WO2023176596A1 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
WO2023176596A1
WO2023176596A1 PCT/JP2023/008623 JP2023008623W WO2023176596A1 WO 2023176596 A1 WO2023176596 A1 WO 2023176596A1 JP 2023008623 W JP2023008623 W JP 2023008623W WO 2023176596 A1 WO2023176596 A1 WO 2023176596A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
internal space
impeller
housing
refrigerant compressor
Prior art date
Application number
PCT/JP2023/008623
Other languages
French (fr)
Japanese (ja)
Inventor
隆太 田中
雅祐 中島
紘樹 小林
陽介 赤松
誠一郎 吉永
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2023176596A1 publication Critical patent/WO2023176596A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic

Definitions

  • the present disclosure relates to a refrigerant compressor.
  • Patent Document 1 and Patent Document 2 disclose technologies related to heat pumps.
  • a heat pump has, for example, a refrigerant circulation system in which a refrigerant compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in a ring.
  • refrigerant circulation system refrigerant vaporized by an evaporator is compressed in a refrigerant compressor, and then liquefied by dissipating heat in a condenser.
  • the liquefied refrigerant is supplied to the evaporator via the expansion valve and is vaporized in the evaporator.
  • the vaporized refrigerant is again supplied to the refrigerant compressor.
  • a shaft is rotatably supported by a pair of bearings provided inside a housing. The rotation of the impeller together with the shaft compresses the refrigerant.
  • Non-contact bearings such as air bearings, gas bearings, or magnetic bearings are attracting attention as a technology for supporting the rotating body in the refrigerant circulation system as described above.
  • Such non-contact type bearings have advantages such as less energy loss due to contact friction than contact type bearings such as rolling bearings.
  • contact type bearings such as rolling bearings.
  • displacement of the rotating body is likely to occur when external force is applied. Therefore, care must be taken to prevent contact between the rotating body and the bearing.
  • the present disclosure describes a refrigerant compressor that suppresses uneven contact between a rotating body and a non-contact bearing during startup.
  • a refrigerant compressor compresses refrigerant circulating in a refrigerant circulation system.
  • the refrigerant compressor includes a shaft, a rotating body having a protrusion that protrudes radially from the shaft and rotates together with the shaft, a non-contact type bearing unit that rotatably supports the rotary body, and an interior that accommodates the protrusion.
  • a housing having a space, a suction port opening into the internal space and supplying refrigerant to the internal space, a refrigerant passage communicating with the suction port and connected to an evaporator, and a discharge hole discharging the refrigerant from the internal space.
  • a reflux path that communicates the internal space with the evaporator via a reflux port provided in the internal space. The reflux port is located vertically below the protrusion.
  • a refrigerant compressor that suppresses uneven contact between a rotating body and a non-contact bearing during startup.
  • FIG. 1 is a block diagram showing the configuration of a refrigerator including a refrigerant compressor according to an embodiment.
  • FIG. 2 is a sectional view showing the configuration of the refrigerant compressor of FIG. 1.
  • FIG. 3 is a cross section of the refrigerant compressor taken along line III-III in FIG.
  • FIG. 4(a) is a simplified cross-sectional view of the refrigerant compressor during operation.
  • FIG. 4(b) is a simplified cross-sectional view of the refrigerant compressor during suspension of operation.
  • FIG. 5 is a diagram showing a connection configuration between a refrigerant compressor and an evaporator.
  • FIG. 6(a) is a cross-sectional view showing a refrigerant compressor of a comparative example during suspension of operation.
  • FIG. 6(b) is a sectional view showing the refrigerant compressor of the comparative example during operation.
  • FIG. 7 is a sectional view showing a refrigerant compressor of Modification 1.
  • FIG. 8 is a sectional view showing a refrigerant compressor according to modification 2.
  • a refrigerant compressor compresses refrigerant circulating in a refrigerant circulation system.
  • the refrigerant compressor includes a shaft, a rotating body having a protrusion that protrudes radially from the shaft and rotates together with the shaft, a non-contact type bearing unit that rotatably supports the rotary body, and an interior that accommodates the protrusion.
  • a housing having a space, a suction port opening into the internal space and supplying refrigerant to the internal space, a refrigerant passage communicating with the suction port and connected to an evaporator, and a discharge hole discharging the refrigerant from the internal space.
  • a reflux path that communicates the internal space with the evaporator via a reflux port provided in the internal space. The reflux port is located vertically below the protrusion.
  • the refrigerant vaporized in the evaporator is supplied to the internal space of the housing from the suction port through the refrigerant flow path, and is discharged to the outside from the discharge hole.
  • the refrigerant compressor described above includes a reflux path that communicates the internal space with the evaporator via a reflux port provided in the internal space of the housing.
  • the reflux port is located vertically below the protrusion of the rotating body. Therefore, the refrigerant liquefied in the internal space of the housing flows from the internal space of the housing to the outside through the return path before reaching the protrusion.
  • the liquid that has flowed through the reflux path is refluxed to the evaporator.
  • the evaporator vaporizes the liquid and supplies it again as refrigerant to the refrigerant compressor.
  • the return flow path may be constituted by the refrigerant flow path itself.
  • the refrigerant flow path has both the function of supplying vaporized refrigerant from the evaporator and the function of returning liquefied refrigerant in the internal space of the housing to the evaporator.
  • the function of returning liquefied refrigerant to the evaporator and the function of supplying refrigerant from the evaporator can be provided in the same flow path, so the configuration of the refrigerant compressor can be simplified. .
  • the bearing unit may include a pair of bearings that are arranged side by side in the axial direction in which the shaft extends and support the shaft in the radial direction.
  • the interior space may have a first interior region, a second interior region, and a third interior region that communicate with each other in the axial direction.
  • the second internal region may be located between the pair of bearings in the axial direction.
  • the first internal region may be located on one side of the pair of bearings in the axial direction.
  • the third internal region may be located on the other side of the pair of bearings in the axial direction.
  • the inlet may communicate with the third interior region.
  • the discharge hole may communicate with the first internal region.
  • the return flow path may penetrate the housing vertically downward from the internal space. In this case, the liquid generated in the internal space of the housing easily flows into the reflux path according to gravity. This allows liquid to be effectively removed from the internal space.
  • the discharge hole may penetrate the housing vertically downward from the internal space at a position different from the reflux path.
  • the discharge hole in addition to the reflux path, can also be used as a flow path for removing liquid from the internal space of the housing. Thereby, liquid can be more effectively removed from the internal space.
  • the inner wall surface of the housing may include an inclined part between the discharge hole and the reflux path that descends toward the reflux port.
  • the liquid generated in the internal space of the housing flows more easily into the reflux path than into the discharge hole according to gravity. This makes it possible to actively flow the liquid into the evaporator.
  • the flowed liquid is pushed back into the refrigerant compressor, compared to when the liquid is flowed through other equipment such as a condenser where liquid tends to accumulate. Such a situation is unlikely to occur. Therefore, by actively flowing liquid into the evaporator, liquid can be more effectively removed from the internal space.
  • the discharge hole may penetrate the housing vertically upward from the internal space. In this case, it is possible to suppress the liquid generated in the internal space of the housing from flowing into the discharge hole, making it more difficult for the liquid to be pushed back into the refrigerant compressor. Thereby, liquid can be more effectively removed from the internal space.
  • the refrigerator 1 shown in FIG. 1 can be installed in a building or factory, for example, to generate cooling water for air conditioning.
  • the refrigerator 1 includes, for example, a refrigerant compressor 2, a condenser 3, an expansion valve 4, and an evaporator 5.
  • the refrigerant compressor 2, condenser 3, expansion valve 4, and evaporator 5 constitute a refrigerant circulation system 6 in which refrigerant (eg, fluorocarbon) circulates.
  • refrigerant eg, fluorocarbon
  • thermal energy is exchanged by circulating the refrigerant through the refrigerant compressor 2, condenser 3, expansion valve 4, and evaporator 5 while changing its phase.
  • the refrigerant compressor 2 is connected to the condenser 3 via a flow path F1.
  • Condenser 3 is connected to expansion valve 4 via flow path F2.
  • Expansion valve 4 is connected to evaporator 5 via flow path F3.
  • Evaporator 5 is connected to refrigerant compressor 2 via flow path F4.
  • These flow paths F1, F2, F3, and F4 constitute a circulation flow path through which the refrigerant circulates through the refrigerant compressor 2, condenser 3, expansion valve 4, and evaporator 5.
  • the refrigerant compressor 2 generates compressed refrigerant gas R1 by compressing refrigerant gas R3 supplied from the evaporator 5.
  • the refrigerant compressor 2 supplies the generated compressed refrigerant gas R1 to the condenser 3 via the flow path F1.
  • the condenser 3 generates liquid refrigerant R2 by cooling and liquefying the compressed refrigerant gas R1, which has been compressed by the refrigerant compressor 2 and has become high temperature and high pressure.
  • the condenser 3 supplies the generated liquid refrigerant R2 to the expansion valve 4 via the flow path F2.
  • the expansion valve 4 reduces the pressure of the liquid refrigerant R2 liquefied by the condenser 3.
  • the expansion valve 4 supplies the reduced pressure liquid refrigerant R2 to the evaporator 5 via the flow path F3.
  • the evaporator 5 generates refrigerant gas R3 by evaporating the liquid refrigerant R2 whose pressure has been reduced by the expansion valve 4.
  • the evaporator 5 cools an object to be cooled (for example, cooling water) using the heat of vaporization when refrigerant gas R3 is generated by evaporating the liquid refrigerant R2.
  • the evaporator 5 supplies the generated refrigerant gas R3 to the refrigerant compressor 2 via the flow path F4.
  • the refrigerant gas R3 supplied to the refrigerant compressor 2 is compressed in the refrigerant compressor 2, and then supplied to the condenser 3 again as compressed refrigerant gas R1.
  • Compressed refrigerant gas R1, liquid refrigerant R2, and refrigerant gas R3 are examples of states that the refrigerant can take in the refrigerant circulation system 6.
  • the refrigerant compressor 2 is a so-called two-stage compressor. As shown in FIG. 2, the refrigerant compressor 2 includes a shaft 10, a compressor unit 30, and a motor unit 50.
  • “upper D1A” means the upper part in the vertical direction (direction of gravity) when the refrigerant compressor 2 is installed at the location where it is used
  • "lower D1B” means the lower part in the vertical direction. do.
  • the refrigerant compressor 2 is arranged so that the rotation axis L of the shaft 10 extends in the horizontal direction when it is installed at the location where it is used.
  • upstream side means the upstream side in the flow direction of the refrigerant flowing through the refrigerant compressor 2
  • downstream side means the downstream side in the flow direction.
  • the compressor unit 30 includes a first impeller 31 , a second impeller 32 , a first impeller housing 41 that accommodates the first impeller 31 , and a second impeller housing 42 that accommodates the second impeller 32 .
  • the first impeller 31 and the first impeller housing 41 constitute a compression stage on the low pressure side.
  • the second impeller 32 and the second impeller housing 42 constitute a compression stage on the high pressure side.
  • the first impeller 31 and the second impeller 32 are attached to one end 10a of the shaft 10.
  • Each of the first impeller 31 and the second impeller 32 is a protrusion that protrudes outward in the radial direction from the shaft 10, and rotates around the rotation axis L together with the shaft 10.
  • the first impeller 31 and the second impeller 32 are arranged, for example, so that their back surfaces face each other with a gap in between in the axial direction D2.
  • the second impeller 32 is, for example, arranged coaxially with the first impeller 31 and has the same dimensions as the first impeller 31.
  • the first impeller 31 is located, for example, between the second impeller 32 and the motor unit 50 in the axial direction D2.
  • the first impeller 31 and the second impeller 32 are to be described without particular distinction, they will be collectively referred to as the "impeller 35."
  • the first impeller housing 41 and the second impeller housing 42 are connected to each other in the axial direction D2.
  • An interstage plate 43 is provided between the first impeller housing 41 and the second impeller housing 42 .
  • the interstage plate 43 is connected to the first impeller housing 41 and the second impeller housing 42 in the axial direction D2. Therefore, the second impeller housing 42 is connected to the first impeller housing 41 via the interstage plate 43 in the axial direction D2.
  • the motor unit 50 includes a motor 51 and a motor housing 55 that accommodates the motor 51.
  • the motor 51 is a drive source for driving the compressor unit 30.
  • Motor 51 includes a stator 52 fixed to motor housing 55 and a rotor 53 fixed to shaft 10.
  • the rotor 53 faces the stator 52 with a gap therebetween.
  • the motor housing 55 is connected to the first impeller housing 41 in the axial direction D2.
  • the motor housing 55 , the first impeller housing 41 , the interstage plate 43 , and the second impeller housing 42 constitute the housing 11 of the refrigerant compressor 2 .
  • the shaft 10 to which the first impeller 31 and the second impeller 32 are attached is accommodated in the internal space S of the housing 11.
  • the internal space S is a space defined by the inner wall surface 11a of the housing 11.
  • the shaft 10 extends in the axial direction D2 across the motor housing 55, the first impeller housing 41, the interstage plate 43, and the second impeller housing 42.
  • the shaft 10 is rotatably supported around the rotation axis L by a pair of bearings 60, 60 and a pair of bearings 64, 64 provided inside the motor housing 55.
  • the pair of bearings 60, 60 and the pair of bearings 64, 64 constitute a "bearing unit" of the present disclosure.
  • the pair of bearings 60, 60 are provided so as to surround the shaft 10, and are arranged side by side at positions sandwiching the motor 51 in the axial direction D2.
  • the internal space S of the housing 11 has a first internal area S1, a second internal area S2, and a third internal area S3.
  • the first internal region S1, the second internal region S2, and the third internal region S3 are arranged in order in the axial direction D2 and communicate with each other.
  • the second internal region S2 is located between the pair of bearings 60, 60 in the axial direction D2.
  • the second internal region S2 is surrounded by the central portion of the motor housing 55.
  • a motor 51 sandwiched between a pair of bearings 60, 60 is arranged in the second internal region S2.
  • the first internal region S1 is located on one side where the first impeller 31 and the second impeller 32 are located with the pair of bearings 60, 60 in between in the axial direction D2.
  • the first internal region S1 is mainly surrounded by the first impeller housing 41, the second impeller housing 42, and the interstage plate 43.
  • the third internal region S3 is located on the other side with the pair of bearings 60, 60 interposed therebetween in the axial direction D2.
  • the third internal region S3 is surrounded by the end of the motor housing 55 located on the opposite side of the first impeller housing 41 in the axial direction D2.
  • the housing 11 has a suction hole 12 and a discharge hole 13.
  • the suction hole 12 is a hole for sucking the refrigerant gas R3 from the evaporator 5 (see FIG. 1) into the internal space S.
  • the suction hole 12 communicates with the internal space S and is also connected to the evaporator 5 via a flow path F4.
  • the refrigerant gas R3 sucked into the internal space S is compressed by the first impeller 31 and the second impeller 32 that rotate together with the shaft 10.
  • the discharge hole 13 is a hole for discharging the compressed refrigerant gas R1 compressed in the internal space S from the internal space S to the condenser 3 (see FIG. 1).
  • the discharge hole 13 communicates with the internal space S and is also connected to the condenser 3 via the flow path F1.
  • the suction hole 12 is formed in the motor housing 55, for example, and communicates with the third internal region S3.
  • the discharge hole 13 is formed in the second impeller housing 42, for example, and communicates with the first internal region S1. More specific configurations of the suction hole 12 and the discharge hole 13 will be described later.
  • the motor housing 55 has, for example, a cylindrical side wall 56 centered on the rotation axis L, and a disc-shaped end wall 57 that closes one end of the side wall 56 in the axial direction D2.
  • Side wall 56 surrounds rotor 53 fixed to shaft 10 .
  • a stator 52 is fixed to the inner surface 56a of the side wall 56.
  • a pair of support parts 61, 61 that support a pair of bearings 60, 60 are provided on the inner surface 56a of the side wall 56.
  • each of the pair of support parts 61, 61 includes a ring-shaped member 62 and four rod-shaped members 63.
  • the ring-shaped member 62 has, for example, an annular shape when viewed from the axial direction D2.
  • the ring-shaped member 62 is arranged to surround the bearing 60 in the circumferential direction D3, and is fixed to the inner surface 56a of the side wall 56.
  • the four rod-shaped members 63 extend in a cross shape with the bearing 60 at the center, and connect the bearing 60 and the ring-shaped member 62.
  • the shaft 10 is arranged to pass through the inside of the bearing 60.
  • the bearing 60 is a non-contact radial bearing.
  • Examples of the bearing 60 include, for example, an air bearing, a gas bearing, or a magnetic bearing.
  • the bearing 60 is arranged with a gap between the rotor 53 (see FIG. 2) and supports the rotor 53 and the shaft 10 in a non-contact manner in the radial direction.
  • the second internal region S2 communicates with the first internal region S1 through the space between each rod-shaped member 63 in the circumferential direction D3 (see FIG. 3) and the gap between the rotor 53 and one bearing 60. ing.
  • the second internal region S2 communicates with the third internal region S3 via the space between each rod-shaped member 63 in the circumferential direction D3 and the gap between the rotor 53 and the other bearing 60. Therefore, in the internal space S of the housing 11, fluid such as the refrigerant gas R3 can move through the first internal area S1, the second internal area S2, and the third internal area S3.
  • the pair of bearings 64, 64 are provided, for example, in the third internal region S3 so as to surround the shaft 10, and are arranged side by side with an interval in the axial direction D2.
  • the pair of bearings 64, 64 are non-contact type thrust bearings. Examples of the pair of bearings 64, 64 include, for example, air bearings, gas bearings, or magnetic bearings.
  • a thrust collar 65 is provided between the pair of bearings 64, 64.
  • the thrust collar 65 is a protruding part that protrudes from the shaft 10 in a brim shape, and rotates around the rotation axis L together with the shaft 10.
  • An annular spacer 67 surrounding the outer periphery of the thrust collar 65 is provided between the pair of bearings 64 , 64 .
  • the pair of bearings 64, 64 and the spacer 67 are fastened together by a plurality of fastening bolts.
  • a pair of bearings 64, 64 and a spacer 67, which are integral with each other, are fixed to the inner surface 56a of the side wall 56.
  • the pair of bearings 64, 64 and the spacer 67 define an accommodation space in which the thrust collar 65 is accommodated. In this accommodation space, the thrust collar 65 rotates around the rotation axis L together with the shaft 10 without contacting the pair of bearings 64 and the spacer 67.
  • the pair of bearings 64, 64, the spacer 67, and the thrust collar 65 support the rotor 53 and the shaft 10 in the axial direction D1 in a non-contact manner.
  • the thrust collar 65, the impeller 35, and the shaft 10 constitute a rotating body RB that rotates integrally with each other.
  • the first impeller housing 41 is arranged so as to close the opening of the side wall 56 on the side opposite to the end wall 57 in the axial direction D2.
  • the first impeller housing 41 includes an inlet 41a, a diffuser passage 41b, a scroll passage 41c, and an outlet 41d.
  • the inlet 41 a is an opening coaxial with the shaft 10 and communicates with the inside of the motor housing 55 . Therefore, the refrigerant gas R3 sucked into the motor housing 55 flows into the inlet 41a.
  • the first impeller 31 is arranged on the back side of the inlet 41a. The rotation of the first impeller 31 imparts velocity energy to the refrigerant gas R3.
  • the scroll passage 41c is formed to surround the first impeller 31.
  • the diffuser passage 41b is formed between the first impeller 31 and the scroll passage 41c.
  • the diffuser flow path 41b compresses the refrigerant gas R3 by converting velocity energy imparted to the refrigerant gas R3 into compression energy.
  • the scroll passage 41c discharges the refrigerant gas R3 compressed by the diffuser passage 41b to the outside of the first impeller housing 41 from the outlet 41d.
  • the outflow port 41d is, for example, an opening that opens on the outer peripheral surface of the first impeller housing 41.
  • the second impeller housing 42 includes an inlet 42 a, a diffuser passage 42 b, a scroll passage 42 c, and a discharge hole 13 .
  • the inlet 42a is an opening coaxial with the inlet 41a of the first impeller housing 41, and faces opposite to the inlet 41a.
  • the inlet 42a is connected to the outlet 41d of the first impeller housing 41 via an external pipe 70. Therefore, the refrigerant gas R3 from the outlet 41d flows into the inlet 42a via the external pipe 70.
  • the second impeller 32 is arranged on the back side of the inlet 42a. The rotation of the second impeller 32 imparts velocity energy to the refrigerant gas R3.
  • the scroll passage 42c is formed to surround the second impeller 32.
  • the diffuser passage 42b is formed between the second impeller 32 and the scroll passage 42c.
  • the diffuser flow path 42b further compresses the refrigerant gas R3 by converting the velocity energy imparted to the refrigerant gas R3 into compression energy. As a result, compressed refrigerant gas R1 is generated.
  • the scroll passage 42c discharges the generated compressed refrigerant gas R1 from the discharge hole 13 to the outside of the second impeller housing 42.
  • the suction hole 12 includes a suction port 12a that opens to the inner wall surface 11a.
  • the suction port 12a is located vertically lower D1B than the protrusion of the rotating body RB.
  • the fact that the suction port 12a is located below the protrusion D1B of the rotating body RB means that the suction port 12a is located below the bottom D1B of the protrusion when the refrigerant compressor 2 is installed at the installation location. means located.
  • the "projection" here may be one of the impeller 35 and the thrust collar 65 that is located lower.
  • the lower end of the “protrusion” refers to the lower end 35a of the impeller 35.
  • the suction port 12a should just be located below the lower end 35a of the impeller 35 D1B.
  • the suction port 12a only needs to be located in the region RH between the outer surface 56b located at the lower end of the housing 11 and the lower end 35a of the impeller 35.
  • the lower end 35a of the impeller 35 is a portion of the impeller 35 located at the lowest position D1B.
  • the lower end 35a of the impeller 35 can also be said to be the tip of the impeller 35 located at the lowest end, that is, the tip of the impeller 35 closest to the lower end of the housing 11.
  • the suction port 12a may be located below the impeller 35 in D1B. That is, it is sufficient that the suction port 12a has at least a portion located in the region RH. Therefore, the suction port 12a may have a portion that overlaps the impeller 35 in the horizontal direction.
  • the first impeller 31 and the second impeller 32 are arranged at the same height and have the same dimensions. Therefore, the height of the lower end of the first impeller 31 and the height of the lower end of the second impeller 32 are the same.
  • the lower end 35a of the impeller 35 may be the lower end of the first impeller 31 or the second impeller 32, which has a larger outer diameter.
  • the lower end of the “protrusion” refers to the lower end 65a of the thrust collar 65.
  • the suction port 12a only needs to be located below the lower end 65a of the thrust collar 65 D1B.
  • the lower end 65a of the thrust collar 65 is a portion of the thrust collar 65 located at the lowest position D1B.
  • the lower end 65a of the thrust collar 65 can also be said to be the tip of the thrust collar 65 located at the lowest end, that is, the tip of the thrust collar 65 closest to the lower end of the housing 11.
  • suction port 12a is located below the thrust collar 65 means that at least a portion of the suction port 12a is located below the lower end 65a of the thrust collar 65 D1B. Which of the impeller 35 and the thrust collar 65 is located in the lower direction D1B is appropriately determined according to design requirements.
  • the suction hole 12 is formed, for example, to penetrate the side wall 56 from the third internal region S3 of the motor housing 55 downward D1B. Specifically, the suction hole 12 vertically penetrates the lower end 56c of the side wall 56 surrounding the third internal region S3 from the inner surface 56a to the outer surface 56b.
  • the lower end portion 56c is a wall portion of the side wall 56 located below D1B in the cross section shown in FIG. Therefore, the suction port 12a opens to the inner surface 56a of the lower end portion 56c and communicates with the third internal region S3.
  • the discharge hole 13 is formed, for example, so as to penetrate the second impeller housing 42 from the first internal region S1 of the second impeller housing 42 downward D1B.
  • the discharge hole 13 vertically penetrates the lower end portion 42d of the second impeller housing 42 surrounding the first internal region S1.
  • the lower end portion 42d is a wall portion located below D1B of the second impeller housing 42 in the cross section shown in FIG.
  • the discharge hole 13 communicates with the first internal region S1.
  • the discharge port 13a of the discharge hole 13 is open to the outer surface 42e of the lower end portion 42d.
  • the inner surface 56a of the side wall 56 has an inclined portion P1 between the suction hole 12 and the discharge hole 13 in the axial direction D2.
  • the inclined portion P1 may be a tapered surface whose diameter decreases as it approaches the discharge hole 13 from the suction hole 12.
  • the inclined portion P1 is inclined downward toward the suction port 12a. That is, the inclined portion P1 is inclined so as to be located downward D1B as it approaches the suction port 12a from the discharge hole 13.
  • the inclined portion P1 is formed continuously, for example, from the end of the side wall 56 on the first impeller housing 41 side to the suction port 12a.
  • the pair of bearings 64, 64, the thrust collar 65, and the spacer 67 are omitted for simplicity, and the "protrusion” in the present disclosure is considered to be the “impeller 35" for explanation. do. Note that when the "protrusion” in the present disclosure is interpreted as referring to the “thrust collar 65", the “impeller 35" can be replaced with the “thrust collar 65" for explanation.
  • the refrigerant gas R3 supplied to the refrigerant compressor 2 from the upstream evaporator 5 is sucked (supplied) into the third internal region S3 from the suction hole 12 formed in the .
  • the refrigerant gas R3 sucked into the third internal region S3 sequentially passes through the second internal region S2 and the first internal region S1.
  • the refrigerant gas R3 cools the pair of bearings 60, 60, the rotor 53, and the stator 52 on the circulation path.
  • the refrigerant gas R3 that has reached the impeller 35 in the first internal region S1 is compressed by the rotation of the impeller 35. Thereby, compressed refrigerant gas R1 is generated.
  • the generated compressed refrigerant gas R1 is discharged from the discharge hole 13 formed in the lower part D1B of the impeller housing 45 to the condenser 3 on the downstream side.
  • the refrigerant gas R3 filling the internal space S of the housing 11 liquefies as the temperature decreases and becomes a liquid R4. This may occur in space S.
  • the liquid R4 may be a liquid containing a liquid refrigerant R2 obtained by liquefying the refrigerant gas R3.
  • the suction hole 12 since the suction hole 12 is formed in the lower part D1B of the motor housing 55, the liquid R4 in the internal space S flows out of the housing 11 from the suction hole 12 according to gravity.
  • the suction hole 12 is connected to the evaporator 5 (see FIG. 1) on the upstream side.
  • the liquid R4 flowing out from the suction hole 12 is returned to the evaporator 5.
  • the liquid R4 returned to the evaporator 5 is vaporized in the evaporator 5, and is again supplied to the internal space S from the suction hole 12 as a refrigerant gas R3.
  • the suction hole 12 not only functions as a suction hole for sucking the refrigerant gas R3 from the upstream evaporator 5 into the internal space S of the housing 11, but also functions as a suction hole for sucking the refrigerant gas R3 from the upstream evaporator 5 into the internal space S. It has a function as a reflux hole that refluxes the water to the evaporator 5 on the upstream side. Therefore, the suction port 12a of the suction hole 12 also functions as a reflux port through which the liquid R4 that is refluxed to the evaporator 5 on the upstream side flows.
  • the suction hole 12 is also an inflow path for the refrigerant gas R3 that flows from the upstream evaporator 5 into the internal space S of the housing 11, and flows out from the internal space S to the upstream evaporator 5. It is also an outflow path for liquid R4. It can also be said that the reflux hole for refluxing the liquid R4 generated in the internal space S to the evaporator 5 is configured by the suction hole 12 itself (that is, configured integrally with the suction hole 12). In other words, it can be said that the suction port 12a itself constitutes a reflux port. The suction port 12a is connected to the evaporator 5 via the suction hole 12 and the flow path F4 (see FIG. 1).
  • the suction hole 12 and the flow path F4 constitute a refrigerant flow path that supplies the refrigerant gas R3 from the evaporator 5 to the internal space S. It can be said that the suction hole 12 and the flow path F4 constitute a reflux path for refluxing the liquid R4 generated in the internal space S to the evaporator 5.
  • the discharge hole 13 is formed in the lower part D1B of the impeller housing 45. Therefore, as shown in FIG. 4(b), the liquid R4 generated in the first internal region S1 flows out from the discharge hole 13 according to gravity.
  • the liquid R4 discharged (discharged) from the discharge hole 13 flows to the condenser 3 on the downstream side (see FIG. 1) and circulates through the refrigerant circulation system 6. Therefore, in this embodiment, the liquid R4 generated in the internal space S is expelled from the internal space S to the outside through the suction hole 12 and the discharge hole 13 formed in the lower part D1B of the housing 11.
  • FIG. 5 shows a connection configuration between the suction port 12a of the refrigerant compressor 2 and the evaporator 5.
  • the evaporator 5 is located below the suction port 12a of the refrigerant compressor 2 D1B.
  • the evaporator 5 is connected to the suction port 12a via the flow path F4 and the suction hole 12. It can be said that the flow path F4 and the suction hole 12 communicate the internal space S of the refrigerant compressor 2 (see FIG. 2) with the evaporator 5 via the suction port 12a.
  • the flow path F4 has a straight flow path portion FP1 and a straight flow path portion FP2.
  • the straight flow path portion FP1 extends downward D1B from the suction port 12a.
  • the straight flow path portion FP2 extends in the axial direction D2 from the lower end of the straight flow path portion FP1, and is connected to the downstream flow port 5a of the evaporator 5.
  • the liquid R4 from the suction port 12a flows downward D1B through the straight flow path portion FP1 according to gravity, and then flows through the straight flow path portion FP2 in the axial direction D1 to flow into the flow port 5a of the evaporator 5.
  • the liquid R4 generated in the refrigerant compressor 2 can be easily returned to the evaporator 5 using gravity.
  • the connection configuration between the refrigerant compressor 2 and the evaporator 5 is not limited to the example shown in FIG. 5.
  • the flow path F4 may be connected to the communication port 5a on the downstream side of the evaporator 5, and another flow path may be connected to the communication port 5b on the upstream side of the evaporator 5.
  • the communication port 5b may be connected to the suction port 12a or a hole different from the suction port 12a via this other flow path.
  • the liquid R4 can be returned to the evaporator 5 via the other flow path.
  • a curved portion that curves downward D1B may be formed in part or all of the straight flow path portion FP2 of the flow path F4.
  • the refrigerant compressor 2 may include a mechanism for evaporating a pool of liquid R4 that may occur in the curved portion.
  • FIGS. 6A and 6B show a simplified refrigerant compressor 200 according to a comparative example.
  • the suction hole 112 formed in the motor housing 155 of the housing 111 is located above the impeller 135 attached to the shaft 100 D1A.
  • the discharge hole 113 formed in the impeller housing 145 is located above the impeller 135 D1A.
  • the refrigerant gas R3 sucked into the internal space S100 from the suction hole 112 passes through the pair of bearings 160, 160, etc., and reaches the impeller 135.
  • Refrigerant gas R3 is compressed by the rotation of impeller 135, and is discharged from discharge hole 113 of impeller housing 145 as compressed refrigerant gas R1.
  • the inventor of the present disclosure has proposed that, as shown in FIG. 6(a), when the refrigerant compressor 200 is out of operation, the refrigerant gas R3 filling the internal space S100 liquefies and remains in the internal space S100 as a liquid R4.
  • the water level of liquid R4 sometimes reaches the impeller 135 in the internal space S100.
  • the inventor of the present disclosure has discovered that since the lower portion of the impeller 135 is immersed in the liquid R4, when the refrigerant compressor 200 is operated in this state, it rotates while receiving a large resistance force from the liquid R4, and It has been noticed that rotating while receiving a large resistance force from the liquid R4 may cause uneven contact between the rotating body and the non-contact type bearing.
  • the suction port 12a is located below the impeller 35 in the vertical direction D1B. Therefore, as shown in FIG. 4(b), the liquid R4 generated in the internal space S flows from the internal space S to the outside through the suction hole 12 before reaching the impeller 35.
  • the liquid R4 that has flowed through the suction hole 12 is returned to the evaporator 5 on the upstream side via the flow path F4.
  • the evaporator 5 vaporizes the liquid R4 and supplies it as a refrigerant gas R3 to the refrigerant compressor 2 via the flow path F4 and the suction hole 12.
  • the suction hole 12 and the flow path F4 also function as a reflux path for refluxing the liquid R4 in the internal space S to the evaporator 5.
  • the suction hole 12 and the flow path F4 have both the function of sucking the refrigerant gas R3 from the evaporator 5 and the function of circulating the liquid R4 in the internal space S to the evaporator 5.
  • the function of refluxing the liquid R4 to the evaporator 5 and the function of supplying the refrigerant gas R3 from the evaporator 5 can be provided in the same flow path.
  • the configuration of the refrigerant compressor 2 is further simplified.
  • the suction port 12a communicates with the third internal region S3, and the discharge hole 13 communicates with the first internal region S1.
  • the refrigerant gas R3 sucked from the suction port 12a passes through the pair of bearings 60, 60 and the motor 51 and is discharged from the discharge hole 13.
  • 60 and motor 51 can be cooled.
  • a configuration that does not separately provide a mechanism for cooling the pair of bearings 60, 60 and the motor 51 can be adopted.
  • a simplified mechanism for cooling the bearings 60, 60 and the motor 51 can be used, so the configuration of the refrigerant compressor 2 can be simplified.
  • the refrigerant gas R3 also passes through the pair of bearings 64, 64, so in addition to cooling the pair of bearings 60, 60 and the motor 51, it also cools the pair of bearings 64, 64. You can also do this.
  • the suction hole 12 penetrates the side wall 56 from the third internal region S3 downward D1B.
  • the liquid R4 generated in the internal space S easily flows into the suction port 12a according to gravity. Thereby, the liquid R4 can be effectively removed from the internal space S.
  • the discharge hole 13 penetrates the second impeller housing 42 from the first internal region S1 downward D1B.
  • the discharge hole 13 can also be used as a flow path for removing the liquid R4 from the internal space S, so that the liquid R4 can be removed from the internal space S more effectively.
  • the inner surface 56a of the side wall 56 includes an inclined portion P1 that descends toward the suction port 12a.
  • the liquid R4 tends to accumulate because the condenser 3 is a device that generates the liquid refrigerant R2. If the compressed refrigerant gas R1 flows into the condenser 3 from the discharge hole 13 in this state, a phenomenon may occur in which the liquid R4 accumulated in the condenser 3 is pushed back into the internal space S by the amount of compressed refrigerant gas R1 that has flowed into the condenser 3. be. Therefore, if the liquid R4 is configured to actively flow into the evaporator 5 instead of the condenser 3, it is possible to prevent the liquid R4 from being pushed back into the internal space S. can be eliminated more effectively.
  • FIG. 7 shows a simplified refrigerant compressor 2A according to Modification 1.
  • the suction hole 12 also functions as a reflux hole for refluxing the liquid R4 in the internal space S to the evaporator 5.
  • the reflux hole 12B is formed separately from the suction hole 12A. That is, in this modification, the reflux hole 12B is not configured by the suction hole 12A itself, but is configured separately from the suction hole 12A.
  • the suction hole 12A is formed, for example, in the motor housing 55A so as to communicate with the third internal region S3, and is located above the impeller 35 D1A.
  • the suction hole 12A is connected to the upstream evaporator 5 (see FIG. 1) via a flow path F4.
  • the refrigerant gas R3 sucked into the third internal region S3 from the suction hole 12A passes through the second internal region S2 and the first internal region S1 in order. At this time, the refrigerant gas R3 cools the pair of bearings 60, 60 and the motor 51 on the circulation path.
  • the refrigerant gas R3 that has reached the impeller 35 in the first internal region S1 is compressed by the rotation of the impeller 35. Thereby, compressed refrigerant gas R1 is generated.
  • the generated compressed refrigerant gas R1 is discharged from the discharge hole 13 formed in the lower part D1B of the impeller housing 45 to the condenser 3 (see FIG. 1) on the downstream side.
  • the flow path F4 and the suction hole 12A constitute a refrigerant flow path that supplies the refrigerant gas R3 from the evaporator 5 to the internal space S.
  • the reflux hole 12B is formed at the same position as the suction hole 12 of the embodiment described above. That is, the circulation hole 12B is formed so as to penetrate the motor housing 55A from the third internal region S3 of the housing 11A downward D1B. Therefore, the recirculation port 12b of the recirculation hole 12B that opens on the inner surface 56a of the motor housing 55A is located below the lower end 35a of the impeller 35, similar to the suction port 12a according to the embodiment described above.
  • the reflux hole 12B is connected to the upstream evaporator 5 (see FIG. 1) via a flow path different from the flow path F4. This flow path and the reflux hole 12B constitute a reflux path for refluxing the liquid R4 to the evaporator 5.
  • the liquid R4 generated in the internal space S when the operation is stopped flows into the reflux hole 12B from the reflux port 12b of the lower part D1B, and is refluxed to the evaporator 5 via the reflux hole 12B.
  • the liquid R4 returned to the evaporator 5 is vaporized in the evaporator 5, and is again supplied to the internal space S from the suction hole 12A as a refrigerant gas R3.
  • the liquid R4 generated in the internal space S can be removed from the internal space S through the reflux hole 12B, so that the same effects as in the embodiment described above can be achieved.
  • FIG. 8 shows a simplified refrigerant compressor 2B according to a second modification.
  • the discharge hole 13 is formed in the lower part D1B of the impeller housing 45.
  • the discharge hole 13A is formed above the impeller housing 45A D1A.
  • the discharge hole 13A is formed, for example, so as to penetrate the impeller housing 45A from the first internal region S1 of the housing 11B upward D1A. That is, the discharge hole 13A vertically passes through the upper end portion 42f of the impeller housing 45A surrounding the first internal region S1.
  • the upper end portion 42f may be a wall portion located above D1A of the impeller housing 45A.
  • the liquid R4 generated in the internal space S can be removed from the internal space S through the suction hole 12, so the same effects as in the embodiment described above can be achieved. Furthermore, in this modification, since it is possible to suppress the liquid R4 generated in the internal space S from flowing into the discharge hole 13A, it becomes more difficult for the liquid R4 to be pushed back into the refrigerant compressor 2. Thereby, the liquid R4 can be more effectively removed from the internal space S.
  • the present disclosure is not limited to the embodiment and each modification example described above, and various other modifications are possible.
  • the embodiments and modifications described above may be combined with each other depending on the desired purpose and effect.
  • the refrigerant compressor 2 includes two impellers (a first impeller and a second impeller).
  • the refrigerant compressor may also include one impeller.
  • the direction of the back surface of the impeller is not particularly limited, and may be changed as appropriate depending on the required specifications.
  • the suction hole 12 is formed to communicate with the third internal region S3, and the discharge hole 13 is formed so as to communicate with the first internal region S1.
  • both the suction hole 12 and the discharge hole 13 may be formed to communicate with the first internal region S1. That is, both the suction hole 12 and the discharge hole 13 may be formed in the impeller housing 45.
  • a hole through which a cooling medium flows to cool the pair of bearings 60, 60 and the motor 51 may be formed separately.
  • the suction hole 12 may be formed in the end wall 57 as long as it is located below the impeller 35 D1B.
  • the refrigerant compressor of the present disclosure is [1] a refrigerant compressor that compresses refrigerant circulating in a refrigerant circulation system, and includes a shaft and a protrusion that protrudes from the shaft in a radial direction and rotates together with the shaft. a rotating body, a non-contact type bearing unit that rotatably supports the rotating body, a housing having an internal space for accommodating the protrusion, and opening into the internal space to supply the refrigerant to the internal space.
  • the internal air is supplied through an inlet, a refrigerant passage communicating with the inlet and connected to an evaporator, a discharge hole for discharging the refrigerant from the internal space, and a reflux port provided in the internal space.
  • a refrigerant compressor, the refrigerant compressor comprising: a recirculation path that communicates a space with the evaporator, and the recirculation port is located vertically below the protrusion.
  • the refrigerant compressor of the present disclosure is [2] "The refrigerant compressor according to [1], wherein the reflux path is constituted by the refrigerant flow path itself.”
  • the refrigerant compressor of the present disclosure includes [3] "The bearing unit includes a pair of bearings that are arranged in parallel in the axial direction in which the shaft extends and supports the shaft in the radial direction, and the internal space is It has a first internal region, a second internal region, and a third internal region that communicate with each other in the axial direction, and the second internal region is located between the pair of bearings in the axial direction, and the second internal region is located between the pair of bearings in the axial direction, and The internal region is located on one side across the pair of bearings in the axial direction, the third internal region is located on the other side across the pair of bearings in the axial direction, and the suction port is The refrigerant compressor according to [1] or [2], wherein the refrigerant compressor communicates with the third internal region, and the discharge hole communicates with the first internal region.
  • the refrigerant compressor of the present disclosure includes [4] "The refrigerant compressor according to any one of [1] to [3], wherein the reflux path penetrates the housing from the internal space downward in the vertical direction. machine.”
  • the refrigerant compressor of the present disclosure provides the refrigerant compressor according to [5], wherein [6] "The inner wall surface of the housing includes an inclined part that descends toward the recirculation port between the discharge hole and the recirculation path. Compressor.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A refrigerant compressor according to the present invention compresses a refrigerant circulating in a refrigerant circulation system. The refrigerant compressor comprises: a rotary body having a shaft and a protruding portion which radially protrudes from the shaft and rotates together with the shaft; a non-contact-type bearing unit that rotatably supports the rotary body; a housing having an internal space in which the protruding portion is received; a suction port which opens to the internal space and through which the refrigerant is supplied into the internal space; a refrigerant flow path which communicates with the suction port and which is connected to an evaporator; an ejection port through which the refrigerant is discharged from the internal space; and a recirculation path that causes the internal space and the evaporator to communicate with each other through a recirculation port provided in the internal space. The recirculation port is positioned vertically lower than the protruding portion.

Description

冷媒圧縮機refrigerant compressor
 本開示は、冷媒圧縮機に関する。 The present disclosure relates to a refrigerant compressor.
 特許文献1及び特許文献2は、ヒートポンプに関する技術を開示する。ヒートポンプは、例えば、冷媒圧縮機、凝縮器、膨張弁、及び蒸発器が順次環状に接続された冷媒循環システムを有する。冷媒循環システムでは、蒸発器により気化された冷媒が、冷媒圧縮機において圧縮された後、凝縮器において放熱されて液化する。液化した冷媒は、膨張弁を介して蒸発器に供給され、蒸発器において気化される。気化した冷媒は、再び冷媒圧縮機に供給される。冷媒圧縮機では、ハウジングの内部に設けられた一対の軸受によってシャフトが回転可能に支持されている。シャフトと共にインペラが回転することによって冷媒が圧縮される。 Patent Document 1 and Patent Document 2 disclose technologies related to heat pumps. A heat pump has, for example, a refrigerant circulation system in which a refrigerant compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in a ring. In a refrigerant circulation system, refrigerant vaporized by an evaporator is compressed in a refrigerant compressor, and then liquefied by dissipating heat in a condenser. The liquefied refrigerant is supplied to the evaporator via the expansion valve and is vaporized in the evaporator. The vaporized refrigerant is again supplied to the refrigerant compressor. In a refrigerant compressor, a shaft is rotatably supported by a pair of bearings provided inside a housing. The rotation of the impeller together with the shaft compresses the refrigerant.
特開2010-071082号公報Japanese Patent Application Publication No. 2010-071082 特開2019-090602号公報JP 2019-090602 Publication
 上述したような冷媒循環システムなどにおける回転体を支持する技術として、例えば、空気軸受、ガス軸受、又は磁気軸受などの非接触型の軸受が注目されている。このような非接触型の軸受は、転がり軸受などの接触型の軸受と比べ、接触摩擦によるエネルギのロスが少ないなどのメリットを有する。他方、非接触型の軸受では、外力が印加されたときに回転体の変位が起きやすい。そのため、回転体と軸受との接触を抑制するよう注意が必要となる。 Non-contact bearings such as air bearings, gas bearings, or magnetic bearings are attracting attention as a technology for supporting the rotating body in the refrigerant circulation system as described above. Such non-contact type bearings have advantages such as less energy loss due to contact friction than contact type bearings such as rolling bearings. On the other hand, in non-contact type bearings, displacement of the rotating body is likely to occur when external force is applied. Therefore, care must be taken to prevent contact between the rotating body and the bearing.
 本開示は、始動時における回転体と非接触型の軸受との接触状態の偏りを抑制する冷媒圧縮機を説明する。 The present disclosure describes a refrigerant compressor that suppresses uneven contact between a rotating body and a non-contact bearing during startup.
 本開示の一形態に係る冷媒圧縮機は、冷媒循環システムにおいて循環する冷媒を圧縮する。冷媒圧縮機は、シャフト、及び、シャフトから径方向に突出してシャフトと共に回転する突出部を有する回転体と、回転体を回転可能に支持する非接触型の軸受ユニットと、突出部を収容する内部空間を有するハウジングと、内部空間に開口し、内部空間に冷媒を供給する吸入口と、吸入口に連通し、蒸発器に接続された冷媒流路と、内部空間から冷媒を排出する吐出孔と、内部空間に設けられた還流口を介して、内部空間と蒸発器とを連通する還流路と、を備える。還流口は、突出部よりも鉛直方向の下方に位置している。 A refrigerant compressor according to one embodiment of the present disclosure compresses refrigerant circulating in a refrigerant circulation system. The refrigerant compressor includes a shaft, a rotating body having a protrusion that protrudes radially from the shaft and rotates together with the shaft, a non-contact type bearing unit that rotatably supports the rotary body, and an interior that accommodates the protrusion. A housing having a space, a suction port opening into the internal space and supplying refrigerant to the internal space, a refrigerant passage communicating with the suction port and connected to an evaporator, and a discharge hole discharging the refrigerant from the internal space. , a reflux path that communicates the internal space with the evaporator via a reflux port provided in the internal space. The reflux port is located vertically below the protrusion.
 本開示のいくつかの態様によれば、始動時の回転体と非接触型の軸受との接触状態の偏りを抑制する冷媒圧縮機が提供される。 According to some aspects of the present disclosure, a refrigerant compressor is provided that suppresses uneven contact between a rotating body and a non-contact bearing during startup.
図1は、一実施形態に係る冷媒圧縮機を備える冷凍機の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a refrigerator including a refrigerant compressor according to an embodiment. 図2は、図1の冷媒圧縮機の構成を示す断面図である。FIG. 2 is a sectional view showing the configuration of the refrigerant compressor of FIG. 1. 図3は、図2のIII-III線に沿った冷媒圧縮機の断面である。FIG. 3 is a cross section of the refrigerant compressor taken along line III-III in FIG. 図4(a)は、稼働時の冷媒圧縮機を単純化して示す断面図である。図4(b)は、運転休止時の冷媒圧縮機を単純化して示す断面図である。FIG. 4(a) is a simplified cross-sectional view of the refrigerant compressor during operation. FIG. 4(b) is a simplified cross-sectional view of the refrigerant compressor during suspension of operation. 図5は、冷媒圧縮機と蒸発器との接続構成を示す図である。FIG. 5 is a diagram showing a connection configuration between a refrigerant compressor and an evaporator. 図6(a)は、運転休止時における比較例の冷媒圧縮機を示す断面図である。図6(b)は、稼働時における比較例の冷媒圧縮機を示す断面図である。FIG. 6(a) is a cross-sectional view showing a refrigerant compressor of a comparative example during suspension of operation. FIG. 6(b) is a sectional view showing the refrigerant compressor of the comparative example during operation. 図7は、変形例1の冷媒圧縮機を示す断面図である。FIG. 7 is a sectional view showing a refrigerant compressor of Modification 1. 図8は、変形例2の冷媒圧縮機を示す断面図である。FIG. 8 is a sectional view showing a refrigerant compressor according to modification 2.
 本開示の一形態に係る冷媒圧縮機は、冷媒循環システムにおいて循環する冷媒を圧縮する。冷媒圧縮機は、シャフト、及び、シャフトから径方向に突出してシャフトと共に回転する突出部を有する回転体と、回転体を回転可能に支持する非接触型の軸受ユニットと、突出部を収容する内部空間を有するハウジングと、内部空間に開口し、内部空間に冷媒を供給する吸入口と、吸入口に連通し、蒸発器に接続された冷媒流路と、内部空間から冷媒を排出する吐出孔と、内部空間に設けられた還流口を介して、内部空間と蒸発器とを連通する還流路と、を備える。還流口は、突出部よりも鉛直方向の下方に位置している。 A refrigerant compressor according to one embodiment of the present disclosure compresses refrigerant circulating in a refrigerant circulation system. The refrigerant compressor includes a shaft, a rotating body having a protrusion that protrudes radially from the shaft and rotates together with the shaft, a non-contact type bearing unit that rotatably supports the rotary body, and an interior that accommodates the protrusion. A housing having a space, a suction port opening into the internal space and supplying refrigerant to the internal space, a refrigerant passage communicating with the suction port and connected to an evaporator, and a discharge hole discharging the refrigerant from the internal space. , a reflux path that communicates the internal space with the evaporator via a reflux port provided in the internal space. The reflux port is located vertically below the protrusion.
 上記の冷媒圧縮機では、蒸発器において気化した冷媒が、冷媒流路を通って吸入口からハウジングの内部空間に供給され、吐出孔から外部に排出される。上記の冷媒圧縮機は、ハウジングの内部空間に設けられた還流口を介して、内部空間と蒸発器とを連通する還流路を備える。そして、還流口は、回転体の突出部よりも鉛直方向の下方に位置している。そのため、ハウジングの内部空間において液化した冷媒は、突出部に達する前にハウジングの内部空間から還流路を通じて外部に流れる。ここで、還流路を流れた液体は、蒸発器に還流される。蒸発器は、液体を気化し、冷媒として再び冷媒圧縮機に供給する。このように内部空間の液体を蒸発器に還流して気化する構成とすれば、内部空間から液体を効率的に排除できる。その結果、内部空間における液体の水位が突出部に達する事態を抑制でき、シャフトの回転バランスが崩れる事態を抑制できる。これにより、始動時における回転体と軸受ユニットとの接触状態の偏りを抑制できる。 In the above refrigerant compressor, the refrigerant vaporized in the evaporator is supplied to the internal space of the housing from the suction port through the refrigerant flow path, and is discharged to the outside from the discharge hole. The refrigerant compressor described above includes a reflux path that communicates the internal space with the evaporator via a reflux port provided in the internal space of the housing. The reflux port is located vertically below the protrusion of the rotating body. Therefore, the refrigerant liquefied in the internal space of the housing flows from the internal space of the housing to the outside through the return path before reaching the protrusion. Here, the liquid that has flowed through the reflux path is refluxed to the evaporator. The evaporator vaporizes the liquid and supplies it again as refrigerant to the refrigerant compressor. With this configuration in which the liquid in the internal space is returned to the evaporator and vaporized, the liquid can be efficiently removed from the internal space. As a result, it is possible to prevent the liquid level in the internal space from reaching the protrusion, and it is possible to prevent the shaft from becoming unbalanced in rotation. Thereby, uneven contact between the rotating body and the bearing unit at the time of starting can be suppressed.
 いくつかの態様において、還流路は、冷媒流路自体によって構成されていてもよい。この場合、冷媒流路が、気化した冷媒を蒸発器から供給する機能と、ハウジングの内部空間において液化した冷媒を蒸発器に還流する機能とを兼ねる。この構成によれば、液化した冷媒を蒸発器に還流する機能と、冷媒を蒸発器から供給する機能とを同一の流路で提供できるため、冷媒圧縮機の構成の簡易化を図ることができる。 In some embodiments, the return flow path may be constituted by the refrigerant flow path itself. In this case, the refrigerant flow path has both the function of supplying vaporized refrigerant from the evaporator and the function of returning liquefied refrigerant in the internal space of the housing to the evaporator. According to this configuration, the function of returning liquefied refrigerant to the evaporator and the function of supplying refrigerant from the evaporator can be provided in the same flow path, so the configuration of the refrigerant compressor can be simplified. .
 いくつかの態様において、軸受ユニットは、シャフトが延在する軸方向に並んで配置され、シャフトを径方向に支持する一対の軸受を含んでもよい。内部空間は、軸方向において互いに連通する第1内部領域、第2内部領域、及び第3内部領域を有してもよい。第2内部領域は、軸方向における一対の軸受の間に位置してもよい。第1内部領域は、軸方向において一対の軸受を挟んで一方側に位置してもよい。第3内部領域は、軸方向において一対の軸受を挟んで他方側に位置してもよい。吸入口は、第3内部領域と連通してもよい。吐出孔は、第1内部領域と連通してもよい。この場合、吸入口から供給された冷媒は、一対の軸受を通って吐出孔から排出されるため、この冷媒の流れを利用して一対の軸受を冷却できる。 In some embodiments, the bearing unit may include a pair of bearings that are arranged side by side in the axial direction in which the shaft extends and support the shaft in the radial direction. The interior space may have a first interior region, a second interior region, and a third interior region that communicate with each other in the axial direction. The second internal region may be located between the pair of bearings in the axial direction. The first internal region may be located on one side of the pair of bearings in the axial direction. The third internal region may be located on the other side of the pair of bearings in the axial direction. The inlet may communicate with the third interior region. The discharge hole may communicate with the first internal region. In this case, since the refrigerant supplied from the suction port passes through the pair of bearings and is discharged from the discharge hole, the flow of this refrigerant can be used to cool the pair of bearings.
 いくつかの態様において、還流路は、内部空間から鉛直方向の下方にハウジングを貫通していてもよい。この場合、ハウジングの内部空間に生じた液体が重力に従って還流路に流れ込みやすくなる。これにより、内部空間から液体を効果的に排除できる。 In some embodiments, the return flow path may penetrate the housing vertically downward from the internal space. In this case, the liquid generated in the internal space of the housing easily flows into the reflux path according to gravity. This allows liquid to be effectively removed from the internal space.
 いくつかの態様において、吐出孔は、還流路とは異なる位置において、内部空間から鉛直方向の下方にハウジングを貫通していてもよい。この場合、還流路に加えて吐出孔も、ハウジングの内部空間から液体を排除するための流路として利用できる。これにより、内部空間から液体をより効果的に排除できる。 In some embodiments, the discharge hole may penetrate the housing vertically downward from the internal space at a position different from the reflux path. In this case, in addition to the reflux path, the discharge hole can also be used as a flow path for removing liquid from the internal space of the housing. Thereby, liquid can be more effectively removed from the internal space.
 いくつかの態様において、ハウジングの内壁面は、吐出孔と還流路との間において、還流口に向けて下がる傾斜部を含んでもよい。この場合、ハウジングの内部空間に生じた液体は、重力に従って吐出孔よりも還流路に流れ込みやすくなる。これにより、蒸発器に液体を積極的に流すことが可能となる。このように液体を気化する蒸発器に液体を積極的に流す場合、例えば液体が溜まりやすい凝縮器などの他の機器に液体を流した場合と比べて、流した液体が冷媒圧縮機に押し戻されるといった事態が起こりにくい。従って、蒸発器に液体を積極的に流すことで、内部空間から液体をより効果的に排除できる。 In some embodiments, the inner wall surface of the housing may include an inclined part between the discharge hole and the reflux path that descends toward the reflux port. In this case, the liquid generated in the internal space of the housing flows more easily into the reflux path than into the discharge hole according to gravity. This makes it possible to actively flow the liquid into the evaporator. When liquid is actively flowed into an evaporator that vaporizes liquid in this way, the flowed liquid is pushed back into the refrigerant compressor, compared to when the liquid is flowed through other equipment such as a condenser where liquid tends to accumulate. Such a situation is unlikely to occur. Therefore, by actively flowing liquid into the evaporator, liquid can be more effectively removed from the internal space.
 いくつかの態様において、吐出孔は、内部空間から鉛直方向の上方にハウジングを貫通していてもよい。この場合、ハウジングの内部空間に生じた液体が吐出孔に流れ込むことを抑制できるので、流した液体が冷媒圧縮機に押し戻されるといった事態がより起こりにくくなる。これにより、内部空間から液体をより効果的に排除できる。 In some embodiments, the discharge hole may penetrate the housing vertically upward from the internal space. In this case, it is possible to suppress the liquid generated in the internal space of the housing from flowing into the discharge hole, making it more difficult for the liquid to be pushed back into the refrigerant compressor. Thereby, liquid can be more effectively removed from the internal space.
 以下、本開示の実施形態について、図面を参照しながら説明する。図面の説明において同一要素には同一符号を付し、重複する説明は適宜省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and duplicate descriptions will be omitted as appropriate.
 図1に示す冷凍機1は、例えば、空調用の冷却水を生成するためにビル又は工場等に設置され得る。冷凍機1は、例えば、冷媒圧縮機2と、凝縮器3と、膨張弁4と、蒸発器5とを備える。冷媒圧縮機2、凝縮器3、膨張弁4、及び蒸発器5は、冷媒(例えば、フロン)が循環する冷媒循環システム6を構成する。冷媒循環システム6では、冷媒圧縮機2、凝縮器3、膨張弁4、及び蒸発器5を冷媒が相変化しながら循環することにより、熱エネルギの授受が行われる。 The refrigerator 1 shown in FIG. 1 can be installed in a building or factory, for example, to generate cooling water for air conditioning. The refrigerator 1 includes, for example, a refrigerant compressor 2, a condenser 3, an expansion valve 4, and an evaporator 5. The refrigerant compressor 2, condenser 3, expansion valve 4, and evaporator 5 constitute a refrigerant circulation system 6 in which refrigerant (eg, fluorocarbon) circulates. In the refrigerant circulation system 6, thermal energy is exchanged by circulating the refrigerant through the refrigerant compressor 2, condenser 3, expansion valve 4, and evaporator 5 while changing its phase.
 冷媒圧縮機2は、流路F1を介して凝縮器3に接続されている。凝縮器3は、流路F2を介して膨張弁4に接続されている。膨張弁4は、流路F3を介して蒸発器5に接続されている。蒸発器5は、流路F4を介して冷媒圧縮機2に接続されている。これら流路F1,F2,F3,及びF4は、冷媒圧縮機2、凝縮器3、膨張弁4、及び蒸発器5を冷媒が循環しながら流れるための循環流路を構成する。 The refrigerant compressor 2 is connected to the condenser 3 via a flow path F1. Condenser 3 is connected to expansion valve 4 via flow path F2. Expansion valve 4 is connected to evaporator 5 via flow path F3. Evaporator 5 is connected to refrigerant compressor 2 via flow path F4. These flow paths F1, F2, F3, and F4 constitute a circulation flow path through which the refrigerant circulates through the refrigerant compressor 2, condenser 3, expansion valve 4, and evaporator 5.
 冷媒圧縮機2は、蒸発器5から供給される冷媒ガスR3を圧縮することにより、圧縮冷媒ガスR1を生成する。冷媒圧縮機2は、生成した圧縮冷媒ガスR1を、流路F1を介して凝縮器3に供給する。凝縮器3は、冷媒圧縮機2により圧縮されて高温高圧となった圧縮冷媒ガスR1を冷却により液化することにより、液冷媒R2を生成する。凝縮器3は、生成した液冷媒R2を、流路F2を介して膨張弁4に供給する。膨張弁4は、凝縮器3により液化された液冷媒R2を減圧する。膨張弁4は、減圧した液冷媒R2を、流路F3を介して蒸発器5に供給する。 The refrigerant compressor 2 generates compressed refrigerant gas R1 by compressing refrigerant gas R3 supplied from the evaporator 5. The refrigerant compressor 2 supplies the generated compressed refrigerant gas R1 to the condenser 3 via the flow path F1. The condenser 3 generates liquid refrigerant R2 by cooling and liquefying the compressed refrigerant gas R1, which has been compressed by the refrigerant compressor 2 and has become high temperature and high pressure. The condenser 3 supplies the generated liquid refrigerant R2 to the expansion valve 4 via the flow path F2. The expansion valve 4 reduces the pressure of the liquid refrigerant R2 liquefied by the condenser 3. The expansion valve 4 supplies the reduced pressure liquid refrigerant R2 to the evaporator 5 via the flow path F3.
 蒸発器5は、膨張弁4により減圧された液冷媒R2を蒸発させることにより、冷媒ガスR3を生成する。蒸発器5は、液冷媒R2の蒸発により冷媒ガスR3が生成される際の気化熱によって、冷却対象物(例えば冷却水)を冷却する。蒸発器5は、生成した冷媒ガスR3を、流路F4を介して冷媒圧縮機2に供給する。冷媒圧縮機2に供給された冷媒ガスR3は、冷媒圧縮機2において圧縮された後に、圧縮冷媒ガスR1として凝縮器3に再び供給される。圧縮冷媒ガスR1、液冷媒R2、及び冷媒ガスR3は、冷媒循環システム6において冷媒がとり得る状態の例である。 The evaporator 5 generates refrigerant gas R3 by evaporating the liquid refrigerant R2 whose pressure has been reduced by the expansion valve 4. The evaporator 5 cools an object to be cooled (for example, cooling water) using the heat of vaporization when refrigerant gas R3 is generated by evaporating the liquid refrigerant R2. The evaporator 5 supplies the generated refrigerant gas R3 to the refrigerant compressor 2 via the flow path F4. The refrigerant gas R3 supplied to the refrigerant compressor 2 is compressed in the refrigerant compressor 2, and then supplied to the condenser 3 again as compressed refrigerant gas R1. Compressed refrigerant gas R1, liquid refrigerant R2, and refrigerant gas R3 are examples of states that the refrigerant can take in the refrigerant circulation system 6.
 続いて、図2を参照して、冷媒圧縮機2の構成について詳細に説明する。冷媒圧縮機2は、いわゆる二段式の圧縮機である。図2に示すように、冷媒圧縮機2は、シャフト10と、圧縮機ユニット30と、モータユニット50とを備える。以下の説明において、「上方D1A」とは、冷媒圧縮機2が使用箇所に設置されたときの鉛直方向(重力方向)の上方を意味し、「下方D1B」とは、鉛直方向の下方を意味する。本実施形態では、冷媒圧縮機2が使用箇所に設置された状態において、シャフト10の回転軸線Lが水平方向に延在するように配置される。従って、回転軸線Lが延在する軸方向D2は、鉛直方向に対して直交する。以下の説明において、「上流側」とは、冷媒圧縮機2を流れる冷媒の流れ方向の上流側を意味し、「下流側」とは、当該流れ方向の下流側を意味する。 Next, the configuration of the refrigerant compressor 2 will be described in detail with reference to FIG. 2. The refrigerant compressor 2 is a so-called two-stage compressor. As shown in FIG. 2, the refrigerant compressor 2 includes a shaft 10, a compressor unit 30, and a motor unit 50. In the following description, "upper D1A" means the upper part in the vertical direction (direction of gravity) when the refrigerant compressor 2 is installed at the location where it is used, and "lower D1B" means the lower part in the vertical direction. do. In this embodiment, the refrigerant compressor 2 is arranged so that the rotation axis L of the shaft 10 extends in the horizontal direction when it is installed at the location where it is used. Therefore, the axial direction D2 in which the rotational axis L extends is perpendicular to the vertical direction. In the following description, "upstream side" means the upstream side in the flow direction of the refrigerant flowing through the refrigerant compressor 2, and "downstream side" means the downstream side in the flow direction.
 圧縮機ユニット30は、第1インペラ31と、第2インペラ32と、第1インペラ31を収容する第1インペラハウジング41と、第2インペラ32を収容する第2インペラハウジング42とを有する。第1インペラ31及び第1インペラハウジング41は、低圧側の圧縮段を構成する。第2インペラ32及び第2インペラハウジング42は、高圧側の圧縮段を構成する。第1インペラ31及び第2インペラ32は、シャフト10の一端部10aに取り付けられている。第1インペラ31及び第2インペラ32のそれぞれは、シャフト10から径方向の外側に突出する突出部であり、シャフト10と一体に回転軸線Lの周りに回転する。第1インペラ31及び第2インペラ32は、例えば、軸方向D2において互いの背面が間隔を空けて対面するように配置される。第2インペラ32は、例えば、第1インペラ31と同軸に配置され、第1インペラ31と同一の寸法を有する。第1インペラ31は、例えば、軸方向D2において第2インペラ32とモータユニット50との間に位置している。以下、第1インペラ31及び第2インペラ32を特に区別せずに説明する場合には、これらをまとめて「インペラ35」と称する。 The compressor unit 30 includes a first impeller 31 , a second impeller 32 , a first impeller housing 41 that accommodates the first impeller 31 , and a second impeller housing 42 that accommodates the second impeller 32 . The first impeller 31 and the first impeller housing 41 constitute a compression stage on the low pressure side. The second impeller 32 and the second impeller housing 42 constitute a compression stage on the high pressure side. The first impeller 31 and the second impeller 32 are attached to one end 10a of the shaft 10. Each of the first impeller 31 and the second impeller 32 is a protrusion that protrudes outward in the radial direction from the shaft 10, and rotates around the rotation axis L together with the shaft 10. The first impeller 31 and the second impeller 32 are arranged, for example, so that their back surfaces face each other with a gap in between in the axial direction D2. The second impeller 32 is, for example, arranged coaxially with the first impeller 31 and has the same dimensions as the first impeller 31. The first impeller 31 is located, for example, between the second impeller 32 and the motor unit 50 in the axial direction D2. Hereinafter, when the first impeller 31 and the second impeller 32 are to be described without particular distinction, they will be collectively referred to as the "impeller 35."
 第1インペラハウジング41と第2インペラハウジング42とは、軸方向D2に互いに接続されている。第1インペラハウジング41と第2インペラハウジング42との間には、段間プレート43が設けられている。段間プレート43は、第1インペラハウジング41及び第2インペラハウジング42に軸方向D2に接続されている。従って、第2インペラハウジング42は、段間プレート43を介して第1インペラハウジング41と軸方向D2に接続されている。 The first impeller housing 41 and the second impeller housing 42 are connected to each other in the axial direction D2. An interstage plate 43 is provided between the first impeller housing 41 and the second impeller housing 42 . The interstage plate 43 is connected to the first impeller housing 41 and the second impeller housing 42 in the axial direction D2. Therefore, the second impeller housing 42 is connected to the first impeller housing 41 via the interstage plate 43 in the axial direction D2.
 モータユニット50は、モータ51と、モータ51を収容するモータハウジング55とを有する。モータ51は、圧縮機ユニット30を駆動させるための駆動源である。モータ51は、モータハウジング55に固定される固定子52と、シャフト10に固定される回転子53とを含む。回転子53は、固定子52に対して隙間を空けて対面する。モータハウジング55は、第1インペラハウジング41に対して軸方向D2に接続されている。モータハウジング55、第1インペラハウジング41、段間プレート43、及び第2インペラハウジング42は、冷媒圧縮機2のハウジング11を構成する。 The motor unit 50 includes a motor 51 and a motor housing 55 that accommodates the motor 51. The motor 51 is a drive source for driving the compressor unit 30. Motor 51 includes a stator 52 fixed to motor housing 55 and a rotor 53 fixed to shaft 10. The rotor 53 faces the stator 52 with a gap therebetween. The motor housing 55 is connected to the first impeller housing 41 in the axial direction D2. The motor housing 55 , the first impeller housing 41 , the interstage plate 43 , and the second impeller housing 42 constitute the housing 11 of the refrigerant compressor 2 .
 ハウジング11の内部空間Sには、第1インペラ31及び第2インペラ32が取り付けられたシャフト10が収容される。内部空間Sは、ハウジング11の内壁面11aによって画定される空間である。シャフト10は、内部空間Sにおいて、モータハウジング55、第1インペラハウジング41、段間プレート43、及び第2インペラハウジング42にわたって軸方向D2に延在している。シャフト10は、モータハウジング55の内部に設けられた一対の軸受60,60及び一対の軸受64,64によって、回転軸線Lの周りに回転可能に支持されている。一対の軸受60,60及び一対の軸受64,64は、本開示の「軸受ユニット」を構成する。一対の軸受60,60は、シャフト10を取り囲むように設けられ、モータ51を軸方向D2に挟む位置において並んで配置されている。 The shaft 10 to which the first impeller 31 and the second impeller 32 are attached is accommodated in the internal space S of the housing 11. The internal space S is a space defined by the inner wall surface 11a of the housing 11. In the internal space S, the shaft 10 extends in the axial direction D2 across the motor housing 55, the first impeller housing 41, the interstage plate 43, and the second impeller housing 42. The shaft 10 is rotatably supported around the rotation axis L by a pair of bearings 60, 60 and a pair of bearings 64, 64 provided inside the motor housing 55. The pair of bearings 60, 60 and the pair of bearings 64, 64 constitute a "bearing unit" of the present disclosure. The pair of bearings 60, 60 are provided so as to surround the shaft 10, and are arranged side by side at positions sandwiching the motor 51 in the axial direction D2.
 ハウジング11の内部空間Sは、第1内部領域S1、第2内部領域S2、及び第3内部領域S3を有する。第1内部領域S1、第2内部領域S2、及び第3内部領域S3は、軸方向D2に順に並んでおり、互いに連通している。第2内部領域S2は、軸方向D2において一対の軸受60,60の間に位置する。第2内部領域S2は、モータハウジング55の中央部に取り囲まれている。第2内部領域S2には、一対の軸受60,60に挟まれるモータ51が配置されている。第1内部領域S1は、軸方向D2において一対の軸受60,60を挟んで第1インペラ31及び第2インペラ32が位置する一方側に位置する。第1内部領域S1は、主に、第1インペラハウジング41、第2インペラハウジング42、及び段間プレート43によって取り囲まれている。第3内部領域S3は、軸方向D2において一対の軸受60,60を挟んで他方側に位置する。第3内部領域S3は、軸方向D2において第1インペラハウジング41とは反対側に位置するモータハウジング55の端部によって取り囲まれている。 The internal space S of the housing 11 has a first internal area S1, a second internal area S2, and a third internal area S3. The first internal region S1, the second internal region S2, and the third internal region S3 are arranged in order in the axial direction D2 and communicate with each other. The second internal region S2 is located between the pair of bearings 60, 60 in the axial direction D2. The second internal region S2 is surrounded by the central portion of the motor housing 55. A motor 51 sandwiched between a pair of bearings 60, 60 is arranged in the second internal region S2. The first internal region S1 is located on one side where the first impeller 31 and the second impeller 32 are located with the pair of bearings 60, 60 in between in the axial direction D2. The first internal region S1 is mainly surrounded by the first impeller housing 41, the second impeller housing 42, and the interstage plate 43. The third internal region S3 is located on the other side with the pair of bearings 60, 60 interposed therebetween in the axial direction D2. The third internal region S3 is surrounded by the end of the motor housing 55 located on the opposite side of the first impeller housing 41 in the axial direction D2.
 ハウジング11は、吸入孔12及び吐出孔13を有する。吸入孔12は、蒸発器5(図1参照)からの冷媒ガスR3を内部空間Sに吸入するための孔である。吸入孔12は、内部空間Sに連通すると共に、流路F4を介して蒸発器5に接続されている。内部空間Sに吸入された冷媒ガスR3は、シャフト10と共に回転する第1インペラ31及び第2インペラ32によって圧縮される。吐出孔13は、内部空間Sにおいて圧縮された圧縮冷媒ガスR1を内部空間Sから凝縮器3(図1参照)に吐出するための孔である。吐出孔13は、内部空間Sに連通すると共に、流路F1を介して凝縮器3に接続されている。吸入孔12は、例えば、モータハウジング55に形成され、第3内部領域S3に連通している。吐出孔13は、例えば、第2インペラハウジング42に形成され、第1内部領域S1に連通している。吸入孔12及び吐出孔13のより具体的な構成については、後述する。 The housing 11 has a suction hole 12 and a discharge hole 13. The suction hole 12 is a hole for sucking the refrigerant gas R3 from the evaporator 5 (see FIG. 1) into the internal space S. The suction hole 12 communicates with the internal space S and is also connected to the evaporator 5 via a flow path F4. The refrigerant gas R3 sucked into the internal space S is compressed by the first impeller 31 and the second impeller 32 that rotate together with the shaft 10. The discharge hole 13 is a hole for discharging the compressed refrigerant gas R1 compressed in the internal space S from the internal space S to the condenser 3 (see FIG. 1). The discharge hole 13 communicates with the internal space S and is also connected to the condenser 3 via the flow path F1. The suction hole 12 is formed in the motor housing 55, for example, and communicates with the third internal region S3. The discharge hole 13 is formed in the second impeller housing 42, for example, and communicates with the first internal region S1. More specific configurations of the suction hole 12 and the discharge hole 13 will be described later.
 モータハウジング55は、例えば、回転軸線Lを中心とする円筒状の側壁56と、側壁56の軸方向D2の一端を塞ぐ円板状の端壁57とを有する。側壁56は、シャフト10に固定された回転子53を取り囲んでいる。側壁56の内面56aには、固定子52が固定されている。側壁56の内面56aには、一対の軸受60,60を支持する一対の支持部61,61が設けられている。 The motor housing 55 has, for example, a cylindrical side wall 56 centered on the rotation axis L, and a disc-shaped end wall 57 that closes one end of the side wall 56 in the axial direction D2. Side wall 56 surrounds rotor 53 fixed to shaft 10 . A stator 52 is fixed to the inner surface 56a of the side wall 56. A pair of support parts 61, 61 that support a pair of bearings 60, 60 are provided on the inner surface 56a of the side wall 56.
 図3に示すように、一対の支持部61,61のそれぞれは、リング状部材62と、4本の棒状部材63と、を含む。リング状部材62は、例えば、軸方向D2から見て円環状を呈している。リング状部材62は、軸受60を周方向D3に取り囲むように配置され、側壁56の内面56aに固定されている。4本の棒状部材63は、軸受60を中心として十字状に延在しており、軸受60とリング状部材62とを接続している。シャフト10は、軸受60の内側を挿通するように配置されている。軸受60は、非接触型のラジアル軸受である。軸受60の例としては、例えば、空気軸受、ガス軸受又は磁気軸受などが挙げられる。シャフト10の回転時において、軸受60は、回転子53(図2参照)に対して隙間を空けて配置され、回転子53及びシャフト10を非接触で径方向に支持する。 As shown in FIG. 3, each of the pair of support parts 61, 61 includes a ring-shaped member 62 and four rod-shaped members 63. The ring-shaped member 62 has, for example, an annular shape when viewed from the axial direction D2. The ring-shaped member 62 is arranged to surround the bearing 60 in the circumferential direction D3, and is fixed to the inner surface 56a of the side wall 56. The four rod-shaped members 63 extend in a cross shape with the bearing 60 at the center, and connect the bearing 60 and the ring-shaped member 62. The shaft 10 is arranged to pass through the inside of the bearing 60. The bearing 60 is a non-contact radial bearing. Examples of the bearing 60 include, for example, an air bearing, a gas bearing, or a magnetic bearing. When the shaft 10 rotates, the bearing 60 is arranged with a gap between the rotor 53 (see FIG. 2) and supports the rotor 53 and the shaft 10 in a non-contact manner in the radial direction.
 再び図2を参照する。第2内部領域S2は、周方向D3(図3参照)における各棒状部材63の間の空間、及び、回転子53と一方の軸受60との隙間を介して、第1内部領域S1と連通している。第2内部領域S2は、周方向D3における各棒状部材63の間の空間、及び、回転子53と他方の軸受60との隙間を介して、第3内部領域S3と連通している。従って、ハウジング11の内部空間Sにおいて、冷媒ガスR3などの流体は、第1内部領域S1、第2内部領域S2、及び第3内部領域S3を移動可能である。 Refer to FIG. 2 again. The second internal region S2 communicates with the first internal region S1 through the space between each rod-shaped member 63 in the circumferential direction D3 (see FIG. 3) and the gap between the rotor 53 and one bearing 60. ing. The second internal region S2 communicates with the third internal region S3 via the space between each rod-shaped member 63 in the circumferential direction D3 and the gap between the rotor 53 and the other bearing 60. Therefore, in the internal space S of the housing 11, fluid such as the refrigerant gas R3 can move through the first internal area S1, the second internal area S2, and the third internal area S3.
 一対の軸受64,64は、例えば、第3内部領域S3においてシャフト10を取り囲むように設けられ、軸方向D2に間隔を空けて並んで配置されている。一対の軸受64,64は、非接触型のスラスト軸受である。一対の軸受64,64の例としては、例えば、空気軸受、ガス軸受又は磁気軸受などが挙げられる。一対の軸受64,64の間には、スラストカラー65が設けられている。スラストカラー65は、シャフト10から鍔状に突出する突出部であり、シャフト10と一体に回転軸線Lの周りに回転する。一対の軸受64,64の間には、スラストカラー65の外周を包囲する環状のスペーサ67が設けられている。 The pair of bearings 64, 64 are provided, for example, in the third internal region S3 so as to surround the shaft 10, and are arranged side by side with an interval in the axial direction D2. The pair of bearings 64, 64 are non-contact type thrust bearings. Examples of the pair of bearings 64, 64 include, for example, air bearings, gas bearings, or magnetic bearings. A thrust collar 65 is provided between the pair of bearings 64, 64. The thrust collar 65 is a protruding part that protrudes from the shaft 10 in a brim shape, and rotates around the rotation axis L together with the shaft 10. An annular spacer 67 surrounding the outer periphery of the thrust collar 65 is provided between the pair of bearings 64 , 64 .
 一対の軸受64,64及びスペーサ67は、複数の締結ボルトによって一体となるように締結されている。互いに一体になった一対の軸受64,64及びスペーサ67は、側壁56の内面56aに固定されている。一対の軸受64,64及びスペーサ67は、スラストカラー65が収容される収容空間を画定している。この収容空間において、スラストカラー65は、一対の軸受64,64及びスペーサ67に対して非接触の状態でシャフト10と共に回転軸線Lの周りに回転する。一対の軸受64,64、スペーサ67、及びスラストカラー65は、回転子53及びシャフト10を非接触で軸方向D1に支持する。スラストカラー65、インペラ35、及びシャフト10は、互いに一体となって回転する回転体RBを構成する。 The pair of bearings 64, 64 and the spacer 67 are fastened together by a plurality of fastening bolts. A pair of bearings 64, 64 and a spacer 67, which are integral with each other, are fixed to the inner surface 56a of the side wall 56. The pair of bearings 64, 64 and the spacer 67 define an accommodation space in which the thrust collar 65 is accommodated. In this accommodation space, the thrust collar 65 rotates around the rotation axis L together with the shaft 10 without contacting the pair of bearings 64 and the spacer 67. The pair of bearings 64, 64, the spacer 67, and the thrust collar 65 support the rotor 53 and the shaft 10 in the axial direction D1 in a non-contact manner. The thrust collar 65, the impeller 35, and the shaft 10 constitute a rotating body RB that rotates integrally with each other.
 第1インペラハウジング41は、軸方向D2において側壁56の端壁57とは反対側の開口を塞ぐように配置される。第1インペラハウジング41は、流入口41aと、ディフューザ流路41bと、スクロール流路41cと、流出口41dとを含む。流入口41aは、シャフト10と同軸の開口であり、モータハウジング55の内部と連通する。従って、流入口41aには、モータハウジング55の内部に吸入された冷媒ガスR3が流入する。流入口41aの奥側には、第1インペラ31が配置されている。第1インペラ31の回転により、冷媒ガスR3に速度エネルギが付与される。 The first impeller housing 41 is arranged so as to close the opening of the side wall 56 on the side opposite to the end wall 57 in the axial direction D2. The first impeller housing 41 includes an inlet 41a, a diffuser passage 41b, a scroll passage 41c, and an outlet 41d. The inlet 41 a is an opening coaxial with the shaft 10 and communicates with the inside of the motor housing 55 . Therefore, the refrigerant gas R3 sucked into the motor housing 55 flows into the inlet 41a. The first impeller 31 is arranged on the back side of the inlet 41a. The rotation of the first impeller 31 imparts velocity energy to the refrigerant gas R3.
 スクロール流路41cは、第1インペラ31を囲むように形成されている。ディフューザ流路41bは、第1インペラ31とスクロール流路41cとの間に形成されている。ディフューザ流路41bは、冷媒ガスR3に付与された速度エネルギを圧縮エネルギに変換することにより、冷媒ガスR3を圧縮する。スクロール流路41cは、ディフューザ流路41bによって圧縮された冷媒ガスR3を、流出口41dから第1インペラハウジング41の外部に吐出する。流出口41dは、例えば、第1インペラハウジング41の外周面に開口する開口である。 The scroll passage 41c is formed to surround the first impeller 31. The diffuser passage 41b is formed between the first impeller 31 and the scroll passage 41c. The diffuser flow path 41b compresses the refrigerant gas R3 by converting velocity energy imparted to the refrigerant gas R3 into compression energy. The scroll passage 41c discharges the refrigerant gas R3 compressed by the diffuser passage 41b to the outside of the first impeller housing 41 from the outlet 41d. The outflow port 41d is, for example, an opening that opens on the outer peripheral surface of the first impeller housing 41.
 第2インペラハウジング42は、流入口42aと、ディフューザ流路42bと、スクロール流路42cと、吐出孔13とを含む。流入口42aは、第1インペラハウジング41の流入口41aと同軸の開口であり、流入口41aとは反対側を向いている。流入口42aは、外部配管70を介して第1インペラハウジング41の流出口41dに接続されている。従って、流出口41dからの冷媒ガスR3は、外部配管70を介して流入口42aに流入する。流入口42aの奥側には、第2インペラ32が配置されている。第2インペラ32の回転により、冷媒ガスR3に速度エネルギが付与される。 The second impeller housing 42 includes an inlet 42 a, a diffuser passage 42 b, a scroll passage 42 c, and a discharge hole 13 . The inlet 42a is an opening coaxial with the inlet 41a of the first impeller housing 41, and faces opposite to the inlet 41a. The inlet 42a is connected to the outlet 41d of the first impeller housing 41 via an external pipe 70. Therefore, the refrigerant gas R3 from the outlet 41d flows into the inlet 42a via the external pipe 70. The second impeller 32 is arranged on the back side of the inlet 42a. The rotation of the second impeller 32 imparts velocity energy to the refrigerant gas R3.
 スクロール流路42cは、第2インペラ32を囲むように形成されている。ディフューザ流路42bは、第2インペラ32とスクロール流路42cとの間に形成されている。ディフューザ流路42bは、冷媒ガスR3に付与された速度エネルギを圧縮エネルギに変換することにより、冷媒ガスR3を更に圧縮する。その結果、圧縮冷媒ガスR1が生成される。スクロール流路42cは、生成された圧縮冷媒ガスR1を、吐出孔13から第2インペラハウジング42の外部に吐出する。 The scroll passage 42c is formed to surround the second impeller 32. The diffuser passage 42b is formed between the second impeller 32 and the scroll passage 42c. The diffuser flow path 42b further compresses the refrigerant gas R3 by converting the velocity energy imparted to the refrigerant gas R3 into compression energy. As a result, compressed refrigerant gas R1 is generated. The scroll passage 42c discharges the generated compressed refrigerant gas R1 from the discharge hole 13 to the outside of the second impeller housing 42.
 上述した吸入孔12及び吐出孔13の構成についてより具体的に説明する。吸入孔12は、内壁面11aに開口する吸入口12aを含む。吸入口12aは、回転体RBの突出部よりも鉛直方向の下方D1Bに位置している。吸入口12aが回転体RBの突出部よりも下方D1Bに位置しているとは、冷媒圧縮機2が設置箇所に設置された状態において、吸入口12aが当該突出部の下端よりも下方D1Bに位置していることを意味する。ここでの「突出部」は、インペラ35及びスラストカラー65のうち、より下方に位置している一方としてよい。例えば、「突出部」がインペラ35を指す場合(すなわち、インペラ35がスラストカラー65よりも下方D1Bに位置する場合)、「突出部」の下端は、インペラ35の下端35aを指す。この場合、吸入口12aは、インペラ35の下端35aよりも下方D1Bに位置していればよい。言い換えると、吸入口12aは、ハウジング11の下端に位置する外面56bと、インペラ35の下端35aとの間の領域RHに位置していればよい。インペラ35の下端35aは、インペラ35のうちの最も下方D1Bに位置する部位である。インペラ35の下端35aは、最下端に位置するインペラ35の先端、すなわちハウジング11の下端に最も近接するインペラ35の先端であるともいえる。 The configuration of the above-mentioned suction hole 12 and discharge hole 13 will be explained in more detail. The suction hole 12 includes a suction port 12a that opens to the inner wall surface 11a. The suction port 12a is located vertically lower D1B than the protrusion of the rotating body RB. The fact that the suction port 12a is located below the protrusion D1B of the rotating body RB means that the suction port 12a is located below the bottom D1B of the protrusion when the refrigerant compressor 2 is installed at the installation location. means located. The "projection" here may be one of the impeller 35 and the thrust collar 65 that is located lower. For example, when the “protrusion” refers to the impeller 35 (that is, when the impeller 35 is located below the thrust collar 65), the lower end of the “protrusion” refers to the lower end 35a of the impeller 35. In this case, the suction port 12a should just be located below the lower end 35a of the impeller 35 D1B. In other words, the suction port 12a only needs to be located in the region RH between the outer surface 56b located at the lower end of the housing 11 and the lower end 35a of the impeller 35. The lower end 35a of the impeller 35 is a portion of the impeller 35 located at the lowest position D1B. The lower end 35a of the impeller 35 can also be said to be the tip of the impeller 35 located at the lowest end, that is, the tip of the impeller 35 closest to the lower end of the housing 11.
 吸入口12aがインペラ35よりも下方D1Bに位置するとは、吸入口12aの少なくとも一部がインペラ35の下端35aよりも下方D1Bに位置していればよい。つまり、吸入口12aが、少なくとも領域RHに位置する部分を有していればよい。従って、吸入口12aは、インペラ35と水平方向に重なる部分を有してもよい。本実施形態では、第1インペラ31及び第2インペラ32が互いに同一の高さに配置され、互いに同一の寸法を有している。そのため、第1インペラ31の下端の高さと第2インペラ32の下端の高さとは同一である。第1インペラ31の下端と第2インペラ32の下端とが互いに異なる場合には、インペラ35の下端35aは、第1インペラ31及び第2インペラ32のうち、より外径の大きい方の下端としてよい。 For the suction port 12a to be located below the impeller 35 in D1B, at least a portion of the suction port 12a may be located below the lower end 35a of the impeller 35 in the D1B. That is, it is sufficient that the suction port 12a has at least a portion located in the region RH. Therefore, the suction port 12a may have a portion that overlaps the impeller 35 in the horizontal direction. In this embodiment, the first impeller 31 and the second impeller 32 are arranged at the same height and have the same dimensions. Therefore, the height of the lower end of the first impeller 31 and the height of the lower end of the second impeller 32 are the same. If the lower end of the first impeller 31 and the lower end of the second impeller 32 are different from each other, the lower end 35a of the impeller 35 may be the lower end of the first impeller 31 or the second impeller 32, which has a larger outer diameter. .
 一方、「突出部」がスラストカラー65を指す場合(すなわち、スラストカラー65がインペラ35よりも下方D1Bに位置する場合)、「突出部」の下端は、スラストカラー65の下端65aを指す。この場合、吸入口12aは、スラストカラー65の下端65aよりも下方D1Bに位置していればよい。スラストカラー65の下端65aは、スラストカラー65のうちの最も下方D1Bに位置する部位である。スラストカラー65の下端65aは、最下端に位置するスラストカラー65の先端、すなわちハウジング11の下端に最も近接するスラストカラー65の先端であるともいえる。吸入口12aがスラストカラー65よりも下方D1Bに位置するとは、吸入口12aの少なくとも一部がスラストカラー65の下端65aよりも下方D1Bに位置することを意味する。インペラ35及びスラストカラー65のいずれが下方D1Bに位置するかについては、設計要求に応じて適宜決定される。 On the other hand, when the "protrusion" refers to the thrust collar 65 (that is, when the thrust collar 65 is located below the impeller 35), the lower end of the "protrusion" refers to the lower end 65a of the thrust collar 65. In this case, the suction port 12a only needs to be located below the lower end 65a of the thrust collar 65 D1B. The lower end 65a of the thrust collar 65 is a portion of the thrust collar 65 located at the lowest position D1B. The lower end 65a of the thrust collar 65 can also be said to be the tip of the thrust collar 65 located at the lowest end, that is, the tip of the thrust collar 65 closest to the lower end of the housing 11. The fact that the suction port 12a is located below the thrust collar 65 means that at least a portion of the suction port 12a is located below the lower end 65a of the thrust collar 65 D1B. Which of the impeller 35 and the thrust collar 65 is located in the lower direction D1B is appropriately determined according to design requirements.
 吸入孔12は、例えば、モータハウジング55の第3内部領域S3から下方D1Bに側壁56を貫通するように形成されている。具体的には、吸入孔12は、第3内部領域S3を囲む側壁56の下端部56cを、内面56aから外面56bまで鉛直方向に貫通している。下端部56cは、図2に示す断面において、側壁56のうち下方D1Bに位置する壁部である。従って、吸入口12aは、下端部56cの内面56aに開口しており、第3内部領域S3と連通している。吐出孔13は、例えば、第2インペラハウジング42の第1内部領域S1から下方D1Bに第2インペラハウジング42を貫通するように形成されている。つまり、吐出孔13は、第1内部領域S1を囲む第2インペラハウジング42の下端部42dを鉛直方向に貫通している。下端部42dは、図2に示す断面において、第2インペラハウジング42のうち下方D1Bに位置する壁部である。吐出孔13は、第1内部領域S1と連通している。吐出孔13の吐出口13aは、下端部42dの外面42eに開口している。 The suction hole 12 is formed, for example, to penetrate the side wall 56 from the third internal region S3 of the motor housing 55 downward D1B. Specifically, the suction hole 12 vertically penetrates the lower end 56c of the side wall 56 surrounding the third internal region S3 from the inner surface 56a to the outer surface 56b. The lower end portion 56c is a wall portion of the side wall 56 located below D1B in the cross section shown in FIG. Therefore, the suction port 12a opens to the inner surface 56a of the lower end portion 56c and communicates with the third internal region S3. The discharge hole 13 is formed, for example, so as to penetrate the second impeller housing 42 from the first internal region S1 of the second impeller housing 42 downward D1B. That is, the discharge hole 13 vertically penetrates the lower end portion 42d of the second impeller housing 42 surrounding the first internal region S1. The lower end portion 42d is a wall portion located below D1B of the second impeller housing 42 in the cross section shown in FIG. The discharge hole 13 communicates with the first internal region S1. The discharge port 13a of the discharge hole 13 is open to the outer surface 42e of the lower end portion 42d.
 側壁56の内面56aは、軸方向D2における吸入孔12と吐出孔13との間に傾斜部P1を有する。傾斜部P1は、吸入孔12から吐出孔13に近づくにつれて縮径するテーパ面であってよい。図2に示す断面において、傾斜部P1は、吸入口12aに向けて下がるように傾斜している。すなわち、傾斜部P1は、吐出孔13から吸入口12aに近づくにつれて下方D1Bに位置するように傾斜している。傾斜部P1は、例えば、側壁56の第1インペラハウジング41側の端部から吸入口12aまで連続的に形成されている。 The inner surface 56a of the side wall 56 has an inclined portion P1 between the suction hole 12 and the discharge hole 13 in the axial direction D2. The inclined portion P1 may be a tapered surface whose diameter decreases as it approaches the discharge hole 13 from the suction hole 12. In the cross section shown in FIG. 2, the inclined portion P1 is inclined downward toward the suction port 12a. That is, the inclined portion P1 is inclined so as to be located downward D1B as it approaches the suction port 12a from the discharge hole 13. The inclined portion P1 is formed continuously, for example, from the end of the side wall 56 on the first impeller housing 41 side to the suction port 12a.
 以上の構成を有する冷媒圧縮機2を流れる冷媒の流れを説明する。ここでは、簡単のため、図4(a)及び図4(b)に示すように冷媒圧縮機2を単純化したモデルを用いて説明する。図4(a)及び図4(b)では、第1インペラ31及び第2インペラ32をまとめて1つのインペラ35として示し、第1インペラハウジング41、段間プレート43、及び第2インペラハウジング42をまとめて1つのインペラハウジング45として示している。また、以降の単純化したモデルでは、簡単のため、一対の軸受64,64、スラストカラー65、及びスペーサ67を省略して示し、本開示の「突出部」を「インペラ35」と捉えて説明する。なお、本開示の「突出部」を「スラストカラー65」を指すものとして捉える場合には、「インペラ35」を「スラストカラー65」に置き換えて説明できる。 The flow of refrigerant flowing through the refrigerant compressor 2 having the above configuration will be explained. Here, for simplicity, explanation will be given using a simplified model of the refrigerant compressor 2 as shown in FIGS. 4(a) and 4(b). 4(a) and 4(b), the first impeller 31 and the second impeller 32 are collectively shown as one impeller 35, and the first impeller housing 41, the interstage plate 43, and the second impeller housing 42 are shown as one impeller 35. They are collectively shown as one impeller housing 45. In addition, in the following simplified model, the pair of bearings 64, 64, the thrust collar 65, and the spacer 67 are omitted for simplicity, and the "protrusion" in the present disclosure is considered to be the "impeller 35" for explanation. do. Note that when the "protrusion" in the present disclosure is interpreted as referring to the "thrust collar 65", the "impeller 35" can be replaced with the "thrust collar 65" for explanation.
 図4(a)に示すように、冷媒圧縮機2の稼働時において、上流側の蒸発器5(図1参照)から冷媒圧縮機2に供給された冷媒ガスR3は、モータハウジング55の下方D1Bに形成された吸入孔12から第3内部領域S3に吸入(供給)される。第3内部領域S3に吸入された冷媒ガスR3は、第2内部領域S2及び第1内部領域S1を順に通過する。このとき、冷媒ガスR3は、流通経路上における一対の軸受60,60、回転子53、及び固定子52を冷却する。第1内部領域S1においてインペラ35に達した冷媒ガスR3は、インペラ35の回転によって圧縮される。これにより、圧縮冷媒ガスR1が生成される。生成された圧縮冷媒ガスR1は、インペラハウジング45の下方D1Bに形成された吐出孔13から下流側の凝縮器3に吐出される。 As shown in FIG. 4(a), when the refrigerant compressor 2 is in operation, the refrigerant gas R3 supplied to the refrigerant compressor 2 from the upstream evaporator 5 (see FIG. It is sucked (supplied) into the third internal region S3 from the suction hole 12 formed in the . The refrigerant gas R3 sucked into the third internal region S3 sequentially passes through the second internal region S2 and the first internal region S1. At this time, the refrigerant gas R3 cools the pair of bearings 60, 60, the rotor 53, and the stator 52 on the circulation path. The refrigerant gas R3 that has reached the impeller 35 in the first internal region S1 is compressed by the rotation of the impeller 35. Thereby, compressed refrigerant gas R1 is generated. The generated compressed refrigerant gas R1 is discharged from the discharge hole 13 formed in the lower part D1B of the impeller housing 45 to the condenser 3 on the downstream side.
 図4(b)に示すように、冷媒圧縮機2の運転休止時においては、ハウジング11の内部空間Sに満たされている冷媒ガスR3が、温度の低下に伴って液化し、液体R4として内部空間Sに生じることがある。液体R4は、冷媒ガスR3が液化した液冷媒R2を含む液体としてよい。本実施形態では、吸入孔12がモータハウジング55の下方D1Bに形成されているため、内部空間Sの液体R4は、重力に従って吸入孔12からハウジング11の外部に流出する。吸入孔12は、上流側の蒸発器5(図1参照)に接続されている。従って、吸入孔12から流出した液体R4は、蒸発器5に還流される。蒸発器5に還流された液体R4は、蒸発器5において気化され、冷媒ガスR3として再び吸入孔12から内部空間Sに供給される。 As shown in FIG. 4(b), when the refrigerant compressor 2 is out of operation, the refrigerant gas R3 filling the internal space S of the housing 11 liquefies as the temperature decreases and becomes a liquid R4. This may occur in space S. The liquid R4 may be a liquid containing a liquid refrigerant R2 obtained by liquefying the refrigerant gas R3. In this embodiment, since the suction hole 12 is formed in the lower part D1B of the motor housing 55, the liquid R4 in the internal space S flows out of the housing 11 from the suction hole 12 according to gravity. The suction hole 12 is connected to the evaporator 5 (see FIG. 1) on the upstream side. Therefore, the liquid R4 flowing out from the suction hole 12 is returned to the evaporator 5. The liquid R4 returned to the evaporator 5 is vaporized in the evaporator 5, and is again supplied to the internal space S from the suction hole 12 as a refrigerant gas R3.
 従って、本実施形態では、吸入孔12は、上流側の蒸発器5から冷媒ガスR3をハウジング11の内部空間Sに吸入する吸入孔としての機能に加えて、内部空間Sに滞留し得る液体R4を上流側の蒸発器5に還流する還流孔としての機能を備える。従って、吸入孔12の吸入口12aは、上流側の蒸発器5に還流する液体R4が流れる還流口としても機能する。つまり、本実施形態では、吸入孔12は、上流側の蒸発器5からハウジング11の内部空間Sに流入する冷媒ガスR3の流入経路でもあり、内部空間Sから上流側の蒸発器5に流出する液体R4の流出経路でもある。内部空間Sに生じる液体R4を蒸発器5に還流する還流孔が、吸入孔12自体によって構成(すなわち、吸入孔12と一体に構成)されているともいえる。つまり、吸入口12a自体によって還流口が構成されているともいえる。吸入口12aは、吸入孔12及び流路F4を介して蒸発器5に接続される(図1参照)。吸入孔12及び流路F4は、蒸発器5からの冷媒ガスR3を内部空間Sに供給する冷媒流路を構成する。吸入孔12及び流路F4は、内部空間Sに生じる液体R4を蒸発器5に還流する還流路を構成するともいえる。 Therefore, in this embodiment, the suction hole 12 not only functions as a suction hole for sucking the refrigerant gas R3 from the upstream evaporator 5 into the internal space S of the housing 11, but also functions as a suction hole for sucking the refrigerant gas R3 from the upstream evaporator 5 into the internal space S. It has a function as a reflux hole that refluxes the water to the evaporator 5 on the upstream side. Therefore, the suction port 12a of the suction hole 12 also functions as a reflux port through which the liquid R4 that is refluxed to the evaporator 5 on the upstream side flows. That is, in this embodiment, the suction hole 12 is also an inflow path for the refrigerant gas R3 that flows from the upstream evaporator 5 into the internal space S of the housing 11, and flows out from the internal space S to the upstream evaporator 5. It is also an outflow path for liquid R4. It can also be said that the reflux hole for refluxing the liquid R4 generated in the internal space S to the evaporator 5 is configured by the suction hole 12 itself (that is, configured integrally with the suction hole 12). In other words, it can be said that the suction port 12a itself constitutes a reflux port. The suction port 12a is connected to the evaporator 5 via the suction hole 12 and the flow path F4 (see FIG. 1). The suction hole 12 and the flow path F4 constitute a refrigerant flow path that supplies the refrigerant gas R3 from the evaporator 5 to the internal space S. It can be said that the suction hole 12 and the flow path F4 constitute a reflux path for refluxing the liquid R4 generated in the internal space S to the evaporator 5.
 更に、本実施形態では、吐出孔13が、インペラハウジング45の下方D1Bに形成されている。そのため、図4(b)に示すように、第1内部領域S1に生じた液体R4は、重力に従って吐出孔13から外部に流出する。吐出孔13から吐出(排出)された液体R4は、下流側の凝縮器3(図1参照)に流れ、冷媒循環システム6を循環する。従って、本実施形態では、ハウジング11の下方D1Bに形成される吸入孔12及び吐出孔13を通じて、内部空間Sに生じる液体R4を内部空間Sから外部に排除するように構成されている。 Furthermore, in this embodiment, the discharge hole 13 is formed in the lower part D1B of the impeller housing 45. Therefore, as shown in FIG. 4(b), the liquid R4 generated in the first internal region S1 flows out from the discharge hole 13 according to gravity. The liquid R4 discharged (discharged) from the discharge hole 13 flows to the condenser 3 on the downstream side (see FIG. 1) and circulates through the refrigerant circulation system 6. Therefore, in this embodiment, the liquid R4 generated in the internal space S is expelled from the internal space S to the outside through the suction hole 12 and the discharge hole 13 formed in the lower part D1B of the housing 11.
 図5は、冷媒圧縮機2の吸入口12aと蒸発器5との接続構成を示している。図5に示すように、蒸発器5は、冷媒圧縮機2の吸入口12aよりも下方D1Bに位置している。蒸発器5は、流路F4及び吸入孔12を介して、吸入口12aに接続されている。流路F4及び吸入孔12は、吸入口12aを介して冷媒圧縮機2の内部空間S(図2参照)と蒸発器5とを連通しているともいえる。流路F4は、直線流路部FP1と直線流路部FP2とを有する。直線流路部FP1は、吸入口12aから下方D1Bに延在する。直線流路部FP2は、直線流路部FP1の下端から軸方向D2に延在し、蒸発器5の下流側の流通口5aに接続される。 FIG. 5 shows a connection configuration between the suction port 12a of the refrigerant compressor 2 and the evaporator 5. As shown in FIG. 5, the evaporator 5 is located below the suction port 12a of the refrigerant compressor 2 D1B. The evaporator 5 is connected to the suction port 12a via the flow path F4 and the suction hole 12. It can be said that the flow path F4 and the suction hole 12 communicate the internal space S of the refrigerant compressor 2 (see FIG. 2) with the evaporator 5 via the suction port 12a. The flow path F4 has a straight flow path portion FP1 and a straight flow path portion FP2. The straight flow path portion FP1 extends downward D1B from the suction port 12a. The straight flow path portion FP2 extends in the axial direction D2 from the lower end of the straight flow path portion FP1, and is connected to the downstream flow port 5a of the evaporator 5.
 吸入口12aからの液体R4は、重力に従って直線流路部FP1を下方D1Bに流通した後、直線流路部FP2を軸方向D1に流通して蒸発器5の流通口5aに流入する。この構成によれば、冷媒圧縮機2にて生じた液体R4を、重力を利用して容易に蒸発器5へ還流することができる。冷媒圧縮機2と蒸発器5との接続構成は、図5に示す例に限られない。例えば、流路F4が蒸発器5の下流側の流通口5aに接続されてもよく、蒸発器5の上流側の流通口5bに別の流路が接続されてもよい。そして、この別の流路を介して、吸入口12a又は吸入口12aとは別の孔に流通口5bが接続されてもよい。この場合、当該別の流路を介して液体R4を蒸発器5に還流できる。流路F4の直線流路部FP2の一部又は全部に、下方D1Bに湾曲する湾曲部が形成されていてもよい。この場合、冷媒圧縮機2は、当該湾曲部に生じ得る液体R4の液溜まりを蒸発するための機構を備えてもよい。 The liquid R4 from the suction port 12a flows downward D1B through the straight flow path portion FP1 according to gravity, and then flows through the straight flow path portion FP2 in the axial direction D1 to flow into the flow port 5a of the evaporator 5. According to this configuration, the liquid R4 generated in the refrigerant compressor 2 can be easily returned to the evaporator 5 using gravity. The connection configuration between the refrigerant compressor 2 and the evaporator 5 is not limited to the example shown in FIG. 5. For example, the flow path F4 may be connected to the communication port 5a on the downstream side of the evaporator 5, and another flow path may be connected to the communication port 5b on the upstream side of the evaporator 5. The communication port 5b may be connected to the suction port 12a or a hole different from the suction port 12a via this other flow path. In this case, the liquid R4 can be returned to the evaporator 5 via the other flow path. A curved portion that curves downward D1B may be formed in part or all of the straight flow path portion FP2 of the flow path F4. In this case, the refrigerant compressor 2 may include a mechanism for evaporating a pool of liquid R4 that may occur in the curved portion.
 以上に説明した、本実施形態に係る冷媒圧縮機2及び冷凍機1が奏する作用効果について、比較例が有する課題と共に説明する。図6(a)及び図6(b)は、比較例に係る冷媒圧縮機200を単純化して示している。冷媒圧縮機200では、ハウジング111のモータハウジング155に形成された吸入孔112は、シャフト100に取り付けられたインペラ135よりも上方D1Aに位置している。インペラハウジング145に形成された吐出孔113は、インペラ135よりも上方D1Aに位置している。冷媒圧縮機200では、吸入孔112から内部空間S100に吸入された冷媒ガスR3は、一対の軸受160,160等を通って、インペラ135に到達する。冷媒ガスR3は、インペラ135の回転によって圧縮され、圧縮冷媒ガスR1としてインペラハウジング145の吐出孔113から吐出される。 The effects of the refrigerant compressor 2 and refrigerator 1 according to the present embodiment described above will be explained together with the problems that the comparative example has. FIGS. 6A and 6B show a simplified refrigerant compressor 200 according to a comparative example. In the refrigerant compressor 200, the suction hole 112 formed in the motor housing 155 of the housing 111 is located above the impeller 135 attached to the shaft 100 D1A. The discharge hole 113 formed in the impeller housing 145 is located above the impeller 135 D1A. In the refrigerant compressor 200, the refrigerant gas R3 sucked into the internal space S100 from the suction hole 112 passes through the pair of bearings 160, 160, etc., and reaches the impeller 135. Refrigerant gas R3 is compressed by the rotation of impeller 135, and is discharged from discharge hole 113 of impeller housing 145 as compressed refrigerant gas R1.
 本開示の発明者は、図6(a)に示すように、冷媒圧縮機200の運転休止時には、内部空間S100に満たされている冷媒ガスR3が液化して、液体R4として内部空間S100に滞留し、その結果、内部空間S100において、液体R4の水位がインペラ135に達することがあることを発見した。本開示の発明者は、インペラ135の下側部分は、液体R4に浸かっているため、この状態で冷媒圧縮機200を稼働させると、液体R4による大きな抵抗力を受けながら回転すること、そして、液体R4による大きな抵抗力を受けながら回転することにより回転体と非接触型の軸受との接触状態の偏りが生じるおそれがあるということ、に気づいた。 The inventor of the present disclosure has proposed that, as shown in FIG. 6(a), when the refrigerant compressor 200 is out of operation, the refrigerant gas R3 filling the internal space S100 liquefies and remains in the internal space S100 as a liquid R4. However, as a result, it was discovered that the water level of liquid R4 sometimes reaches the impeller 135 in the internal space S100. The inventor of the present disclosure has discovered that since the lower portion of the impeller 135 is immersed in the liquid R4, when the refrigerant compressor 200 is operated in this state, it rotates while receiving a large resistance force from the liquid R4, and It has been noticed that rotating while receiving a large resistance force from the liquid R4 may cause uneven contact between the rotating body and the non-contact type bearing.
 一方、インペラ135の上側部分は、液体R4に浸かっていないため、インペラ135の下側部分に作用するような大きな抵抗力を受けることなく回転する。 On the other hand, since the upper part of the impeller 135 is not immersed in the liquid R4, it rotates without being subjected to the large resistance force that acts on the lower part of the impeller 135.
 その結果、図6(b)に示すように、シャフト100の回転バランスが崩れてシャフト100に傾きが生じ、シャフト100を支持する軸受160,160に過大な負荷が作用することがある。このような負荷が非接触型の軸受160,160に作用した場合、軸受160,160は、当該負荷に耐えられず、損傷等により軸受160,160が所望の性能を発揮できなくなるおそれがある。その結果、圧縮性能の低下などの不具合が生じ得る。上記の過大な負荷に耐え得る軸受として、高強度の軸受或いは大型の軸受を用いた場合には、冷媒圧縮機200の高コスト化及び大型化を招くおそれがある。 As a result, as shown in FIG. 6(b), the rotational balance of the shaft 100 is disrupted, causing the shaft 100 to tilt, and an excessive load may be applied to the bearings 160, 160 that support the shaft 100. If such a load acts on the non-contact type bearings 160, 160, the bearings 160, 160 may not be able to withstand the load, and there is a possibility that the bearings 160, 160 may not be able to exhibit the desired performance due to damage or the like. As a result, problems such as a decrease in compression performance may occur. If a high-strength bearing or a large-sized bearing is used as a bearing that can withstand the above-mentioned excessive load, there is a risk that the refrigerant compressor 200 will become more expensive and larger.
 これに対し、本実施形態では、吸入口12aは、インペラ35よりも鉛直方向の下方D1Bに位置している。そのため、図4(b)に示すように、内部空間Sに生じた液体R4は、インペラ35に達する前に内部空間Sから吸入孔12を通じて外部に流れる。吸入孔12を流れた液体R4は、流路F4を介して上流側の蒸発器5に還流される。蒸発器5は、液体R4を気化し、冷媒ガスR3として流路F4及び吸入孔12を介して再び冷媒圧縮機2に供給する。このように内部空間Sの液体R4を蒸発器5に還流して気化する構成とすれば、内部空間Sから液体R4を効率的に排除できる。その結果、内部空間Sにおける液体R4の水位がインペラ35に達する事態を抑制でき、シャフト10の回転バランスが崩れる事態を抑制できる。これにより、始動時(回転開始時)における回転体RBと軸受ユニット(一対の軸受60,60及び一対の軸受64,64)との接触状態の偏りを抑制できる。その結果、軸受ユニットに過大な負荷が作用する事態を抑制でき、軸受ユニットの性能低下に伴って圧縮性能が低下するといった不具合が発生する事態を抑制できる。 On the other hand, in this embodiment, the suction port 12a is located below the impeller 35 in the vertical direction D1B. Therefore, as shown in FIG. 4(b), the liquid R4 generated in the internal space S flows from the internal space S to the outside through the suction hole 12 before reaching the impeller 35. The liquid R4 that has flowed through the suction hole 12 is returned to the evaporator 5 on the upstream side via the flow path F4. The evaporator 5 vaporizes the liquid R4 and supplies it as a refrigerant gas R3 to the refrigerant compressor 2 via the flow path F4 and the suction hole 12. With this configuration in which the liquid R4 in the internal space S is returned to the evaporator 5 and vaporized, the liquid R4 can be efficiently removed from the internal space S. As a result, it is possible to prevent the level of the liquid R4 in the internal space S from reaching the impeller 35, and it is possible to prevent the rotational balance of the shaft 10 from becoming unbalanced. Thereby, it is possible to suppress unevenness in the contact state between the rotating body RB and the bearing unit (the pair of bearings 60, 60 and the pair of bearings 64, 64) at the time of starting (at the time of starting rotation). As a result, it is possible to suppress a situation in which an excessive load is applied to the bearing unit, and it is possible to suppress a situation in which a problem such as a decrease in compression performance due to a decrease in the performance of the bearing unit occurs.
 本実施形態では、吸入孔12及び流路F4は、内部空間Sの液体R4を蒸発器5に還流する還流路としても機能する。つまり、吸入孔12及び流路F4は、蒸発器5から冷媒ガスR3を吸入する機能と、内部空間Sの液体R4を蒸発器5に還流する機能とを兼ねる。この構成によれば、液体R4を蒸発器5に還流する機能と、冷媒ガスR3を蒸発器5から供給する機能とを同一の流路で提供できる。本実施形態では、液体R4を蒸発器5に還流する還流路が別途設けられていないので、冷媒圧縮機2の構成がさらに簡易化される。 In this embodiment, the suction hole 12 and the flow path F4 also function as a reflux path for refluxing the liquid R4 in the internal space S to the evaporator 5. In other words, the suction hole 12 and the flow path F4 have both the function of sucking the refrigerant gas R3 from the evaporator 5 and the function of circulating the liquid R4 in the internal space S to the evaporator 5. According to this configuration, the function of refluxing the liquid R4 to the evaporator 5 and the function of supplying the refrigerant gas R3 from the evaporator 5 can be provided in the same flow path. In this embodiment, since a separate reflux path for refluxing the liquid R4 to the evaporator 5 is not provided, the configuration of the refrigerant compressor 2 is further simplified.
 本実施形態では、吸入口12aは、第3内部領域S3に連通しており、吐出孔13は、第1内部領域S1に連通している。この構成では、吸入口12aから吸入された冷媒ガスR3は、一対の軸受60,60及びモータ51を通って吐出孔13から吐出されるため、この冷媒の流れを利用して一対の軸受60,60及びモータ51を冷却できる。この構成によれば、一対の軸受60,60及びモータ51を冷却するための機構を別途設けない構成を採用できる。あるいは軸受60,60及びモータ51を冷却するための機構として簡略化されたものを用いることができるので、冷媒圧縮機2の構成の簡易化を図ることができる。実際には、図2に示すように、冷媒ガスR3は一対の軸受64,64も通過するため、一対の軸受60,60及びモータ51の冷却に加えて、一対の軸受64,64の冷却を行うこともできる。 In this embodiment, the suction port 12a communicates with the third internal region S3, and the discharge hole 13 communicates with the first internal region S1. In this configuration, the refrigerant gas R3 sucked from the suction port 12a passes through the pair of bearings 60, 60 and the motor 51 and is discharged from the discharge hole 13. 60 and motor 51 can be cooled. According to this configuration, a configuration that does not separately provide a mechanism for cooling the pair of bearings 60, 60 and the motor 51 can be adopted. Alternatively, a simplified mechanism for cooling the bearings 60, 60 and the motor 51 can be used, so the configuration of the refrigerant compressor 2 can be simplified. In reality, as shown in FIG. 2, the refrigerant gas R3 also passes through the pair of bearings 64, 64, so in addition to cooling the pair of bearings 60, 60 and the motor 51, it also cools the pair of bearings 64, 64. You can also do this.
 本実施形態では、吸入孔12は、第3内部領域S3から下方D1Bに側壁56を貫通している。この構成では、内部空間Sに生じた液体R4が重力に従って吸入口12aに流れ込みやすくなる。これにより、内部空間Sから液体R4を効果的に排除できる。 In this embodiment, the suction hole 12 penetrates the side wall 56 from the third internal region S3 downward D1B. With this configuration, the liquid R4 generated in the internal space S easily flows into the suction port 12a according to gravity. Thereby, the liquid R4 can be effectively removed from the internal space S.
 本実施形態では、吐出孔13は、第1内部領域S1から下方D1Bに第2インペラハウジング42を貫通している。この構成では、吐出孔13も、内部空間Sから液体R4を排除するための流路として利用できるので、内部空間Sから液体R4をより効果的に排除できる。 In this embodiment, the discharge hole 13 penetrates the second impeller housing 42 from the first internal region S1 downward D1B. In this configuration, the discharge hole 13 can also be used as a flow path for removing the liquid R4 from the internal space S, so that the liquid R4 can be removed from the internal space S more effectively.
 本実施形態では、側壁56の内面56aは、吸入口12aに向けて下がる傾斜部P1を含んでいる。この構成では、内部空間Sに生じた液体R4は、重力に従って吐出孔13よりも吸入孔12により流れ込みやすくなる。これにより、下流側の凝縮器3よりも上流側の蒸発器5に液体R4を積極的に流すことが可能となる。このように、液体R4を気化する蒸発器5に液体R4を積極的に流す場合、液体R4が溜まりやすい凝縮器3に液体R4を積極的に流す場合と比べて、流した液体R4が内部空間Sに押し戻されるといった事態が起こりにくい。凝縮器3に液体R4を積極的に流す構成とすると、凝縮器3は、液冷媒R2を生成する機器であるため、液体R4が溜まった状態となりやすい。この状態で吐出孔13から圧縮冷媒ガスR1が凝縮器3に流れると、圧縮冷媒ガスR1が流れ込んだ分、凝縮器3に溜まっていた液体R4が内部空間Sに押し戻されるといった現象が生じることがある。そこで、凝縮器3ではなく、蒸発器5に液体R4を積極的に流す構成とすれば、液体R4が内部空間Sに押し戻されるといった事態が起きることを抑制できるので、内部空間Sから液体R4をより効果的に排除できる。 In this embodiment, the inner surface 56a of the side wall 56 includes an inclined portion P1 that descends toward the suction port 12a. With this configuration, the liquid R4 generated in the internal space S flows more easily into the suction hole 12 than into the discharge hole 13 according to gravity. Thereby, it becomes possible to actively flow the liquid R4 to the evaporator 5 on the upstream side rather than the condenser 3 on the downstream side. In this way, when the liquid R4 is actively flowed into the evaporator 5 that vaporizes the liquid R4, compared to the case where the liquid R4 is actively flowed into the condenser 3 where the liquid R4 tends to accumulate, the flowed liquid R4 fills the internal space. A situation where you are pushed back by S is unlikely to occur. If the configuration is such that the liquid R4 is actively flowed into the condenser 3, the liquid R4 tends to accumulate because the condenser 3 is a device that generates the liquid refrigerant R2. If the compressed refrigerant gas R1 flows into the condenser 3 from the discharge hole 13 in this state, a phenomenon may occur in which the liquid R4 accumulated in the condenser 3 is pushed back into the internal space S by the amount of compressed refrigerant gas R1 that has flowed into the condenser 3. be. Therefore, if the liquid R4 is configured to actively flow into the evaporator 5 instead of the condenser 3, it is possible to prevent the liquid R4 from being pushed back into the internal space S. can be eliminated more effectively.
 以上、本開示の一実施形態について説明したが、本開示は、上述した実施形態に限定されるものではない。 Although one embodiment of the present disclosure has been described above, the present disclosure is not limited to the embodiment described above.
<変形例1>
 図7は、変形例1に係る冷媒圧縮機2Aを単純化して示している。上述した実施形態では、吸入孔12が、内部空間Sの液体R4を蒸発器5に還流する還流孔としても機能する例について説明した。本変形例では、還流孔12Bが、吸入孔12Aとは別に形成される場合について説明する。つまり、本変形例では、還流孔12Bが、吸入孔12A自体によって構成されずに、吸入孔12Aとは別体として構成されている。
<Modification 1>
FIG. 7 shows a simplified refrigerant compressor 2A according to Modification 1. In FIG. In the embodiment described above, an example has been described in which the suction hole 12 also functions as a reflux hole for refluxing the liquid R4 in the internal space S to the evaporator 5. In this modification, a case will be described in which the reflux hole 12B is formed separately from the suction hole 12A. That is, in this modification, the reflux hole 12B is not configured by the suction hole 12A itself, but is configured separately from the suction hole 12A.
 吸入孔12Aは、例えば、モータハウジング55Aにおいて第3内部領域S3に連通するように形成され、インペラ35よりも上方D1Aに位置している。吸入孔12Aは、流路F4を介して上流側の蒸発器5(図1参照)に接続されている。吸入孔12Aから第3内部領域S3に吸入された冷媒ガスR3は、第2内部領域S2及び第1内部領域S1を順に通過する。このとき、冷媒ガスR3は、流通経路上の一対の軸受60,60及びモータ51を冷却する。第1内部領域S1においてインペラ35に達した冷媒ガスR3は、インペラ35の回転によって圧縮される。これにより、圧縮冷媒ガスR1が生成される。生成された圧縮冷媒ガスR1は、インペラハウジング45の下方D1Bに形成された吐出孔13から下流側の凝縮器3(図1参照)に吐出される。流路F4と吸入孔12Aとは、蒸発器5からの冷媒ガスR3を内部空間Sに供給する冷媒流路を構成する。 The suction hole 12A is formed, for example, in the motor housing 55A so as to communicate with the third internal region S3, and is located above the impeller 35 D1A. The suction hole 12A is connected to the upstream evaporator 5 (see FIG. 1) via a flow path F4. The refrigerant gas R3 sucked into the third internal region S3 from the suction hole 12A passes through the second internal region S2 and the first internal region S1 in order. At this time, the refrigerant gas R3 cools the pair of bearings 60, 60 and the motor 51 on the circulation path. The refrigerant gas R3 that has reached the impeller 35 in the first internal region S1 is compressed by the rotation of the impeller 35. Thereby, compressed refrigerant gas R1 is generated. The generated compressed refrigerant gas R1 is discharged from the discharge hole 13 formed in the lower part D1B of the impeller housing 45 to the condenser 3 (see FIG. 1) on the downstream side. The flow path F4 and the suction hole 12A constitute a refrigerant flow path that supplies the refrigerant gas R3 from the evaporator 5 to the internal space S.
 一方、還流孔12Bは、上述した実施形態の吸入孔12と同じ位置に形成されている。すなわち、還流孔12Bは、ハウジング11Aの第3内部領域S3から下方D1Bにモータハウジング55Aを貫通するように形成されている。従って、モータハウジング55Aの内面56aに開口する還流孔12Bの還流口12bは、上述した実施形態に係る吸入口12aと同様、インペラ35の下端35aよりも下方D1Bに位置している。還流孔12Bは、流路F4とは別の流路を介して上流側の蒸発器5(図1参照)に接続されている。この流路と還流孔12Bとは、液体R4を蒸発器5に還流するための還流路を構成する。 On the other hand, the reflux hole 12B is formed at the same position as the suction hole 12 of the embodiment described above. That is, the circulation hole 12B is formed so as to penetrate the motor housing 55A from the third internal region S3 of the housing 11A downward D1B. Therefore, the recirculation port 12b of the recirculation hole 12B that opens on the inner surface 56a of the motor housing 55A is located below the lower end 35a of the impeller 35, similar to the suction port 12a according to the embodiment described above. The reflux hole 12B is connected to the upstream evaporator 5 (see FIG. 1) via a flow path different from the flow path F4. This flow path and the reflux hole 12B constitute a reflux path for refluxing the liquid R4 to the evaporator 5.
 運転休止時等に内部空間Sに生じる液体R4は、下方D1Bの還流口12bから還流孔12Bに流れ込み、還流孔12Bを介して蒸発器5に還流される。蒸発器5に還流された液体R4は、蒸発器5において気化され、冷媒ガスR3として再び吸入孔12Aから内部空間Sに供給される。このような形態であっても、内部空間Sに生じる液体R4を、還流孔12Bを通じて内部空間Sから排除できるので、上述した実施形態と同様の作用効果を奏する。 The liquid R4 generated in the internal space S when the operation is stopped flows into the reflux hole 12B from the reflux port 12b of the lower part D1B, and is refluxed to the evaporator 5 via the reflux hole 12B. The liquid R4 returned to the evaporator 5 is vaporized in the evaporator 5, and is again supplied to the internal space S from the suction hole 12A as a refrigerant gas R3. Even with such a configuration, the liquid R4 generated in the internal space S can be removed from the internal space S through the reflux hole 12B, so that the same effects as in the embodiment described above can be achieved.
<変形例2>
 図8は、変形例2に係る冷媒圧縮機2Bを単純化して示している。上述した実施形態では、吐出孔13がインペラハウジング45の下方D1Bに形成される例について説明した。本変形例では、吐出孔13Aがインペラハウジング45Aの上方D1Aに形成される例について説明する。吐出孔13Aは、例えば、ハウジング11Bの第1内部領域S1から上方D1Aにインペラハウジング45Aを貫通するように形成されている。つまり、吐出孔13Aは、第1内部領域S1を囲むインペラハウジング45Aの上端部42fを鉛直方向に貫通している。上端部42fは、インペラハウジング45Aの上方D1Aに位置する壁部としてよい。
<Modification 2>
FIG. 8 shows a simplified refrigerant compressor 2B according to a second modification. In the embodiment described above, an example was described in which the discharge hole 13 is formed in the lower part D1B of the impeller housing 45. In this modification, an example will be described in which the discharge hole 13A is formed above the impeller housing 45A D1A. The discharge hole 13A is formed, for example, so as to penetrate the impeller housing 45A from the first internal region S1 of the housing 11B upward D1A. That is, the discharge hole 13A vertically passes through the upper end portion 42f of the impeller housing 45A surrounding the first internal region S1. The upper end portion 42f may be a wall portion located above D1A of the impeller housing 45A.
 このような形態であっても、内部空間Sに生じる液体R4を、吸入孔12を通じて内部空間Sから排除できるので、上述した実施形態と同様の作用効果を奏する。更に、本変形例では、内部空間Sに生じた液体R4が吐出孔13Aに流れ込むことを抑制できるので、流した液体R4が冷媒圧縮機2に押し戻されるといった事態がより起こりにくくなる。これにより、内部空間Sから液体R4をより効果的に排除できる。 Even with this form, the liquid R4 generated in the internal space S can be removed from the internal space S through the suction hole 12, so the same effects as in the embodiment described above can be achieved. Furthermore, in this modification, since it is possible to suppress the liquid R4 generated in the internal space S from flowing into the discharge hole 13A, it becomes more difficult for the liquid R4 to be pushed back into the refrigerant compressor 2. Thereby, the liquid R4 can be more effectively removed from the internal space S.
 本開示は、上述した実施形態及び各変形例に限られず、他に様々な変形が可能である。例えば、上述した実施形態及び各変形例を、必要な目的及び効果に応じて互いに組み合わせてもよい。上述した実施形態では、冷媒圧縮機2が2つのインペラ(第1インペラ及び第2インペラ)を備えている。しかし、冷媒圧縮機は、1つのインペラを備えてもよい。インペラの背面の向きは、特に限定されず、要求される仕様に応じて適宜変更してよい。 The present disclosure is not limited to the embodiment and each modification example described above, and various other modifications are possible. For example, the embodiments and modifications described above may be combined with each other depending on the desired purpose and effect. In the embodiment described above, the refrigerant compressor 2 includes two impellers (a first impeller and a second impeller). However, the refrigerant compressor may also include one impeller. The direction of the back surface of the impeller is not particularly limited, and may be changed as appropriate depending on the required specifications.
 上述した実施形態では、吸入孔12が第3内部領域S3と連通するように形成され、吐出孔13が第1内部領域S1と連通するように形成されている。しかし、吸入孔12及び吐出孔13は共に第1内部領域S1と連通するように形成されてもよい。すなわち、吸入孔12及び吐出孔13が共にインペラハウジング45に形成されてもよい。この場合、一対の軸受60,60及びモータ51を冷却するための冷却媒体が流れる孔が別途形成されてもよい。吸入孔12は、インペラ35よりも下方D1Bの位置であれば、端壁57に形成されてもよい。 In the embodiment described above, the suction hole 12 is formed to communicate with the third internal region S3, and the discharge hole 13 is formed so as to communicate with the first internal region S1. However, both the suction hole 12 and the discharge hole 13 may be formed to communicate with the first internal region S1. That is, both the suction hole 12 and the discharge hole 13 may be formed in the impeller housing 45. In this case, a hole through which a cooling medium flows to cool the pair of bearings 60, 60 and the motor 51 may be formed separately. The suction hole 12 may be formed in the end wall 57 as long as it is located below the impeller 35 D1B.
[付記]
 本開示は、以下の構成を含む。
[Additional note]
The present disclosure includes the following configurations.
 本開示の冷媒圧縮機は、[1]「冷媒循環システムにおいて循環する冷媒を圧縮する冷媒圧縮機であって、シャフト、及び、前記シャフトから径方向に突出して前記シャフトと共に回転する突出部を有する回転体と、前記回転体を回転可能に支持する非接触型の軸受ユニットと、前記突出部を収容する内部空間を有するハウジングと、前記内部空間に開口し、前記内部空間に前記冷媒を供給する吸入口と、前記吸入口に連通し、蒸発器に接続された冷媒流路と、前記内部空間から前記冷媒を排出する吐出孔と、前記内部空間に設けられた還流口を介して、前記内部空間と前記蒸発器とを連通する還流路と、を備え、前記還流口は、前記突出部よりも鉛直方向の下方に位置している、冷媒圧縮機。」である。 The refrigerant compressor of the present disclosure is [1] a refrigerant compressor that compresses refrigerant circulating in a refrigerant circulation system, and includes a shaft and a protrusion that protrudes from the shaft in a radial direction and rotates together with the shaft. a rotating body, a non-contact type bearing unit that rotatably supports the rotating body, a housing having an internal space for accommodating the protrusion, and opening into the internal space to supply the refrigerant to the internal space. The internal air is supplied through an inlet, a refrigerant passage communicating with the inlet and connected to an evaporator, a discharge hole for discharging the refrigerant from the internal space, and a reflux port provided in the internal space. a refrigerant compressor, the refrigerant compressor comprising: a recirculation path that communicates a space with the evaporator, and the recirculation port is located vertically below the protrusion.
 本開示の冷媒圧縮機は、[2]「前記還流路は、前記冷媒流路自体によって構成されている、[1]に記載の冷媒圧縮機。」である。 The refrigerant compressor of the present disclosure is [2] "The refrigerant compressor according to [1], wherein the reflux path is constituted by the refrigerant flow path itself."
 本開示の冷媒圧縮機は、[3]「前記軸受ユニットは、前記シャフトが延在する軸方向に並んで配置され、前記シャフトを径方向に支持する一対の軸受を含み、前記内部空間は、前記軸方向において互いに連通する第1内部領域、第2内部領域、及び第3内部領域を有し、前記第2内部領域は、前記軸方向における前記一対の軸受の間に位置し、前記第1内部領域は、前記軸方向において前記一対の軸受を挟んで一方側に位置し、前記第3内部領域は、前記軸方向において前記一対の軸受を挟んで他方側に位置し、前記吸入口は、前記第3内部領域と連通し、前記吐出孔は、前記第1内部領域と連通する、[1]又は[2]に記載の冷媒圧縮機。」である。 The refrigerant compressor of the present disclosure includes [3] "The bearing unit includes a pair of bearings that are arranged in parallel in the axial direction in which the shaft extends and supports the shaft in the radial direction, and the internal space is It has a first internal region, a second internal region, and a third internal region that communicate with each other in the axial direction, and the second internal region is located between the pair of bearings in the axial direction, and the second internal region is located between the pair of bearings in the axial direction, and The internal region is located on one side across the pair of bearings in the axial direction, the third internal region is located on the other side across the pair of bearings in the axial direction, and the suction port is The refrigerant compressor according to [1] or [2], wherein the refrigerant compressor communicates with the third internal region, and the discharge hole communicates with the first internal region.
 本開示の冷媒圧縮機は、[4]「前記還流路は、前記内部空間から前記鉛直方向の下方に前記ハウジングを貫通している、[1]~[3]のいずれかに記載の冷媒圧縮機。」である。 The refrigerant compressor of the present disclosure includes [4] "The refrigerant compressor according to any one of [1] to [3], wherein the reflux path penetrates the housing from the internal space downward in the vertical direction. machine.”
 本開示の冷媒圧縮機は、[5]「前記吐出孔は、前記還流路とは異なる位置において、前記内部空間から前記鉛直方向の下方に前記ハウジングを貫通している、[4]に記載の冷媒圧縮機。」である。 [5] The refrigerant compressor according to [4], "The discharge hole penetrates the housing downward in the vertical direction from the internal space at a position different from the reflux path. Refrigerant compressor.”
 本開示の冷媒圧縮機は、[6]「前記ハウジングの内壁面は、前記吐出孔と前記還流路との間において、前記還流口に向けて下がる傾斜部を含む、[5]に記載の冷媒圧縮機。」である。 The refrigerant compressor of the present disclosure provides the refrigerant compressor according to [5], wherein [6] "The inner wall surface of the housing includes an inclined part that descends toward the recirculation port between the discharge hole and the recirculation path. Compressor.”
 本開示の冷媒圧縮機は、[7]「前記吐出孔は、前記内部空間から前記鉛直方向の上方に前記ハウジングを貫通している、[1]~[4]のいずれかに記載の冷媒圧縮機。」である。 [7] The refrigerant compressor according to any one of [1] to [4], wherein the discharge hole penetrates the housing upward in the vertical direction from the internal space. machine.”
2,2A,2B 冷媒圧縮機
3 凝縮器
5 蒸発器
6 冷媒循環システム
10 シャフト
11,11A ハウジング
11a 内壁面
12,12A 吸入孔(冷媒流路、還流路)
12a 吸入口(還流口)
12b 還流口
12B 還流孔(還流路)
13,13A 吐出孔
35 インペラ(突出部)
60,64 軸受(軸受ユニット)
65 スラストカラー(突出部)
D1A 上方
D1B 下方
D2 軸方向
F4 流路(冷媒流路、還流路)
P1 傾斜部
RB 回転体
S 内部空間
S1 第1内部領域
S2 第2内部領域
S3 第3内部領域
2, 2A, 2B Refrigerant compressor 3 Condenser 5 Evaporator 6 Refrigerant circulation system 10 Shaft 11, 11A Housing 11a Inner wall surface 12, 12A Suction hole (refrigerant flow path, reflux path)
12a Suction port (reflux port)
12b Reflux port 12B Reflux hole (reflux path)
13,13A Discharge hole 35 Impeller (projection)
60, 64 Bearing (bearing unit)
65 Thrust collar (projection)
D1A Upper D1B Lower D2 Axial direction F4 Flow path (refrigerant flow path, return flow path)
P1 Inclined part RB Rotating body S Internal space S1 First internal area S2 Second internal area S3 Third internal area

Claims (7)

  1.  冷媒循環システムにおいて循環する冷媒を圧縮する冷媒圧縮機であって、
     シャフト、及び、前記シャフトから径方向に突出して前記シャフトと共に回転する突出部を有する回転体と、
     前記回転体を回転可能に支持する非接触型の軸受ユニットと、
     前記突出部を収容する内部空間を有するハウジングと、
     前記内部空間に開口し、前記内部空間に前記冷媒を供給する吸入口と、
     前記吸入口に連通し、蒸発器に接続された冷媒流路と、
     前記内部空間から前記冷媒を排出する吐出孔と、
     前記内部空間に設けられた還流口を介して、前記内部空間と前記蒸発器とを連通する還流路と、を備え、
     前記還流口は、前記突出部よりも鉛直方向の下方に位置している、冷媒圧縮機。
    A refrigerant compressor that compresses refrigerant circulating in a refrigerant circulation system,
    a rotating body having a shaft, and a protrusion that protrudes radially from the shaft and rotates together with the shaft;
    a non-contact bearing unit that rotatably supports the rotating body;
    a housing having an internal space that accommodates the protrusion;
    an inlet opening into the internal space and supplying the refrigerant to the internal space;
    a refrigerant flow path communicating with the suction port and connected to an evaporator;
    a discharge hole for discharging the refrigerant from the internal space;
    a reflux path that communicates the internal space and the evaporator via a reflux port provided in the internal space,
    In the refrigerant compressor, the reflux port is located vertically lower than the protrusion.
  2.  前記還流路は、前記冷媒流路自体によって構成されている、請求項1に記載の冷媒圧縮機。 The refrigerant compressor according to claim 1, wherein the reflux path is constituted by the refrigerant flow path itself.
  3.  前記軸受ユニットは、前記シャフトが延在する軸方向に並んで配置され、前記シャフトを径方向に支持する一対の軸受を含み、
     前記内部空間は、前記軸方向において互いに連通する第1内部領域、第2内部領域、及び第3内部領域を有し、
     前記第2内部領域は、前記軸方向における前記一対の軸受の間に位置し、
     前記第1内部領域は、前記軸方向において前記一対の軸受を挟んで一方側に位置し、
     前記第3内部領域は、前記軸方向において前記一対の軸受を挟んで他方側に位置し、
     前記吸入口は、前記第3内部領域と連通し、
     前記吐出孔は、前記第1内部領域と連通する、請求項1に記載の冷媒圧縮機。
    The bearing unit includes a pair of bearings that are arranged side by side in an axial direction in which the shaft extends and support the shaft in a radial direction,
    The internal space has a first internal area, a second internal area, and a third internal area that communicate with each other in the axial direction,
    The second internal region is located between the pair of bearings in the axial direction,
    The first internal region is located on one side of the pair of bearings in the axial direction,
    The third internal region is located on the other side of the pair of bearings in the axial direction,
    the suction port communicates with the third internal region,
    The refrigerant compressor according to claim 1, wherein the discharge hole communicates with the first internal region.
  4.  前記還流路は、前記内部空間から前記鉛直方向の下方に前記ハウジングを貫通している、請求項1に記載の冷媒圧縮機。 The refrigerant compressor according to claim 1, wherein the recirculation path passes through the housing from the internal space downward in the vertical direction.
  5.  前記吐出孔は、前記還流路とは異なる位置において、前記内部空間から前記鉛直方向の下方に前記ハウジングを貫通している、請求項4に記載の冷媒圧縮機。 The refrigerant compressor according to claim 4, wherein the discharge hole penetrates the housing downward in the vertical direction from the internal space at a position different from the reflux path.
  6.  前記ハウジングの内壁面は、前記吐出孔と前記還流路との間において、前記還流口に向けて下がる傾斜部を含む、請求項5に記載の冷媒圧縮機。 The refrigerant compressor according to claim 5, wherein the inner wall surface of the housing includes an inclined portion that descends toward the recirculation port between the discharge hole and the recirculation path.
  7.  前記吐出孔は、前記内部空間から前記鉛直方向の上方に前記ハウジングを貫通している、請求項1に記載の冷媒圧縮機。 The refrigerant compressor according to claim 1, wherein the discharge hole passes through the housing upward in the vertical direction from the internal space.
PCT/JP2023/008623 2022-03-14 2023-03-07 Refrigerant compressor WO2023176596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-039282 2022-03-14
JP2022039282 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023176596A1 true WO2023176596A1 (en) 2023-09-21

Family

ID=88023092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008623 WO2023176596A1 (en) 2022-03-14 2023-03-07 Refrigerant compressor

Country Status (1)

Country Link
WO (1) WO2023176596A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319498U (en) * 1989-07-07 1991-02-26
JPH08509802A (en) * 1993-05-04 1996-10-15 エコエアー コーポレーション Zero superheat refrigeration compression system
JPH11230098A (en) * 1997-11-29 1999-08-24 Lg Electronics Inc Turbo compressor
JP2000240596A (en) * 1998-12-25 2000-09-05 Daikin Ind Ltd Turbo compressor
JP2016033348A (en) * 2014-07-31 2016-03-10 三菱重工業株式会社 Turbo refrigerator
JP2018119728A (en) * 2017-01-24 2018-08-02 丸和電機株式会社 Heat pump apparatus
US20210285691A1 (en) * 2020-03-13 2021-09-16 Honeywell International Inc. Sealable vapor cooled compressor housing with adapter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319498U (en) * 1989-07-07 1991-02-26
JPH08509802A (en) * 1993-05-04 1996-10-15 エコエアー コーポレーション Zero superheat refrigeration compression system
JPH11230098A (en) * 1997-11-29 1999-08-24 Lg Electronics Inc Turbo compressor
JP2000240596A (en) * 1998-12-25 2000-09-05 Daikin Ind Ltd Turbo compressor
JP2016033348A (en) * 2014-07-31 2016-03-10 三菱重工業株式会社 Turbo refrigerator
JP2018119728A (en) * 2017-01-24 2018-08-02 丸和電機株式会社 Heat pump apparatus
US20210285691A1 (en) * 2020-03-13 2021-09-16 Honeywell International Inc. Sealable vapor cooled compressor housing with adapter

Similar Documents

Publication Publication Date Title
EP2961989B1 (en) Apparatus and method for oil equalization in multiple-compressor systems
WO2018002699A1 (en) Centrifugal compressor assembly and method of operation with an air conditioner
JP5157501B2 (en) refrigerator
US7993117B2 (en) Scroll compressor and baffle for same
KR20180091739A (en) Co-rotating compressor with multiple compression mechanism and system having same
CN110242592B (en) Centrifugal compressor and method for manufacturing the same
JP2024505260A (en) Turbo compressor including bearing cooling channels
JP2009281278A (en) Centrifugal compressor and refrigeration cycle device
WO2024103959A1 (en) Compressor and air conditioner
US11448234B2 (en) Centrifugal compressor
WO2023176596A1 (en) Refrigerant compressor
KR20170047450A (en) Turbo compressor
JP7119812B2 (en) compressor
JPH0281997A (en) Fluid pressure generating device and operating method thereof
WO2022070991A1 (en) Fluid machine
JP2017053222A (en) Hermetic scroll compressor and refrigeration air conditioning equipment
US11506210B2 (en) Centrifugal compressor and refrigerating device
JP4576746B2 (en) Turbo rotating equipment
US20040033153A1 (en) Fluid transport system and method therefor
WO2021258585A1 (en) Scroll compression mechanism and scroll compressor
JPH06101666A (en) Scroll compressor
JPH09264292A (en) High temperature motor pump
US11835046B2 (en) Main bearing housing assembly and scroll compressor having the main bearing housing assembly
JP2000329095A (en) Compressor
JP2023129036A (en) Compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770552

Country of ref document: EP

Kind code of ref document: A1