of the rotating shaft or the collar. It can also be formed on a stationary cylindrical surface.

また、本発明の流体圧力発生装置の運転方法は、前記の
目的を達成するために次の構成を有する。
Furthermore, the method of operating a fluid pressure generating device of the present invention has the following configuration in order to achieve the above object.

前記のAないしEの流体圧力発生装置において、涜縮性
流体を使用して定速運転を行ない、該流体の吐出゛口を
凝縮器に接続し、該凝縮器の冷却媒体の流8または凝縮
器の有効伝熱面積笠を増減することにより流体の凝縮温
度をvA整し、該凝縮温度の上下により、前記吐出口か
ら叶出される流体の圧力及び流量を制御する。
In the fluid pressure generating devices A to E described above, constant speed operation is performed using a sacrificial fluid, and the discharge port of the fluid is connected to a condenser, and the cooling medium flow 8 or condensation of the condenser is connected to the condenser. The condensing temperature of the fluid is adjusted by increasing or decreasing the effective heat transfer area of the vessel, and the pressure and flow rate of the fluid discharged from the discharge port are controlled by increasing or decreasing the condensing temperature.

(作用) 多数の傾斜する溝からなる溝部が円周面に形成された回
転軸と前記溝部の外周部と狭い間隙をおいて対向配置さ
れる静止円筒面部により、前記回転軸を回転したとき前
記溝部と静止円筒面部との間の溝空間に動圧効果が誘起
され、該効果を利用して前記回転軸の自重を支持すると
ともに前記溝空間の−d5より他端に向けて流体を流通
せしめ加圧して吐出させることができる。
(Function) When the rotating shaft is rotated by a rotating shaft in which a groove formed of a large number of inclined grooves is formed on a circumferential surface, and a stationary cylindrical surface portion facing the outer circumference of the groove with a narrow gap, A dynamic pressure effect is induced in the groove space between the groove part and the stationary cylindrical surface part, and this effect is used to support the weight of the rotating shaft and to cause fluid to flow from -d5 to the other end of the groove space. It can be discharged under pressure.

多数の傾斜する溝からなる溝部が円周面に形成された回
転軸と前記溝部の外周部と狭い間隙をおいて対向配置さ
れる静止円筒面部及び前記回転軸に設けたカラー部の前
記溝部に隣接する表面に傾斜する直線状の溝からなる溝
部が形成されるととらに前記カラー部の溝部の表面と狭
い間隙を、15いて静止平面部が対向間6されることに
より、前記回転軸を回転したとき回転軸の前記溝部と前
記静止円筒面部との間の溝空間及びカラー部の前記溝部
と前記静止平面部との1mの満空間に動圧効果が誘起さ
れ、該動圧効果を利用して、前記回転軸の自重を前記静
止円筒部により支持するとともに軸方向の推力を前記静
止平面部により支持することができ、また回転軸部分の
6iJ記溝空間及びカラー部分の前記溝空間を通じて流
体を流通せしめ加圧して叶出さゼることができる9□ 回転側円筒体の多層円筒部と静止側円筒体の多層円筒部
が同心状態に交互に狭い間隙を以て対向配置されるよう
に組合されて2層以上の円筒状の狭い空間が形成され、
ひいに対向する円筒部の何れか一方の円筒部表面上に傾
斜する多数の溝からなる溝部が形成されることにより、
前記回転側円筒体が回転したとき前記溝部と対向円筒部
の円筒面との間の溝空間に動圧効果が誘起され、該動圧
効果を利用して回転側円筒体の自重を支持するとともに
、多数の前記溝空間を通じて流体を流通せしめ、加圧し
て吐出させることができる。
A rotary shaft having a plurality of inclined grooves formed on its circumferential surface, a stationary cylindrical surface portion facing the outer circumferential portion of the groove portion with a narrow gap, and a collar portion provided on the rotary shaft. A groove consisting of an inclined linear groove is formed on the adjacent surface, and a narrow gap is formed between the surface of the groove of the collar part and the stationary plane part is placed between the opposite sides 6, so that the rotating shaft can be rotated. When rotated, a dynamic pressure effect is induced in the groove space between the groove of the rotating shaft and the stationary cylindrical surface part and in the 1 m full space between the groove of the collar part and the stationary plane part, and the dynamic pressure effect is utilized. The dead weight of the rotating shaft can be supported by the stationary cylindrical part, and the thrust in the axial direction can be supported by the stationary flat part, and through the 6iJ groove space of the rotating shaft part and the groove space of the collar part. 9□ The multi-layer cylinder part of the rotating cylinder body and the multi-layer cylinder part of the stationary cylinder body are combined so that they are arranged concentrically and alternately facing each other with narrow gaps between them. A narrow cylindrical space with two or more layers is formed.
Furthermore, by forming a groove portion consisting of a large number of inclined grooves on the surface of one of the opposing cylindrical portions,
When the rotating cylinder rotates, a dynamic pressure effect is induced in the groove space between the groove and the cylindrical surface of the opposing cylinder, and the dynamic pressure effect is used to support the weight of the rotating cylinder. , the fluid can be made to flow through the plurality of groove spaces, and can be pressurized and discharged.

密閉型の電動機回転子の両側の回転軸の円周面に傾斜す
る多数の溝が形成された溝部が適宜の間隔をおいて2個
以上直列に配置され、前記溝部の外周部と狭い間隙をお
いて静止円筒面部が前記溝部と対向するように適宜の間
隔をおいて2個以上直列に配置され、@記の溝部間が中
間冷却器を介して接続されるとともに、前記の溝部と溝
部との間の回転軸に傾斜する多数の溝からなるバイパス
防止用の溝部が形成されることにより、流体を充分に中
間冷却することができる。
Two or more grooves each having a large number of inclined grooves formed in the circumferential surface of the rotating shaft on both sides of a sealed electric motor rotor are arranged in series at an appropriate interval, and a narrow gap is formed between the outer circumference of the groove and the groove. Two or more stationary cylindrical surface portions are arranged in series at appropriate intervals so as to face the groove portions, and the groove portions shown in @ are connected via an intercooler, and the groove portions and the groove portions are The fluid can be sufficiently intermediately cooled by forming a bypass-preventing groove section consisting of a large number of grooves inclined to the rotation axis between the two.

密閉型の電動機回転子の両側の回転軸の円周面に傾斜す
る多数の溝が形成された溝部と、これに続きカラー部が
配置され、該カラー部の両側表面に多数の傾斜した渦か
らなる溝部が形成され、一方回転軸に設けられた前記溝
部の外周部表面と狭い間隙をおいて静止円筒面部が、ま
たカラー部の前記両側表面の溝部と狭い間隙をおいて対
向する静止平面部がそれぞれ配置され、このような回転
軸とカラー部の相及び静止円筒面部と静止平面部の組が
2組以十前記回転軸上に直列に配列され、更に、前記カ
ラー部の両側表面間の溝部が中間冷却器を介して接続さ
れるとともに、各カラー部の外周部表面上に傾斜する多
数の溝からなるバイパス防止用の溝部が形成されること
により、流体を充分に中間冷却することができる。
A groove section in which a large number of inclined grooves are formed on the circumferential surface of the rotating shaft on both sides of a closed type electric motor rotor, and a collar section is arranged next to this, and a large number of inclined vortices are formed on both sides of the collar section. A stationary cylindrical surface part is formed with a groove part formed on the rotating shaft with a narrow gap from the outer peripheral surface of the groove part, and a stationary flat part faces the groove parts on both sides of the collar part with a narrow gap therebetween. are arranged in series on the rotation shaft, and two or more pairs of the rotating shaft and the collar part and the stationary cylindrical surface part and the stationary plane part are arranged in series on the rotation shaft, and furthermore, the phase between the both sides of the collar part is The grooves are connected via an intercooler, and a bypass prevention groove consisting of a large number of inclined grooves is formed on the outer circumferential surface of each collar, so that the fluid can be sufficiently intercooled. can.

菱縮性流体を使用する流体圧力発生装置の流体の吐出口
を凝縮器に接続し、該凝縮器の冷却媒体の流Eまたは凝
縮器の有効伝熱面積等を増減することにより流体の凝縮
湿度を調整し、該凝縮湿度を上下するように運転するこ
とにより、前記吐出口から吐出される流体の圧力及び流
けを制御することができる。
The fluid discharge port of a fluid pressure generator using a rhombic fluid is connected to a condenser, and the condensed humidity of the fluid can be adjusted by increasing or decreasing the cooling medium flow E of the condenser or the effective heat transfer area of the condenser. The pressure and flow of the fluid discharged from the discharge port can be controlled by adjusting the condensation humidity and increasing or decreasing the condensed humidity.

(実施例) 実施例の説明に入る前に本発明の根拠となっている理論
について説明する。
(Example) Before entering into the description of the example, the theory on which the present invention is based will be explained.

第16図は回転軸111と軸受112よりなる通常の動
圧式軸受系をモデル化したものである。回転軸111に
は軸負荷Wが負相し、その軸心は軸受中心に対しεの距
離だけ偏心し、この偏心作用により軸受内に流体潤滑理
論に基づく軸受反力Fが生じ、軸負荷Wと釣合う。通常
、軸受内の軸表面は円滑な円筒表面であるが、特殊な軸
・軸受系では第17図に示すように軸表面が円滑でない
場合がある。
FIG. 16 is a model of a normal hydrodynamic bearing system consisting of a rotating shaft 111 and a bearing 112. A negative phase of the axial load W is applied to the rotating shaft 111, and its axial center is eccentric by a distance ε with respect to the center of the bearing, and due to this eccentric action, a bearing reaction force F based on the fluid lubrication theory is generated within the bearing, and the axial load W is Balance with. Normally, the shaft surface within a bearing is a smooth cylindrical surface, but in some special shaft/bearing systems, the shaft surface may not be smooth as shown in FIG.

すなわち、第17図において、軸方向にそれぞれβ1.
β2の傾斜角を持つ浅溝113が多数形成されている。
That is, in FIG. 17, β1.
A large number of shallow grooves 113 having an inclination angle of β2 are formed.

通常β1+β2=180’であり、軸受の中心部の軸直
角断面に対して流体力が対称に発生するようにすること
が多い。このような軸受をヘリングボーン・ジャーナル
・ベアリング(以下、rHJBJと略称する)と呼称し
ている。
Usually β1+β2=180', and the fluid force is often generated symmetrically with respect to the axis-perpendicular cross section of the center of the bearing. Such a bearing is called a herringbone journal bearing (hereinafter abbreviated as rHJBJ).

次にHJBの潤滑邪論について部子に説明する。回転軸
111を矢印方向に回転すると軸受112の内周面11
4と浅溝113が多数形成された回転軸の外表面部分と
の狭い空間(「溝空間」という)115に流体圧力が発
生する。この流体圧力の発生状態を第18図によって説
明する。
Next, I will explain HJB's lubrication theory to Buko. When the rotating shaft 111 is rotated in the direction of the arrow, the inner peripheral surface 11 of the bearing 112
Fluid pressure is generated in a narrow space (referred to as a "groove space") 115 between the rotary shaft 4 and the outer surface portion of the rotating shaft in which a large number of shallow grooves 113 are formed. The state in which this fluid pressure is generated will be explained with reference to FIG.

第18図によれば回転軸111の溝加工部Bと平滑円筒
部Aのそれぞれの溝空間に発生する圧力は同図く■のよ
うになる。なお、(2)と0とは上下に対応するように
して描かれている。
According to FIG. 18, the pressures generated in the groove spaces of the grooved portion B and the smooth cylindrical portion A of the rotary shaft 111 are as shown in (■) in the figure. Note that (2) and 0 are drawn so as to correspond vertically.

溝空間に実際に発生する圧力は全圧力ptであり、HJ
Bの中心部で最も高くなる山形を形成している。流体潤
滑理論によれば、Paを第1摂動圧力、Pεを第2摂動
圧力とすると、Pt =Po +pε である、Pεは主に回転軸の偏心ε及びPOの値により
生ずる圧力であり、Poはεには無関係に1」J Bの
形状と回転数、流体の粘度や周囲圧力により決定される
The pressure actually generated in the groove space is the total pressure pt, and HJ
It forms a mountain shape that is highest at the center of B. According to fluid lubrication theory, when Pa is the first perturbation pressure and Pε is the second perturbation pressure, Pt = Po + pε. Pε is the pressure mainly caused by the eccentricity ε of the rotating shaft and the value of PO, and Po is determined by the shape and rotational speed of 1''JB, the viscosity of the fluid, and the ambient pressure, regardless of ε.

このPoの存在が1−IJ L3の特質であり、通常の
円筒平滑面軸受には存6しないものである。本発明の理
論的根1もはこのPaの存在にある。P0は周囲圧以上
の値をもつがPaが周囲圧に等しくなってb軸受の負荷
能力は存在する。同一荷重に対しPaが減少すると偏心
距離εが増加して荷重を支持することができる。負荷能
力はPaの値のみで決まるが、PaはPaとεの双方の
関数となっているからである。
The presence of this Po is a characteristic of 1-IJ L3, which does not exist in ordinary cylindrical smooth surface bearings. Theoretical basis 1 of the present invention also lies in the existence of this Pa. Although P0 has a value greater than the ambient pressure, Pa becomes equal to the ambient pressure, and the load capacity of the b bearing exists. When Pa decreases for the same load, the eccentric distance ε increases and the load can be supported. This is because although the load capacity is determined only by the value of Pa, Pa is a function of both Pa and ε.

本発明はこの理論に基づき、Paを有効に活用せんとす
るものである。すなわちPaを洞室間流通流体圧力とし
て利用せんとするものである。
The present invention is based on this theory and aims to utilize Pa effectively. That is, Pa is intended to be used as the pressure of the fluid flowing between the sinus cavities.

次に本発明の実施例の叩解を容易にするために、動圧式
推力軸受について簡単に説明する。
Next, in order to facilitate the beating of the embodiment of the present invention, a hydrodynamic thrust bearing will be briefly explained.

第19図は通常の動圧式推力軸受を示したものである。FIG. 19 shows a typical hydrodynamic thrust bearing.

7回転軸121とカラー部122とを−・体構造とし、
カラー部122の対向面として軸受部123を配置し、
その表面に多数のラセン溝124を形成する。ラセン溝
124の一端は軸受面の中で閉じて行き由よりとなって
おり、他端のみが内径内周部に開通している。回転軸を
上方から見て反時計廻りに回転すると流体は矢印のよう
に内径部より吸引されて外径部外周から放出される。そ
のとぎカラー部122と軸受部123との両対向面によ
って形成される狭い空間125に同図(C)に示りよう
に分布形状の圧力を発生する(Pは圧力、rは半径1)
向の距離)。この発生圧力により軸受面には推力負荷能
力が発生する。
7. The rotating shaft 121 and the collar part 122 have a body structure,
A bearing portion 123 is arranged as a surface facing the collar portion 122,
A large number of helical grooves 124 are formed on the surface. One end of the helical groove 124 is closed within the bearing surface, and only the other end is open to the inner periphery. When the rotating shaft is rotated counterclockwise when viewed from above, fluid is sucked from the inner diameter portion and released from the outer periphery of the outer diameter portion as shown by the arrow. In the narrow space 125 formed by the facing surfaces of the collar part 122 and the bearing part 123, pressure is generated in a distributed shape as shown in FIG.
direction distance). This generated pressure generates a thrust load capacity on the bearing surface.

第20図も第19図と同様に通常の勤ツノ式推力軸受で
あるが、ラセン溝124の他端のみが外径外周部に開通
している点が第19図と異なっCいる。回転軸を上1ノ
から見て反時剖廻りに回転すると流体は矢印のように外
径部より吸引されて内径部に流れ、第19図と同様に空
間125に同図(c)に示寸ような分布形状の圧力を発
生し、(任力負伺能力を発生する。
Similar to FIG. 19, FIG. 20 shows a normal thrust bearing, but differs from FIG. 19 in that only the other end of the helical groove 124 is open to the outer periphery. When the rotating shaft is rotated in a counterclockwise direction when viewed from the top, fluid is sucked from the outer diameter part as shown by the arrow and flows to the inner diameter part, and the fluid flows into the space 125 as shown in FIG. Generates pressure with a similar distribution shape, and generates the ability to apply force.

第19図及び第20図のような軸受をスパイラル・グル
ーブト・スラストベアリング(以下、r S G T 
B jと略称する)と呼称する。
The bearings shown in Figs. 19 and 20 are called spiral groove thrust bearings (hereinafter referred to as r S G T
(abbreviated as B j).

前記のHJBと5GTBとは全く同じ流体潤滑理論に基
づくものである。本発明は推力軸受(1構においても前
記のような流体理論を用いて流体を積(量的に流通加圧
させようとするものであって、本発明の原理を第21図
によって説明する。
The aforementioned HJB and 5GTB are based on exactly the same fluid lubrication theory. The present invention attempts to flow and pressurize fluid in a thrust bearing (even in one structure) using the fluid theory described above.The principle of the present invention will be explained with reference to FIG. 21.

カラー部122を一体に形成した回転軸121は軸受1
29内に支持され、両者間に狭い空間(溝空間)125
を形成し、該空間は吐出管121を介して外部と連通し
ている。吐出管127には弁128が設けられている。
The rotating shaft 121 integrally formed with the collar portion 122 is the bearing 1
29, with a narrow space (groove space) 125 between them.
This space communicates with the outside via a discharge pipe 121. A valve 128 is provided in the discharge pipe 127.

またカラー部122の下面に対向する軸受129の内面
には、同図0の右半分に示すようにラセン状のまたは左
半分に示すような半径方向に対して角度αだけ傾γ1し
た直線状の溝126が多数形成され、しかもこれらの溝
126の両端は内径部及び外径部にいずれも開通した構
造となっている。
In addition, the inner surface of the bearing 129 facing the lower surface of the collar portion 122 has a spiral shape as shown in the right half of FIG. A large number of grooves 126 are formed, and both ends of these grooves 126 are open to both the inner diameter portion and the outer diameter portion.

弁128を全開状態で回転軸121を上方から見て反時
泪方向に回転すると同図(c)の曲線mに示すような圧
力が空間125の半径方向の距離に応じて発生する。圧
力pdは外径外周部における圧力で出口圧力である。弁
128を徐々に開いていくと、同図(ハ)のように出口
圧力Pdが減少し流IQが増加していく。弁128を全
開すると流ff1Qは最大値Qmaxに達し、流体の入
口圧力及び出口圧力は同図(C)のように共に周囲圧力
(大気圧)と等しくなり、空間125の圧力分布は曲線
nのように最小(1αを示す。
When the rotating shaft 121 is rotated in the counterclockwise direction when viewed from above with the valve 128 fully open, a pressure as shown by the curve m in FIG. The pressure pd is the pressure at the outer periphery and is the outlet pressure. As the valve 128 is gradually opened, the outlet pressure Pd decreases and the flow IQ increases, as shown in FIG. When the valve 128 is fully opened, the flow ff1Q reaches the maximum value Qmax, the inlet pressure and the outlet pressure of the fluid both become equal to the ambient pressure (atmospheric pressure) as shown in FIG. shows the minimum (1α).

したがって、弁128を全開したとき11力Q荷能力は
最小となる。もし弁128の全開状態に於いて史に大き
な推力負荷能力が必要な場合には溝の出口部を閉じれば
よく、第19図(c)のΔrを適量に設定すればよい。
Therefore, when the valve 128 is fully opened, the 11 force Q load capacity becomes the minimum. If a historically large thrust load capacity is required when the valve 128 is fully open, the outlet portion of the groove may be closed, and Δr in FIG. 19(c) may be set to an appropriate amount.

本発明は第21図の構造を用いて必要な推力負荷能力を
維持しなから満空間内において流体を流通させ圧力を上
置さVようとするものである。
The present invention uses the structure shown in FIG. 21 to maintain the required thrust load capacity while allowing fluid to flow in a full space and increasing the pressure.

流体圧力発生装置において、耐記HJ [3の構成部分
の溝空間の隙間は軸径の略1/100以内に維持する必
要があり、また前記5GTL3の構成部分の満空間の隙
間はカラー外径の略1/100内に維持する必要がある
。隙間の寸法がそれぞれ前記のものより大となると圧力
の発生が充分に行なわれなくなる。
In a fluid pressure generating device, it is necessary to maintain the gap between the groove spaces of the component parts of HJ[3 within approximately 1/100 of the shaft diameter, and the gap of the full space of the component parts of 5GTL3 is equal to the outer diameter of the collar. It is necessary to maintain it within approximately 1/100 of the above. If the dimensions of the gaps are larger than those mentioned above, sufficient pressure will not be generated.

本発明の第1の実施例を第3図により説明する。A first embodiment of the present invention will be explained with reference to FIG.

同図(2)において、1は流体圧力発生5A置の本体、
2は回転軸、3は回転軸2の円周面に形成された溝で、
4は多数の溝3が形成された回転軸2の溝部、5は流体
の吸入口、6は流体の吐出口、7は吐出口6側に設けら
れた弁、8は流体の連通孔、9は流体の溜部、10は溝
部4と対向して本体1の内部に形成された静止円筒面部
、11は溝部4と静止円筒面部10の間の狭い間隙の溝
空間、12はシーリングである。溝空間11は回転軸の
直径の1/100以内の狭い間隙である。溝3は回転軸
2の円周面に軸心り向に対して傾斜するようにモしてヘ
リングボーンに形成されている。
In the same figure (2), 1 is the main body of the fluid pressure generator at 5A,
2 is a rotating shaft, 3 is a groove formed on the circumferential surface of the rotating shaft 2,
4 is a groove portion of the rotating shaft 2 in which a large number of grooves 3 are formed; 5 is a fluid intake port; 6 is a fluid discharge port; 7 is a valve provided on the discharge port 6 side; 8 is a fluid communication hole; 9 10 is a stationary cylindrical surface formed inside the main body 1 facing the groove 4; 11 is a narrow groove space between the groove 4 and the stationary cylindrical surface 10; and 12 is a sealing. The groove space 11 is a narrow gap within 1/100 of the diameter of the rotating shaft. The groove 3 is formed in a herringbone shape on the circumferential surface of the rotating shaft 2 so as to be inclined with respect to the axial direction.

今、弁7を閉じた状態で、回転軸2を図面上で右側から
児て反部6↑方向に回転すると、溝空間11に流体圧力
が発生し、流体の動圧効果により回転軸2の自重が支持
されるとともに溝空間11内には溜部9の側から吐出口
6の側に向けて流体が次第に圧力を高められつつ定常状
態に達する。次に弁7を開くと流体は、吸入口5から連
通孔8を経て一旦溜部9に溜められ、次いで溝空間11
を通って吐出口6方向う流体の流れを生ずる。
Now, with the valve 7 closed, when the rotating shaft 2 is rotated from the right side in the drawing in the opposite direction 6 ↑, fluid pressure is generated in the groove space 11, and due to the dynamic pressure effect of the fluid, the rotating shaft 2 is rotated. While the own weight is supported, the pressure of the fluid in the groove space 11 is gradually increased from the side of the reservoir 9 toward the side of the discharge port 6 and reaches a steady state. Next, when the valve 7 is opened, the fluid passes through the communication hole 8 from the suction port 5 and is temporarily stored in the reservoir 9, and then the fluid flows into the groove space 11.
A flow of fluid is generated through the discharge port in six directions.

満空間に誘起発生される流体圧力Pと吐出口6から吐出
される流体の流mQとの関係は同図(ハ)のようになる
。すなわち弁7を徐々に聞き始めるにしたがい、溝空間
11内の圧力Pは徐々に低下し始め、逆に流量Qは増加
していく。弁7が全開になると、吸入口5と吐出口6の
圧力は周囲の圧力(人気I]−)に雪しくなる。したが
って弁70聞度を適当に選定することにより11口圧さ
れた流体の所定量を吐出することができる。
The relationship between the fluid pressure P induced in the full space and the fluid flow mQ discharged from the discharge port 6 is as shown in FIG. That is, as the valve 7 gradually begins to be heard, the pressure P in the groove space 11 gradually begins to decrease, and conversely, the flow rate Q increases. When the valve 7 is fully opened, the pressure at the suction port 5 and the discharge port 6 becomes equal to the surrounding pressure (Popular I]-). Therefore, by appropriately selecting the pressure of the valve 70, a predetermined amount of fluid under pressure can be discharged.

このように第1実施例によれば、回転軸2は満空間11
を介して静止円筒面部10により動圧支持されるので、
動圧軸受(ラジアルベアリング)の機能を持つとともに
弁7の開度を退官に選定することにより、流体ポンプと
しての機能をも持たせることができることが分る。別言
すれば、本実施例は動圧軸受の機能を兼備した流体圧力
発生装置と言うことができる。
In this way, according to the first embodiment, the rotating shaft 2 is arranged in the full space 11.
Since it is supported by dynamic pressure by the stationary cylindrical surface part 10 via
It can be seen that in addition to having the function of a dynamic pressure bearing (radial bearing), by selecting the opening degree of the valve 7 to be closed, it can also have the function of a fluid pump. In other words, this embodiment can be said to be a fluid pressure generating device that also has the function of a dynamic pressure bearing.

第2の実施例を第1図及び第2図により説明する。A second embodiment will be explained with reference to FIGS. 1 and 2.

15は回転軸2に形成されたカラー部、16は溝部4に
隣接するカラー部の両側表面に形成さたれ多数のラセン
状の溝または半径方向に対して傾斜する直線状の溝から
なる溝部、17は溝部16と対向して本体1の内部に形
成された静止平面部、18は溝部16と静止平面部17
の間の狭い間隙の溝空間である。溝空間の隙間はカラー
部15の外径の1/100以内の寸法である。第1実施
例(第3図)と同一符号の部分は同一の構成であるので
説明を省略する。
15 is a collar portion formed on the rotating shaft 2; 16 is a groove portion formed on both sides of the collar portion adjacent to the groove portion 4 and consisting of a large number of helical grooves or linear grooves inclined with respect to the radial direction; Reference numeral 17 indicates a stationary plane portion formed inside the main body 1 facing the groove portion 16, and 18 indicates the groove portion 16 and the stationary plane portion 17.
This is the narrow gap between the grooves. The gap in the groove space has a size within 1/100 of the outer diameter of the collar portion 15. Portions with the same reference numerals as those in the first embodiment (FIG. 3) have the same configurations, so description thereof will be omitted.

回転軸2を図面上で右側から見て反時計方向に回転する
と、流体の回転軸2の溝部4により次第に圧力を高めら
れてカラー部15に至るが、溝部4に隣接してカラー部
15両側表面には溝部16が形成されているので、これ
と静止平面部17との間に流体圧力を発生し、流体はカ
ラー部3の中央部から円周方向に向けて流動せしめられ
つつ更に圧力を高められ、吐出口6に至るようになる。
When the rotating shaft 2 is rotated counterclockwise when viewed from the right side in the drawing, pressure is gradually increased by the groove 4 of the fluid rotating shaft 2 and reaches the collar 15. Since the groove portion 16 is formed on the surface, fluid pressure is generated between the groove portion 16 and the stationary plane portion 17, and the fluid is caused to flow from the center of the collar portion 3 in the circumferential direction, and further pressure is applied. It is raised and reaches the discharge port 6.

第2図によれば、回転軸2を矢印の方向に回転すると、
流体は軸端部からカラー部の中央部へ、次にカラー部の
外周部方向けて流れつつ徐々に圧力が高められる。した
がって、流体は、吸入口5−歩連通孔8令溜部9→溝空
間11→満空間18→叶出口6と流動することになる。
According to FIG. 2, when the rotating shaft 2 is rotated in the direction of the arrow,
The pressure of the fluid is gradually increased as it flows from the shaft end to the center of the collar and then toward the outer periphery of the collar. Therefore, the fluid flows from the suction port 5 to the passage communication hole 8 and the reservoir 9 to the groove space 11 to the full space 18 to the leaf outlet 6.

第2実施例によれば、溝部1Gと静止平面部17この間
の満空間18に誘起される流体の動圧効果により回転+
1’1l12の軸方向の推力は静止平面部17により支
持されるこ、とになり、静止平面部17はlIl圧軸受
(スラストベアリング)の機能を果でことになる。した
がって、静止円筒面部10のラジアルベアリングの機能
ととしに、本実施例は2つのベアリング機能を併有する
流体圧力発生装置と言うことができる。
According to the second embodiment, the rotation +
The thrust in the axial direction of 1'1l12 is supported by the stationary plane part 17, and the stationary plane part 17 performs the function of an lIl pressure bearing (thrust bearing). Therefore, in addition to the radial bearing function of the stationary cylindrical surface portion 10, this embodiment can be said to be a fluid pressure generating device that has two bearing functions.

第4図は第3の実施例である。FIG. 4 shows a third embodiment.

第1実施例(第3図)においては回転軸2が回転し本体
1が静止する構造であるが、これは相対的なしのである
から、第4図のように本体23を回転し、軸を静止軸2
4としても流体圧力発生装置とすることができる。ただ
し、この場合は静止軸24に対する多数の溝3の傾斜の
方向が第1実施例と同一であれば本体23の回転方向は
第1実施例の回転@2の場合と逆となる。
In the first embodiment (Fig. 3), the rotating shaft 2 rotates and the main body 1 remains stationary, but since this has no relative structure, the main body 23 is rotated and the shaft is moved as shown in Fig. 4. Stationary axis 2
4 can also be used as a fluid pressure generating device. However, in this case, if the direction of inclination of the many grooves 3 with respect to the stationary shaft 24 is the same as in the first embodiment, the direction of rotation of the main body 23 is opposite to that in the case of rotation @2 in the first embodiment.

21、22は静止軸を固定する支持体、25は吸入口、
26.2rGま吸入口25と連通ずる軸方向の連通孔2
9ど連通し溜部9に開口する孔、28は吐出口31と連
通するIr117’J向の1重通孔30と連通する孔、
32は回転円筒面部である。
21 and 22 are supports for fixing the stationary shaft; 25 is an inlet;
26.2rG communication hole 2 in the axial direction communicating with the suction port 25
9 is a hole that communicates with the reservoir 9; 28 is a hole that communicates with a single-layer communication hole 30 facing Ir117'J that communicates with the discharge port 31;
32 is a rotating cylindrical surface portion.

本体23を回転すると流体は吸入口25から流入し連通
孔29を経て孔26,2γから一旦溜部9,9に流入し
、ここからヘリングボーンにより次第に圧力を高められ
つつ満9間を流れて静止軸24の中央部に至り、ここか
ら孔28に流入し、次いで連通孔30を経て吐出口31
から吐出される。
When the main body 23 is rotated, fluid flows in from the suction port 25, passes through the communication hole 29, flows through the holes 26 and 2γ into the reservoir portions 9 and 9, and from there flows through the reservoir portions 9 and 9 while being gradually increased in pressure by the herringbone. It reaches the center of the stationary shaft 24, flows into the hole 28 from here, and then passes through the communication hole 30 to the discharge port 31.
It is discharged from.

したがって本実施例もラジアルベアリングの機能を持っ
た流体圧力発生装置となる。
Therefore, this embodiment also becomes a fluid pressure generating device having the function of a radial bearing.

第5図は第4の実施例である。FIG. 5 shows a fourth embodiment.

第2実施例(第1図及び第2図)においては回転@2が
回転し本体1が静止する*造であるが、にれを第5図の
ように本体23を回転し、軸を静止軸24としても流体
圧力発生装置とすることができる。この場合も、静止@
24に対する多数の満3の傾♀゛1の方向が第2実施例
と同一であれば、本体23の回転方向は第2実施例の回
転軸2の場合と逆となる。
In the second embodiment (Figs. 1 and 2), the rotation @ 2 rotates and the main body 1 stands still. The shaft 24 can also be a fluid pressure generating device. In this case too, still @
If the direction of the large number of inclinations ♀1 with respect to 24 is the same as in the second embodiment, the rotation direction of the main body 23 is opposite to that of the rotating shaft 2 in the second embodiment.

33はカラー部15の円周面に設けられ連通孔30に連
通ずる孔、34は回転平面部である。第3実施例(第4
図)と同一符号の部分は同一の構成であるのでその説明
を省略する。
33 is a hole provided on the circumferential surface of the collar portion 15 and communicates with the communication hole 30, and 34 is a rotating plane portion. Third example (fourth example)
Since the parts with the same reference numerals as in FIG.

本体23を回転すると、流体は吸入口25から流入し連
通孔29を経て孔26.27から一旦溜部9に流入し、
ここからヘリングボ−ンにより次第に圧力を高められつ
つ@h向の溝空間、次いでY怪方向の溝空間を流れてカ
ラー部15の円周面部に至り、ここから孔33に流入し
次いで連通口30を経て田出口31から吐出される。
When the main body 23 is rotated, fluid flows from the suction port 25, passes through the communication hole 29, and once flows into the reservoir 9 from the holes 26 and 27.
From here, the pressure is gradually increased by the herringbone, and it flows through the groove space in the @h direction, then through the groove space in the Y direction, reaching the circumferential surface of the collar part 15, from where it flows into the hole 33, and then into the communication port 30. After that, it is discharged from the outlet 31.

したがって本実施例もラジアル及びスジストベアリンク
の機能を持った流体圧力発生装置’:lとなる。
Therefore, this embodiment is also a fluid pressure generating device having the functions of radial and linear bearing links.

第6図及び第8図は第5の実施例である。FIGS. 6 and 8 show the fifth embodiment.

この実施例は、装置の甲佼体積当りの加L1−能力を向
上し圧力化を向上させるものである。
This embodiment improves the L1-capacity per shell volume of the device and improves pressurization.

37は静止側円筒体、38は回転側円筒体、39は回転
側円筒体38と一体の回転軸、40は静止側円筒体37
の多層円筒部、41は回転側円筒体38の多層円筒部、
42は多層円筒部40.41を交互に重ね合せたときに
形成される狂い溝空間、43ないし46は多層円筒部4
0.41の円筒部表面の対向面のいずれか一方に円筒軸
に対して傾斜して形成された多数の溝、47は流体の吸
入口、48は流体の吐出口、49は連通孔である。
37 is a stationary cylindrical body, 38 is a rotating cylindrical body, 39 is a rotating shaft integral with the rotating cylindrical body 38, and 40 is a stationary cylindrical body 37
41 is a multilayer cylindrical portion of the rotation side cylindrical body 38,
42 is a groove space formed when the multilayer cylindrical parts 40 and 41 are stacked alternately; 43 to 46 are the multilayer cylindrical parts 4;
A large number of grooves are formed on one of the opposing surfaces of the 0.41 cylinder surface at an angle with respect to the cylinder axis, 47 is a fluid intake port, 48 is a fluid discharge port, and 49 is a communication hole. .

なお、円筒面部の多数の溝の加゛[は円筒外周面の万が
容易であるので、本実施例では第8図(2)(ハ)のよ
うに総て外周面に形成されている。
In addition, since it is easy to form a large number of grooves on the cylindrical surface portion on the outer circumferential surface of the cylinder, in this embodiment, all of them are formed on the outer circumferential surface as shown in FIG. 8(2)(c).

静止側円筒体37と回転側円筒体38とは、互いの多層
円筒部40.41が交互に重ね合わされ多数の同心円状
の狭い溝望間42が形成されており、円筒部の対向する
表面には多数の傾斜した溝43ないし46が設けられて
いるので、回転軸39を図面上で右側から見て反時計方
向に回転させると、吸入口47から溜部3Gに流入した
流体は多層の狭い溝空間42を第6図の矢印または第8
図(C)の矢印のように順次、外側−→内側−→外側へ
と(ノターンを繰返しながら流通し、次第に圧力を上昇
(多段加ITl−)された後、吐出口48から外部に吐
出される。
The stationary side cylindrical body 37 and the rotating side cylindrical body 38 have multilayered cylindrical parts 40 and 41 stacked on top of each other alternately to form a large number of concentric narrow grooves 42, and on opposing surfaces of the cylindrical parts. is provided with a large number of inclined grooves 43 to 46, so when the rotating shaft 39 is rotated counterclockwise when viewed from the right side in the drawing, the fluid flowing into the reservoir 3G from the suction port 47 flows into a multilayer narrow groove. The groove space 42 is indicated by the arrow in FIG.
As shown by the arrow in Figure (C), the gas flows sequentially from the outside to the inside to the outside (repeating a no-turn), and after gradually increasing the pressure (multi-stage addition ITl-), it is discharged to the outside from the discharge port 48. Ru.

回転側円筒体38の回転により多数の満43ないし46
の形成された円筒部の円周面(溝部を形成する外周面)
とそれに対向する円筒部の円周面(円周面)との間の満
空間42には流体の動圧が誘起され、この動圧効宋によ
り回転側円筒体38の自重が支持されることになるので
動圧利用のベアリング15Il能を兼備する多段bn圧
の流体圧力弁」、装置である。
Due to the rotation of the rotating cylindrical body 38, a large number of 43 to 46
Circumferential surface of the cylindrical part formed with (outer peripheral surface forming the groove)
Dynamic pressure of the fluid is induced in the full space 42 between the rotor and the circumferential surface (circumferential surface) of the cylindrical portion facing it, and the dead weight of the rotation-side cylindrical body 38 is supported by this dynamic pressure effect. Therefore, it is a "multi-stage BN pressure fluid pressure valve" device that also has a bearing 15Il function that utilizes dynamic pressure.

第7図及び第9図は第6の実施例である。FIGS. 7 and 9 show a sixth embodiment.

この実施例は装置の栄位体積当りの流体流量を向上させ
たものである。
This embodiment improves the fluid flow rate per unit volume of the device.

50は静止側円筒体37の多層円筒部40に形成した連
通孔、51は回転側円筒体38の多(円筒部41に形成
した連通孔、52ないし55は多層円筒部40.41の
円筒部表面の対向面のいずれか一方に円筒軸に対して傾
斜して形成された多数の溝である。第5実施例(第6図
及び第8図)と同一符号の部分は同一の構成であるので
説明を省略する。
50 is a communication hole formed in the multilayer cylindrical part 40 of the stationary side cylindrical body 37, 51 is a communication hole formed in the multilayer cylindrical part 41 of the rotating side cylindrical body 38, and 52 to 55 are cylindrical parts of the multilayer cylindrical part 40 and 41. A large number of grooves are formed on either one of the opposing surfaces at an angle with respect to the cylinder axis. Portions with the same reference numerals as those in the fifth embodiment (FIGS. 6 and 8) have the same configuration. Therefore, the explanation will be omitted.

回転軸39を図面上で右側から見て反部削方向に回転す
ると、多層の狭い溝空間42内には流体圧が発生するが
、連通孔50.51により多層円筒部40゜41の人口
側及び出口側の圧力が同〜にされるので、吸入口47よ
り吸入された流体は第9図(c)のように同時に同一の
吸入圧力で入口側からそれぞれ多層円筒部の複数の溝空
間42を平行流として流通移動しつつその圧力が上昇し
て出口側に至り、そこで合流し、次いでここから連通孔
49を通って吐出口48から外部へ吐出される。
When the rotating shaft 39 is rotated in the opposite cutting direction when viewed from the right side in the drawing, fluid pressure is generated in the multilayer narrow groove space 42, but the communication hole 50. Since the pressures on the and outlet sides are kept at the same level, the fluid sucked from the suction port 47 simultaneously enters the plurality of groove spaces 42 of the multilayer cylindrical portion from the inlet side at the same suction pressure, as shown in FIG. 9(c). While flowing and moving as a parallel flow, the pressure increases and reaches the outlet side, where they merge and are then discharged from there through the communication hole 49 and from the discharge port 48 to the outside.

本実施例も第5実施例と同様に動圧利用のベアリング機
能を兼備する流体圧力発生装置である。
Like the fifth embodiment, this embodiment is also a fluid pressure generating device that also has a bearing function using dynamic pressure.

第10図は第7の実施例である。FIG. 10 shows a seventh embodiment.

本実施例は第5実施例(第6図及び第8図)の応用例と
言うこともできるものであって、第5実施例の静止側円
筒体が電動機固定巻線60を挟/vで2個設けられて本
体58を形成し、その内部に第5実施例の回転側円筒体
〔ただし回転軸39を欠如している〕2個が?L動機回
転了61を中心にして一体に設けられて回転体5つを形
成している。多層円筒部40.41は第5実施例と同様
に円筒面に夫々多数の渦が形成されているとともに互い
に同心円状に帽み合わされ、多数の空間として溝空間4
2が形成されている。
This embodiment can also be said to be an application example of the fifth embodiment (Figs. 6 and 8), in which the stationary side cylindrical body of the fifth embodiment holds the motor fixed winding 60 at /v. Two cylinders are provided to form a main body 58, and two rotation-side cylindrical bodies of the fifth embodiment [however, the rotation shaft 39 is missing] are installed inside the main body 58? The L-motor rotating body 61 is integrally provided to form five rotating bodies. As in the fifth embodiment, the multilayer cylindrical portions 40 and 41 each have a large number of vortices formed on their cylindrical surfaces, and are fitted together concentrically, forming the groove space 4 as a large number of spaces.
2 is formed.

電@機に通電すると回転体59が回転し、吸入口4Iか
ら吸入された流体は通路62を経て満9間42に導入さ
れ、多数の溝空間を直列に流通しながら次第に圧力を上
背した後、通路63を経て吐出口48から外部へ吐出さ
れる。回転体5つの自重は多数の満空間42に誘起され
る動圧により支持される。
When the electric power was applied to the machine, the rotating body 59 rotated, and the fluid sucked from the suction port 4I was introduced into the fluid 42 for nine minutes through the passage 62, and the pressure was gradually increased while flowing in series through a large number of groove spaces. Thereafter, it is discharged to the outside from the discharge port 48 via the passage 63. The weight of the five rotating bodies is supported by the dynamic pressure induced in the large number of filled spaces 42.

第11図は第8の実施例である。FIG. 11 shows the eighth embodiment.

本実施例は第6実施例(第7図及び第9図)の応用例と
言うこともできるものであって、第6実施例の静止側円
筒体が2個組み合わされた形となって本体58を形成し
、その内部中央に電動(A固定巻線60を設けるととも
に本体58内部に第6実施例の回転側円筒体〔ただし回
転軸39を欠如している〕2個が電動機回転子61を中
心にして一体に設けられて回転体59を形成している。
This embodiment can be said to be an applied example of the sixth embodiment (Figs. 7 and 9), and the main body is formed by combining two stationary cylinders of the sixth embodiment. A fixed winding 60 is provided at the center of the main body 58, and two rotating cylinders of the sixth embodiment [however, the rotating shaft 39 is missing] are provided with an electric motor rotor 61. A rotary body 59 is formed integrally with the rotor 59 at the center.

多層の円筒部40.41は第6実施例と同様に円周面に
夫々多数の溝が形成されるとともに互いに同心円状に組
み合わされ、多数の空間として溝空間42が形成されて
いる。64は一部の流体が加圧される溝空間で対向する
回転平面部または静止平面部のいずれか−hに第21図
のようなラセン溝または傾斜状直線溝が形成されている
。65.66は流体の通路である。
As in the sixth embodiment, the multi-layered cylindrical portions 40, 41 have a large number of grooves formed on their circumferential surfaces and are combined concentrically with each other to form groove spaces 42 as a large number of spaces. 64 is a groove space where a part of the fluid is pressurized, and a helical groove or an inclined linear groove as shown in FIG. 21 is formed in either the rotating plane part or the stationary plane part -h which faces each other. 65 and 66 are fluid passages.

電11111に通電すると回転体59が回転し、吸入口
47から吸入された流体は通路62を経て溝空間42に
導入される。多層の満空間は連通孔50.51により豆
いに連通されているので、第6実施例の場合と同様に、
入口側〔連通孔50のある側〕から同一の吸入圧力で多
数の同心円状の溝空間を平行流として本体58の中央部
に向って流通移動しつつその圧力が上昇して出口側〔連
通孔51のある側]に〒って合流し、連通孔49、次い
で通路63を通り吐出口48から外部へ吐出口される。
When the power supply 11111 is energized, the rotating body 59 rotates, and the fluid sucked from the suction port 47 is introduced into the groove space 42 through the passage 62. Since the multilayer full space is communicated with the beans through the communication holes 50 and 51, as in the case of the sixth embodiment,
The same suction pressure flows from the inlet side (the side where the communication hole 50 is located) through a large number of concentric groove spaces as a parallel flow toward the center of the main body 58, and the pressure rises, and the pressure increases and the pressure increases. 51], the liquid flows through the communication hole 49, then through the passage 63, and is discharged from the discharge port 48 to the outside.

また前記のように出口側に流通して圧力の高められた流
体の一部(最外周層を流通する流体)は溝空間64に分
流して更に圧力を高められた後、電動機回転子61の周
面の通路65を流通し、次いで通路66を経て主峰路で
ある通路63を通る流体と合流して吐出口48から吐出
される。
Further, as described above, a part of the fluid whose pressure has been increased by flowing to the outlet side (fluid flowing through the outermost layer) is diverted to the groove space 64 and the pressure is further increased, and then the motor rotor 61 The fluid flows through a passage 65 on the circumferential surface, passes through a passage 66, merges with the fluid passing through the passage 63, which is the main peak passage, and is discharged from the discharge port 48.

前記のように溝空間64を流れる流体は動圧を誘起し回
転体59に働くスラスト力を支持する1q目を果す。ま
た回転体5つの自重は多数の満空間42に誘起される!
1II3−により支持される。
As described above, the fluid flowing in the groove space 64 induces dynamic pressure and serves the 1q-th function of supporting the thrust force acting on the rotating body 59. In addition, the weight of the five rotating bodies is induced in a large number of full spaces 42!
1II3-.

第12図は第9の実施例である。FIG. 12 shows a ninth embodiment.

本実施例は多段圧f!型式の実施例である。70は本体
、71は本体70の中央部に設けられた電動機固定巻線
、72は電動機の回転子、73は流体の吸入口、74は
流体の吐出口、76は電動機回転子ン側の回転軸部の円
筒面に複数段にかつ間隔をおいて設けられた溝部、78
は同じく前記回転軸部の円筒面において前記間隔の部位
に複数段に設けられたバイパス防止用の溝部、79は溝
部78の多数の溝、75は電動機回転子72、回転軸部
の溝部7G及び溝部78が一体に形成された回転体、7
7は電動(環回転T72の周囲に形成された流体の通路
、80は本体7oの内部に形成された静止円筒面部87
と洞部76との間の狭い間隙、81は溝部76の流体出
口、83は中間冷却器、84は冷却用流体の管系、82
は中間冷却器83の流体入口、85は中間冷却5の流体
出口、86は次段の溝部7Gの流体入口である。そして
、各段のそれぞれの溝部76の流体出口81は各段の中
間冷741器の流体入口82に接続され、また各段の中
間冷却器の流体出口85は次段の溝部76の流体入口8
6に接続される。
In this embodiment, the multi-stage pressure f! This is an example of the type. 70 is a main body, 71 is a motor fixed winding provided in the center of the main body 70, 72 is a rotor of the motor, 73 is a fluid inlet, 74 is a fluid outlet, 76 is a rotation on the motor rotor side. Grooves 78 provided in multiple stages and at intervals on the cylindrical surface of the shaft.
Similarly, numeral 79 indicates a plurality of grooves for bypass prevention provided in the cylindrical surface of the rotary shaft portion at the above-mentioned intervals, numeral 79 indicates a large number of grooves in the groove portion 78, numeral 75 indicates the motor rotor 72, the groove portion 7G on the rotary shaft portion, and A rotating body with a groove 78 integrally formed therein, 7
7 is an electric motor (fluid passage formed around the rotating ring T72; 80 is a stationary cylindrical surface portion 87 formed inside the main body 7o);
81 is a fluid outlet of the groove 76, 83 is an intercooler, 84 is a cooling fluid pipe system, 82
85 is a fluid inlet of the intercooler 83, 85 is a fluid outlet of the intercooler 5, and 86 is a fluid inlet of the groove 7G in the next stage. The fluid outlet 81 of each groove 76 of each stage is connected to the fluid inlet 82 of the intercooler 741 of each stage, and the fluid outlet 85 of the intercooler of each stage is connected to the fluid inlet 8 of the groove 76 of the next stage.
Connected to 6.

中間冷却583は圧縮段階の途中で流体の圧縮熱を除去
するためのちのであり、圧縮用溝空間の温度が一定温度
を超えないようにするとともに、圧縮に要する動力の低
減をはかるものである。ところで中間冷却器83を流体
が通過すると圧損が生ずるがこの圧損の存6のために流
体は1つの溝部76の流体出口81から次の溝部76の
流体入口86へ間隙80を流れてバイパスしてしまうこ
とになる。このため、流体が確実に中間冷却器83の方
へ流れるようにバイパス防止用の溝部18が設けられる
。そしにの溝部78の円周面には溝部1Gと逆傾斜をh
する多数の満79を形成する。この逆傾斜の溝79は溝
部76とは逆の圧力傾斜を/I−ぜしめ、中間冷却器8
3に生f6萌記圧損に略等しい逆向きの圧力差を誘起せ
しめるように設訓する。
Intermediate cooling 583 is for removing compression heat of the fluid during the compression stage, and is intended to prevent the temperature of the compression groove space from exceeding a certain temperature and to reduce the power required for compression. By the way, when fluid passes through the intercooler 83, a pressure drop occurs, and due to the presence of this pressure drop, the fluid flows from the fluid outlet 81 of one groove 76 to the fluid inlet 86 of the next groove 76 through the gap 80 and bypasses it. It will end up being put away. For this reason, a bypass prevention groove 18 is provided to ensure that the fluid flows toward the intercooler 83. The circumferential surface of the groove 78 on the other hand has an inclination h opposite to that of the groove 1G.
Form a large number of 79. This reversely inclined groove 79 creates a pressure gradient opposite to that of the groove 76, and the intercooler 8
3 to induce a pressure difference in the opposite direction that is approximately equal to the raw f6 pressure loss.

装置に通電づると、回転体75が図面上で右側から見て
時語り向に回転し、流体は吸入ロア3から吸入口され通
路17を軽て第1段の溝部76に導入されて廿縮された
後、流体出口81、流体人口82、中間冷却器83、流
体出口85と流れて冷1Jされ、流体入口86から第2
段の溝部7Gに導入される。このような過程を繰返した
後、流体は通路88を経て吐出ロア4から外部へ吐出さ
れる。回転体75の山手は他の実施例と同様に動圧によ
り支持される。
When the device is energized, the rotating body 75 rotates in the clockwise direction when viewed from the right side in the drawing, and the fluid is introduced from the suction lower 3 into the suction port, passes through the passage 17, and is introduced into the first stage groove 76 where it is compressed. After that, it flows through the fluid outlet 81, the fluid population 82, the intercooler 83, and the fluid outlet 85 to be cooled by 1J, and then flows from the fluid inlet 86 to the second
It is introduced into the groove 7G of the step. After repeating this process, the fluid is discharged from the discharge lower 4 to the outside through the passage 88. The top of the rotating body 75 is supported by dynamic pressure as in other embodiments.

第12図(へ)は装置内における流体の圧力上背の過程
を同図(2)と上下に対応するようにして描かれたしの
であり、吸入圧力psが溝部7Gの領域で圧縮され最終
的に吐出圧力Pdとなることが分る。
Fig. 12(f) is a diagram showing the process of fluid pressure build-up within the device in a manner that corresponds vertically to Fig. 12(2), in which the suction pressure ps is compressed in the groove 7G region and the It can be seen that the discharge pressure becomes Pd.

なお、バイパス防止用の洞部78においては流体圧力の
上Rはない。
Note that there is no upper radius of fluid pressure in the cavity 78 for bypass prevention.

またバイパス防止用の溝部78は回転軸上でなくこれに
対向する静止円筒面部87に形成することができる。
Furthermore, the bypass prevention groove 78 can be formed not on the rotating shaft but on the stationary cylindrical surface portion 87 facing the rotating shaft.

第13図は第10の実施例である。FIG. 13 shows a tenth embodiment.

本実施例は第9実施例よりも同一寸法に対して高圧縮比
を得ることができる。
This embodiment can obtain a higher compression ratio than the ninth embodiment for the same dimensions.

91はカラー部、92はカラー部91の両側表面に多数
のラセン状の溝または半径方向に対しC傾斜した直線状
の清からなる溝部、93は静止円筒面部、94は溝部9
2に対向する静止平面図、95はカラー部91の溝部9
2の流体出口、9Gはカラー部91の他側面の溝部92
への流体入口、97はカラー部91の外周部表面上に溝
部76における流体の流れ方向とは逆方向の流れを誘起
するような傾斜を有する多数の溝からなるバイパス防止
用の溝部である。第9実施例(第12図)と同一符号部
分は同一の構造部分であるからその説明を省略する。
91 is a collar portion, 92 is a groove portion consisting of a large number of helical grooves on both sides of the collar portion 91 or a straight groove having a C inclination with respect to the radial direction, 93 is a stationary cylindrical surface portion, and 94 is a groove portion 9.
A static plan view facing 2, 95 shows the groove 9 of the collar part 91.
No. 2 fluid outlet, 9G is a groove portion 92 on the other side of the collar portion 91.
The fluid inlet 97 is a bypass prevention groove formed of a large number of grooves on the outer circumferential surface of the collar portion 91 with an inclination that induces a flow in a direction opposite to the flow direction of the fluid in the groove 76. Portions with the same reference numerals as those in the ninth embodiment (FIG. 12) are structural portions that are the same, so a description thereof will be omitted.

本実施例では電動機回転子12の両側の回転軸において
、回転軸部の円筒面に洞部76とこれに続いてカラー部
91の溝部92を設け、溝部76に対向して本体70の
内面に静止円筒面部93を、また溝部92に対向して静
■−平面部94を設ける。そして前記の紺を2組以上回
転軸上に直列に配列する。またカラー部91の湾部92
からの流体出口95は中間冷却器83の流体人口82に
、また溝部92への流体式L396は中間冷却器83の
流体出口85にそれぞれ連通接続している。
In this embodiment, in the rotating shafts on both sides of the motor rotor 12, a hollow portion 76 and a groove portion 92 of a collar portion 91 are provided on the cylindrical surface of the rotating shaft portion, and a groove portion 92 of a collar portion 91 is provided on the inner surface of the main body 70 opposite to the groove portion 76. A stationary cylindrical surface portion 93 is provided, and a stationary cylindrical surface portion 94 is provided opposite the groove portion 92. Then, two or more sets of the above-mentioned navy blues are arranged in series on the rotating shaft. Also, the bay part 92 of the collar part 91
A fluid outlet 95 from the intercooler 83 is connected to the fluid outlet 82 of the intercooler 83, and a fluid outlet L396 to the groove 92 is connected to the fluid outlet 85 of the intercooler 83, respectively.

本実施例では回転軸部の円筒面の溝部7GU−圧縮され
た流体をカラー部91の洞部92によって更に圧縮する
ので、ぞの分だけ圧縮比を人さくすることができること
になる。カラー部91の溝部91及び中間冷却器83の
機能は第9実施例のバイパス防1用満部18及び中間冷
却器83の懇能と同じである。
In this embodiment, the fluid compressed by the groove 7GU on the cylindrical surface of the rotating shaft is further compressed by the cavity 92 of the collar 91, so the compression ratio can be reduced accordingly. The functions of the groove part 91 of the collar part 91 and the intercooler 83 are the same as those of the bypass prevention 1 part 18 and the intercooler 83 in the ninth embodiment.

本実施例ではカラー部91の両側表面の溝部92と静止
平面図94との間の溝空間に発生する!J+ tt’に
より回転体75がスラスト方向に安定して支持される。
In this embodiment, it occurs in the groove space between the groove portions 92 on both surfaces of the collar portion 91 and the static plan view 94! The rotating body 75 is stably supported in the thrust direction by J+ tt'.

なお、バイパス防止用の溝部97はカラー部の外周部表
面上でなくこれに対向する静止円筒面部に形成すること
ができる。
Note that the bypass prevention groove 97 can be formed not on the outer peripheral surface of the collar portion but on the stationary cylindrical surface portion facing thereto.

第14図は本発明の流体圧力発生装置を運転する方法に
ついての一実施例である。
FIG. 14 is an embodiment of a method of operating the fluid pressure generating device of the present invention.

本実施例は流体圧力発生装置を定速回転のもとて凝縮性
流体を使用する冷凍装置に応用した例であって、流体圧
力発生装置としての圧縮Fyi101で圧縮された冷媒
ガスは凝縮器102で冷却されて凝縮液となり、膨張弁
105に至る。ここで等エンタルピー膨張した冷媒液は
蒸発器106に至り、冷却負荷107より吸熱して蒸発
し、再び圧縮機101に吸入さ机る。圧縮機101は常
時定速で回転し、容量制御は次のように行なう。すなわ
F)凝縮器102に対する冷却流体管系103に弁10
4が設けられ、この弁の開度を加減する。例えば弁10
4の開度を小とすれば冷却流体の水$が減少し、凝縮器
102の濡洩が上弄し、圧縮機101の吐出圧力が高く
なる。これにより冷凍機の8串は小さくなる。
This embodiment is an example in which a fluid pressure generation device is applied to a refrigeration system that uses condensable fluid under constant rotation. The condensate is cooled and becomes a condensate, which reaches the expansion valve 105. Here, the isenthalpically expanded refrigerant liquid reaches the evaporator 106, absorbs heat from the cooling load 107, evaporates, and is sucked into the compressor 101 again. The compressor 101 always rotates at a constant speed, and capacity control is performed as follows. F) valve 10 in cooling fluid piping system 103 to condenser 102;
4 is provided to adjust the opening degree of this valve. For example, valve 10
If the opening degree of 4 is made small, the water amount of the cooling fluid decreases, the leakage of the condenser 102 becomes worse, and the discharge pressure of the compressor 101 increases. This makes the 8 skewers of the refrigerator smaller.

本実施例の圧縮機の性能を示す第15図によって説明す
れば、Pは圧力、KWthは理論所要動力、KWsは軸
動力、Qは流量であって、吐出弁108を全開にしたと
き圧力は最大p laxとなり、弁開度の増大につれて
流FJQは増加し、吐出圧力は低下する3、理論所要動
ツノの略最大となる点を設51点に設定する。
To explain the performance of the compressor of this embodiment with reference to FIG. 15, P is the pressure, KWth is the theoretical required power, KWs is the shaft power, and Q is the flow rate. When the discharge valve 108 is fully opened, the pressure is The flow FJQ increases as the valve opening increases, and the discharge pressure decreases.3.The point at which the theoretically required movement horn is approximately at its maximum is set as the 51st point.

本圧縮(幾は定トルク特性に特徴があり、定速回転に於
いては’Ill !71力KWsは略一定となる。従っ
て設入(点以外では(KWs−KWth)の値は正とな
り、このvIh分は摩擦損失となる。従って、設計点か
らずれるに従い、この摩擦損失は増大するが運転には何
らの問題を与えない。可動部に接触部が皆無であるため
R命は無限である。また本B縮機は常時連続運転とし必
要に応じてOから100%まで無段階に容量制御をする
ような運転方法が最適と考えられる。また冷媒の凝縮温
度の上下は前記のような冷却媒体の流量の調節のみでな
く、凝縮器の自効伝熱面積の増減でもよく、また空冷の
場合は風聞の調節でもよい。更に宇宙空間において宇宙
殿器等に利用する場合には、凝縮器からの宇宙空間への
放出すなわち放出熱(幅国熱)の調節は凝縮器の伝熱面
積を調節するシャッター等により行なうことができる。
This compression is characterized by a constant torque characteristic, and at constant speed rotation, the force KWs is approximately constant. Therefore, the value of (KWs - KWth) is positive at points other than the setting point, This vIh amount becomes a friction loss. Therefore, as it deviates from the design point, this friction loss increases, but it does not cause any problems in operation. Since there are no contact parts in the moving parts, the R life is infinite. In addition, it is considered optimal to operate this B condenser continuously at all times and to control the capacity steplessly from O to 100% as necessary.Also, the above-mentioned cooling control is used to raise and lower the condensing temperature of the refrigerant. In addition to adjusting the flow rate of the medium, it is also possible to increase or decrease the self-effective heat transfer area of the condenser, or in the case of air cooling, it is also possible to adjust the wind blade. The emission of heat from the condenser into outer space, that is, the emission heat (width heat) can be controlled by a shutter or the like that adjusts the heat transfer area of the condenser.

〔発明の効果〕〔Effect of the invention〕

本発明の効果とするところは次のとおりである。 The effects of the present invention are as follows.

(1)  圧縮機として利用した場合、完全オイルフリ
ー圧縮機が実現できる。
(1) When used as a compressor, a completely oil-free compressor can be realized.

通常の圧縮(幾では軸受に油潤滑方式を使用するため、
圧縮流体と油の混入を防止するためまたは両者の分離の
ために多大の3慮を払わなければならない。本圧縮機で
は流通加圧流体自身によるガスベアリング方式であるか
ら潤滑油の問題は全く6杓しない。
Normal compression (some use oil lubrication for bearings, so
Great care must be taken to prevent the compressed fluid and oil from mixing or to separate them. Since this compressor uses a gas bearing system using the circulating pressurized fluid itself, there is no problem with lubricating oil.

(2)  振動騒音が皆無である。(2) There is no vibration noise.

遠心型及び容積型の総ての圧縮機、ポンプに騒fl l
i動はつきものであり、これを完全に除去することは殆
んで不可能である。本発明では流体の加圧過程に撮動騒
音を発生する原因が全くないので振動騒音は全くない。
All centrifugal and positive displacement compressors and pumps
I-motion is inevitable, and it is almost impossible to completely eliminate it. In the present invention, since there is no cause for generating imaging noise in the fluid pressurization process, there is no vibration noise at all.

〈3)圧力比の変動に対してきわめて安定な運転ができ
る。
(3) Extremely stable operation is possible against fluctuations in pressure ratio.

ターボ型機械のサージング現象、容積型機械の吐出弁閉
塞による安常高圧等の問題は全くなく、常時連続運転の
状態できわめて安定した運転ができる。
There are no problems such as surging phenomenon in turbo-type machines or stable high pressure due to discharge valve blockage in positive-displacement machines, and extremely stable operation is possible under constant continuous operation.

〈4)寿命が゛ド永久的である。(4) Lifespan is permanent.

可動部は完全に無接触のため摩耗部は皆無であり、qQ
Jは゛ト永久的である。
Since the movable parts are completely non-contact, there are no wear parts, and qQ
J is permanent.

(5)完全密閉構造が最適であり、流体の酪洩を完全に
防止できる。
(5) A completely sealed structure is optimal, and fluid leakage can be completely prevented.

(6)  きわめて小容量の機械を実現できる。(6) It is possible to realize an extremely small capacity machine.

(7)  機械を停止することなく、連続運転状態で効
果的な容量制御ができる。したがって機械を停止する必
要がなく発停時に頻発する事1々を防止できる。
(7) Capacity can be effectively controlled in continuous operation without stopping the machine. Therefore, there is no need to stop the machine, and it is possible to prevent problems that frequently occur when starting and stopping the machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流体圧力発生装置装どの第2実施例の
断面図、第2図は践装置の本体の部分を除いた一部省略
斜視図、第3図(a) tま本発明の流体圧力発生装置
の第1実施例の断面図、同図(ハ)はそのP−Q[li
l線図、第4図ないし第7図は本発明の流体圧力発生装
置の第3ないし第6実塘例の断面図、第8図は第5実施
例の説明図でに)は静止側の多層円筒部中の一部の円筒
についての欠訣斜視図、0は回転側の多層円筒部中の一
部の円筒についての欠訣斜視図、(c)は流体の流通経
路説明図、第9図は第6実施例の説明図で((支)は静
止側の多層円筒部中の一部の円筒についての欠駄斜視図
、(ハ)は回転側の多層円筒部中の一部の円筒について
の欠駄斜視図、(c)は流体の流通経路説明図、第10
図及び第11図は本発明の流体圧力発生装置の第7及び
第8実施例、第12図は本発明の流体圧力発生装置の第
9実施例で(2)はその一部所面図、(ハ)はP−し)
)力分布図、第13図は同じく第10実施例の一部断面
図、第14図は本発明の「流体圧力発生¥i置の運転1
ノ法」の一実施例のフローシートダイヤグラム、第15
図は第14図の実施例のP及びKW−Qの曲線図、第1
6図は通常の!7IIEl:式軸受系の説明図、第17
図は+」J [3の一部省略斜視図、第18図t4通常
のHJBの説明図で(2)は回転軸方向位置に対する圧
力分缶図、(ハ)は11 J Bの構造説明図、第19
図は通常の動圧式推力軸受に関しく2)は一部省略断面
図、a(ま軸受部の平面図、(c)はP−r曲線図、第
20図は通常の動圧式lit力軸受の他の例でに)は一
部省略断面図、(ハ)は@受部の平面図、(c)はp−
r曲線図、第21図は本発明の流体圧力光/i:¥i置
の原叩をモデルにより説明するもので(a) t、を該
モデルの断面図、(へ)は(0図のA−A断面図、(c
)はp−r曲線図、に)はP−Q[tll線図である。 2・・回転軸、3・・溝、4・・溝部、10・・静止円
筒面部、11・・溝空間、15・・jJラ一部、17・
・静止平面部、18・・溝空間、37・・静止側円筒体
、38・・回転側円筒体、40.41・・多層円筒部、
42・・溝空間、72・・電vJ機回転了、76・・渦
部、79・・渦、83・・中間冷却器、87・・静止円
筒面部、91・・カラ・一部、93・・静止円筒面部、
94・・静止平面部、97・・溝部、101・・流体圧
力発生装置としての圧縮機、102・・凝縮器。 (b) (■ CC) Cb) C(L) (b) 傳すしΔ P4.I3z b=九すP8 ムCHTBtmkf9イ立1【) (αジ (b) 竿18図 竿20図
Fig. 1 is a sectional view of a second embodiment of the fluid pressure generating device of the present invention, Fig. 2 is a partially omitted perspective view excluding the main body of the pressure generating device, and Fig. 3(a) shows the present invention. A sectional view of the first embodiment of the fluid pressure generating device shown in FIG.
Figures 4 to 7 are cross-sectional views of the third to sixth embodiments of the fluid pressure generating device of the present invention, and Figure 8 is an explanatory diagram of the fifth embodiment. FIG. 9 is a perspective view of a defect in some cylinders in the multilayer cylinder part; 0 is a perspective view of a defect in a part of the cylinder in the multilayer cylinder part on the rotating side; FIG. The figure is an explanatory view of the sixth embodiment ((support) is a perspective view of a part of the cylinder in the multilayer cylinder part on the stationary side, and (c) is a perspective view of a part of the cylinder in the multilayer cylinder part on the rotating side. (c) is a fluid distribution route explanatory diagram, No. 10
11 are seventh and eighth embodiments of the fluid pressure generating device of the present invention, FIG. 12 is a ninth embodiment of the fluid pressure generating device of the present invention, and (2) is a partial partial view thereof. (c) is P-shi)
)A force distribution diagram, FIG. 13 is a partial sectional view of the 10th embodiment, and FIG. 14 is a force distribution diagram of the present invention.
Flow sheet diagram of an example of the 15th method
The figure is a curve diagram of P and KW-Q of the embodiment shown in Fig. 14.
Figure 6 is normal! 7IIEl: Explanatory diagram of type bearing system, No. 17
The figure is a partially omitted perspective view of ``J [3], Figure 18 t4 is an explanatory diagram of a normal HJB, (2) is a pressure distribution diagram with respect to the position in the rotational axis direction, and (c) is a structural explanatory diagram of 11 J B. , 19th
The figures relate to a normal hydrodynamic thrust bearing. 2) is a partially omitted sectional view, a (a) is a plan view of the bearing part, (c) is a P-r curve diagram, and Fig. 20 is a normal hydrodynamic thrust bearing. In other examples, (c) is a partially omitted sectional view, (c) is a plan view of the receiving part, and (c) is a p-
The r curve diagram and FIG. 21 are for explaining the fluid pressure light/i:\i position drum strike of the present invention using a model. (a) t is a cross-sectional view of the model, and A-A sectional view, (c
) is a p-r curve diagram, and ) is a P-Q[tll diagram. 2...Rotating shaft, 3...Groove, 4...Groove portion, 10...Stationary cylindrical surface portion, 11...Groove space, 15...jJra part, 17...
- Stationary plane part, 18...Groove space, 37...Stationary side cylindrical body, 38...Rotating side cylindrical body, 40.41...Multilayer cylinder part,
42... Groove space, 72... Electric VJ machine rotation complete, 76... Vortex part, 79... Vortex, 83... Intercooler, 87... Stationary cylindrical surface part, 91... Empty part, 93...・Stationary cylindrical surface part,
94...Stationary plane part, 97...Groove part, 101...Compressor as a fluid pressure generating device, 102...Condenser. (b) (■ CC) Cb) C(L) (b) Den SushiΔ P4. I3z b=9 P8 MUCHTBtmkf9 I stand 1 [) (αji(b) Rod 18 figure Rod 20 figure

Claims (11)

【特許請求の範囲】[Claims] (1)軸心方向に対して傾斜する多数の溝からなる溝部
を円周面に形成した回転軸、前記溝部の外周部と狭い間
隙をおいて対向配置される静止円筒面部及び流体の吸入
口、吐出口を有し、前記回転軸の回転により前記溝部と
静止円筒面部との間の溝空間に誘起される流体の動圧効
果を利用して前記回転軸の自重を支持するとともに前記
溝空間の一端より他端に向けて流体を流通せしめ前記吸
入口より流体を吸入し加圧して前記吐出口より吐出させ
ることを特徴とする流体圧力発生装置。
(1) A rotating shaft with a groove formed on its circumferential surface consisting of a large number of grooves inclined with respect to the axial direction, a stationary cylindrical surface portion facing the outer periphery of the groove with a narrow gap, and a fluid inlet , has a discharge port, supports the weight of the rotary shaft by utilizing the dynamic pressure effect of the fluid induced in the groove space between the groove portion and the stationary cylindrical surface portion by the rotation of the rotary shaft, and also supports the groove space. A fluid pressure generating device characterized in that the fluid is caused to flow from one end toward the other end, and the fluid is sucked through the suction port, pressurized, and discharged from the discharge port.
(2)請求項1記載の流体圧力発生装置において、溝部
を回転軸の円周面に代えて対向する静止円筒面部の内周
面に溝が該円筒面部の軸心方向に対し傾斜するように形
成した流体圧力発生装置。
(2) In the fluid pressure generating device according to claim 1, the groove is provided on the inner circumferential surface of the opposing stationary cylindrical surface section in place of the circumferential surface of the rotating shaft so that the groove is inclined with respect to the axial direction of the cylindrical surface section. Formed fluid pressure generating device.
(3)請求項1または2記載の流体圧力発生装置におい
て、回転軸に代えて静止軸を設け、また静止円筒面部に
代えて回転円筒面部を設けた流体圧力発生装置。
(3) The fluid pressure generating device according to claim 1 or 2, wherein a stationary shaft is provided in place of the rotating shaft, and a rotating cylindrical surface portion is provided in place of the stationary cylindrical surface portion.
(4)軸心方向に対して傾斜する多数の溝からなる隅部
を円周面に形成した回転軸、前記溝部の外周部と狭い間
隙をおいて対向配置される静止円筒面部及び流体の吸入
口、吐出口を有するとともに、前記回転軸にカラー部を
設け、前記溝部に隣接するカラー部の表面に多数のラセ
ン状の溝または半径方向に対して傾斜する直線状の溝か
らなる溝部を形成し、前記カラー部の溝部の表面と狭い
間隙をおいて静止平面部を対向配置し、前記回転軸の回
転により回転軸の前記溝部と前記静止円筒面部との間の
溝空間及びカラー部の前記溝部と前記静止平面部との間
の溝空間に誘起される流体の動圧効果を利用して、前記
回転軸の自重を前記静止円筒部により支持し、また軸方
向の推力を前記静止平面部により支持するとともに、回
転軸部分の前記溝空間及びカラー部分の前記溝空間を通
じて流体を流通せしめ、前記吸入口より流体を吸入し加
圧して前記吐出口より吐出させることを特徴とする流体
圧力発生装置。
(4) A rotating shaft with a corner formed on its circumferential surface consisting of a large number of grooves inclined with respect to the axial direction, a stationary cylindrical surface disposed facing the outer periphery of the groove with a narrow gap, and a fluid suction A collar portion is provided on the rotating shaft, and a groove portion consisting of a large number of helical grooves or linear grooves inclined with respect to the radial direction is formed on the surface of the collar portion adjacent to the groove portion. A stationary plane part is arranged opposite to the surface of the groove part of the collar part with a narrow gap therebetween, and rotation of the rotating shaft causes the groove space between the groove part of the rotating shaft and the stationary cylindrical surface part and the surface of the collar part to be closed. Utilizing the dynamic pressure effect of the fluid induced in the groove space between the groove and the stationary plane part, the weight of the rotating shaft is supported by the stationary cylindrical part, and the thrust in the axial direction is transferred to the stationary plane part. A fluid pressure generator characterized in that the fluid is supported by the rotating shaft portion and the groove space of the collar portion, and the fluid is sucked through the suction port, pressurized, and discharged from the discharge port. Device.
(5)請求項4記載の流体圧力発生装置において、回転
軸の溝部を回転軸の円周面に代えて対向する静止円筒面
部の内周面に溝が該円筒部の軸心方向に対し傾斜するよ
うに形成し、またカラー部の溝部をカラー部の表面に代
えて対向する静止平面部の表面に形成した流体圧力発生
装置。
(5) In the fluid pressure generating device according to claim 4, the groove of the rotating shaft is replaced with the circumferential surface of the rotating shaft, and a groove is provided on the inner circumferential surface of the opposing stationary cylindrical surface section, which is inclined with respect to the axial direction of the cylindrical section. A fluid pressure generating device in which the groove portion of the collar portion is formed on the surface of the opposing stationary flat portion instead of the surface of the collar portion.
(6)請求項4または5記載の流体圧力発生装置におい
て、回転する回転軸及びカラー部に代えて静止する軸及
びカラー部を設け、静止円筒面部及び静止平面部に代え
て回転円筒面部及び回転平面部を設けた流体圧力発生装
置。
(6) In the fluid pressure generating device according to claim 4 or 5, a stationary shaft and collar section are provided in place of the rotating rotating shaft and collar section, and a rotating cylindrical surface section and a rotating section are provided in place of the stationary cylindrical surface section and stationary flat surface section. A fluid pressure generating device with a flat section.
(7)回転側円筒体の多層円筒部と静止側円筒体の多層
円筒部を同心状態に組合せ交互に狭い間隙を以て対向配
置させて2層以上の円筒状の狭い空間を形成し、互いに
対向する円筒部の外表面または内表面の何れか一方の円
筒部表面上に該円筒部の軸心方向に対して傾斜する多数
の溝からなる溝部を形成するとともに、流体の吸入口、
吐出口を有し、前記回転側円筒体の回転により前記溝部
と対向円筒部の円筒面との間の溝空間に誘起される流体
の動圧効果を利用して、回転側円筒体の自重を支持する
とともに、多数の前記溝空間を通じて流体を流通せしめ
、前記吸入口より流体を吸入し加圧して前記吐出口より
吐出させることを特徴とする流体圧力発生装置。
(7) The multilayer cylinder part of the rotating cylinder body and the multilayer cylinder part of the stationary cylinder body are concentrically combined and alternately arranged facing each other with a narrow gap to form a narrow cylindrical space of two or more layers and facing each other. A groove portion consisting of a large number of grooves inclined with respect to the axial direction of the cylindrical portion is formed on either the outer surface or the inner surface of the cylindrical portion, and a fluid inlet;
It has a discharge port, and uses the dynamic pressure effect of the fluid induced in the groove space between the groove and the cylindrical surface of the opposing cylindrical part by the rotation of the rotating cylindrical body to reduce the weight of the rotating cylindrical body. A fluid pressure generating device characterized in that the fluid is supported, and is made to flow through the plurality of groove spaces, and the fluid is sucked through the suction port, pressurized, and discharged from the discharge port.
(8)密閉型の電動機回転子の両側の回転軸において、
その円周面に軸心方向に対して傾斜する多数の溝を形成
した溝部を適宜の間隔をおいて2個以上直列に配置し、
一方、前記溝部の外周部と狭い間隙をおいて静止円筒面
部を前記溝部と対向するように適宜の間隔をおいて2個
以上直列に配置するとともに、溝部の流体出口を中間冷
却器の流体入口に接続し、前記中間冷却器の流体出口を
次段の溝部の流体入口に接続し、更に、前記の溝部と溝
部との間の回転軸の円周面に前記の両溝部における流体
の流れの方向とは逆方向の流れを誘起するような傾斜を
有する多数の溝からなるバイパス防止用の溝部を形成し
たことを特徴とする多段式流体圧力発生装置。
(8) On the rotating shafts on both sides of the sealed motor rotor,
two or more grooves formed in the circumferential surface thereof with a large number of grooves inclined with respect to the axial direction are arranged in series at appropriate intervals,
On the other hand, two or more stationary cylindrical surfaces are arranged in series at an appropriate interval so as to face the groove with a narrow gap from the outer periphery of the groove, and the fluid outlet of the groove is connected to the fluid inlet of the intercooler. The fluid outlet of the intercooler is connected to the fluid inlet of the next groove, and the fluid flow in both grooves is connected to the circumferential surface of the rotating shaft between the grooves. 1. A multi-stage fluid pressure generating device, characterized in that a bypass-preventing groove portion is formed with a large number of grooves having an inclination that induces a flow in the opposite direction.
(9)密閉型の電動機回転子の両側の回転軸において、
その円周面に軸心方向に対して傾斜する多数の溝を形成
した溝部を配置し、これに続いてカラー部を配置し、該
カラー部の両側表面に多数のラセン状の溝または半径方
向に対して傾斜した直線状の溝からなる溝部を形成し、
一方回転軸に設けられた前記溝部の外周部表面と狭い間
隙をおいて静止円筒面部を、またカラー部の前記両側表
面の溝部と狭い間隙をおいて対向する静止平面部をそれ
ぞれ配置し、前記のような回転軸とカラー部の組及び静
止円筒面部と静止平面部の組を2組以上前記回転軸上に
直列に配列するとともに、前記カラー部の溝部の流体出
口を中間冷却器の流体入口に接続し、前記中間冷却器の
流体出口を次段のカラー部の溝部の流体入口に接続し、
さらに各カラー部の外周部表面上に前記回転軸の各溝部
における流体の流れ方向とは逆方向の流れを誘起するよ
うな傾斜を有する多数の溝からなるバイパス防止用の溝
部を形成したことを特徴とする多段式流体圧力発生装置
(9) On the rotating shafts on both sides of the sealed motor rotor,
A groove section having a large number of grooves inclined with respect to the axial direction is arranged on the circumferential surface, followed by a collar section, and a large number of helical grooves or radial grooves are arranged on both sides of the collar section. forming a groove portion consisting of a linear groove inclined to the
On the other hand, a stationary cylindrical surface part is arranged with a narrow gap from the outer peripheral surface of the groove part provided on the rotating shaft, and a stationary plane part is arranged opposite to the groove part on both sides of the collar part with a narrow gap, Two or more sets of a rotating shaft and a collar part and a set of a stationary cylindrical surface part and a stationary plane part are arranged in series on the rotating shaft, and the fluid outlet of the groove of the collar part is connected to the fluid inlet of the intercooler. and connecting the fluid outlet of the intercooler to the fluid inlet of the groove of the next stage collar part,
Furthermore, bypass prevention grooves are formed on the outer circumferential surface of each collar portion, consisting of a large number of grooves having an inclination that induces a flow in a direction opposite to the flow direction of the fluid in each groove of the rotating shaft. A multi-stage fluid pressure generating device with special features.
(10)請求項8または9の多段式流体圧力発生装置に
おいて、バイパス防止用の溝部を、回転軸またはカラー
部の外周部表面に代えて前記回転軸またはカラー部の外
周部表面に対向する静止円筒面部に形成した多段式流体
圧力発生装置。
(10) In the multi-stage fluid pressure generating device according to claim 8 or 9, the bypass prevention groove portion is provided at a stationary portion facing the outer circumferential surface of the rotating shaft or the collar portion instead of the outer circumferential surface of the rotating shaft or the collar portion. A multistage fluid pressure generator formed on a cylindrical surface.
(11)請求項1ないし10の流体圧力発生装置におい
て、凝縮性流体を使用して定速運転を行ない、該流体の
吐出口を凝縮器に接続し、該凝縮器の冷却媒体の流量ま
たは凝縮器の有効伝熱面積等を増減することにより流体
の凝縮温度を調整し、該凝縮温度の上下により、前記吐
出口から吐出される流体の圧力及び流量を制御すること
を特徴とする流体圧力発生装置の運転方法。
(11) In the fluid pressure generating device according to any one of claims 1 to 10, constant speed operation is performed using a condensable fluid, and a discharge port of the fluid is connected to a condenser, and the flow rate of the cooling medium of the condenser is A fluid pressure generator characterized in that the condensing temperature of the fluid is adjusted by increasing or decreasing the effective heat transfer area of the vessel, and the pressure and flow rate of the fluid discharged from the discharge port are controlled by increasing or decreasing the condensing temperature. How to operate the equipment.
JP23538588A 1988-09-20 1988-09-20 Fluid pressure generating device and operating method thereof Pending JPH0281997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23538588A JPH0281997A (en) 1988-09-20 1988-09-20 Fluid pressure generating device and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23538588A JPH0281997A (en) 1988-09-20 1988-09-20 Fluid pressure generating device and operating method thereof

Publications (1)

Publication Number Publication Date
JPH0281997A true JPH0281997A (en) 1990-03-22

Family

ID=16985299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23538588A Pending JPH0281997A (en) 1988-09-20 1988-09-20 Fluid pressure generating device and operating method thereof

Country Status (1)

Country Link
JP (1) JPH0281997A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066158A (en) * 1991-01-29 1991-11-19 Huang Lai Jen Combined negative holder and viewing device
JP2002332990A (en) * 2001-05-09 2002-11-22 Shimadzu Corp Turbo-type rotating machine
WO2004059171A1 (en) * 2002-12-26 2004-07-15 Sony Corporation Hydrodynamic bearing-type pump
JP2007056687A (en) * 2005-08-22 2007-03-08 Mitsubishi Heavy Ind Ltd Centrifugal pump
JP2007107644A (en) * 2005-10-14 2007-04-26 Tlv Co Ltd Steam trap
JP2007333094A (en) * 2006-06-15 2007-12-27 Tlv Co Ltd Float-type steam trap
JP2012514149A (en) * 2008-12-24 2012-06-21 オーリコン レイボルド バキューム ゲーエムベーハー Vacuum pump
CN105370580A (en) * 2014-08-22 2016-03-02 日本电产株式会社 Dynamic pressure bearing pump
CN105386981A (en) * 2014-08-22 2016-03-09 日本电产株式会社 Dynamic pressure bearing pump
JP2020041497A (en) * 2018-09-12 2020-03-19 秋夫 湯田 Hydraulic pump and application device thereof
JP2022037192A (en) * 2018-09-12 2022-03-08 秋夫 湯田 Hydraulic pump and application device thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100608A (en) * 1973-01-29 1974-09-24
JPS5623382B1 (en) * 1971-04-27 1981-05-30
JPS56110592A (en) * 1980-02-06 1981-09-01 Matsushita Electric Ind Co Ltd Pump
JPS56162294A (en) * 1980-05-16 1981-12-14 Matsushita Electric Ind Co Ltd Fuel feed pump
JPS61247889A (en) * 1985-04-25 1986-11-05 Ricoh Co Ltd Hydraulic pump
JPS6340598B2 (en) * 1984-07-17 1988-08-11 Nishihara Kankyo Eisei Kenkyusho Kk

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623382B1 (en) * 1971-04-27 1981-05-30
JPS49100608A (en) * 1973-01-29 1974-09-24
JPS56110592A (en) * 1980-02-06 1981-09-01 Matsushita Electric Ind Co Ltd Pump
JPS56162294A (en) * 1980-05-16 1981-12-14 Matsushita Electric Ind Co Ltd Fuel feed pump
JPS6340598B2 (en) * 1984-07-17 1988-08-11 Nishihara Kankyo Eisei Kenkyusho Kk
JPS61247889A (en) * 1985-04-25 1986-11-05 Ricoh Co Ltd Hydraulic pump

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066158A (en) * 1991-01-29 1991-11-19 Huang Lai Jen Combined negative holder and viewing device
JP2002332990A (en) * 2001-05-09 2002-11-22 Shimadzu Corp Turbo-type rotating machine
JP4576746B2 (en) * 2001-05-09 2010-11-10 株式会社島津製作所 Turbo rotating equipment
US7381034B2 (en) 2002-12-26 2008-06-03 Sony Corporation Hydrodynamic pressure bearing pump with a shaft and a bearing having hydrodynamic pressure generating grooves
WO2004059171A1 (en) * 2002-12-26 2004-07-15 Sony Corporation Hydrodynamic bearing-type pump
CN100445566C (en) * 2002-12-26 2008-12-24 索尼株式会社 Hydrodynamic bearing-type pump
JP2007056687A (en) * 2005-08-22 2007-03-08 Mitsubishi Heavy Ind Ltd Centrifugal pump
JP2007107644A (en) * 2005-10-14 2007-04-26 Tlv Co Ltd Steam trap
JP2007333094A (en) * 2006-06-15 2007-12-27 Tlv Co Ltd Float-type steam trap
JP2012514149A (en) * 2008-12-24 2012-06-21 オーリコン レイボルド バキューム ゲーエムベーハー Vacuum pump
CN105370580A (en) * 2014-08-22 2016-03-02 日本电产株式会社 Dynamic pressure bearing pump
CN105386981A (en) * 2014-08-22 2016-03-09 日本电产株式会社 Dynamic pressure bearing pump
JP2016044674A (en) * 2014-08-22 2016-04-04 日本電産株式会社 Dynamic pressure bearing pump
JP2020041497A (en) * 2018-09-12 2020-03-19 秋夫 湯田 Hydraulic pump and application device thereof
JP2022037192A (en) * 2018-09-12 2022-03-08 秋夫 湯田 Hydraulic pump and application device thereof

Similar Documents

Publication Publication Date Title
US9316227B2 (en) Compressor and oil-cooling system
JP2840716B2 (en) Scroll machine
JP5157501B2 (en) refrigerator
US5394709A (en) Thermodynamic systems including gear type machines for compression or expansion of gases and vapors
US5690480A (en) Scroll compressor with cooling holes in orbiting scroll
KR20040110098A (en) Plural compressors
JPH0249988A (en) Compressor with driving shaft pressure-equalized in axial direction
US20100040493A1 (en) Centrifugal turbine blower with gas foil bearings
JPH0281997A (en) Fluid pressure generating device and operating method thereof
CN112983849B (en) Centrifugal compressor structure with axial force capable of being automatically balanced
US20230184286A1 (en) Bearing for supporting a rotating compressor shaft
GB2520140A (en) Multi-stage Pump Having Reverse Bypass Circuit
US10718333B2 (en) Aerostatic thrust bearing method and method of aerostatically supporting a thrust load in a scroll compressor
CN109139459B (en) Aerostatic thrust bearing and method for aerostatic supporting thrust load
US11415135B2 (en) Aerostatic thrust bearing and method of aerostatically supporting a thrust load in a scroll compressor
US10590932B2 (en) Fluid ring compressor
TW386135B (en) Displacement type fluid machine
JP2001041162A (en) Displacement fluid machinery
US20040033153A1 (en) Fluid transport system and method therefor
Dreiman et al. Two-stage rolling piston carbon dioxide compressor
WO2023176596A1 (en) Refrigerant compressor
US20230037942A1 (en) Aerostatic thrust bearing and method of aerostatically supporting a thrust load in a scroll compressor
KR102321023B1 (en) Compressor and turbo chiller having the same
JPH1137065A (en) Displacement type fluid machine
JPH1150801A (en) Displacement type fluid machine