JPH028152B2 - - Google Patents

Info

Publication number
JPH028152B2
JPH028152B2 JP58127112A JP12711283A JPH028152B2 JP H028152 B2 JPH028152 B2 JP H028152B2 JP 58127112 A JP58127112 A JP 58127112A JP 12711283 A JP12711283 A JP 12711283A JP H028152 B2 JPH028152 B2 JP H028152B2
Authority
JP
Japan
Prior art keywords
swash plate
base material
aluminum
shoe
coarse particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58127112A
Other languages
Japanese (ja)
Other versions
JPS6019972A (en
Inventor
Kenichiro Futamura
Keiichiro Ootsu
Takeshi Higuchi
Kenji Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyoda Jidoshokki Seisakusho KK filed Critical Taiho Kogyo Co Ltd
Priority to JP58127112A priority Critical patent/JPS6019972A/en
Publication of JPS6019972A publication Critical patent/JPS6019972A/en
Publication of JPH028152B2 publication Critical patent/JPH028152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2078Swash plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • F04B27/0886Piston shoes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0475Copper or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は斜板式コンプレツサに関するものであ
る。 〔従来技術〕 従来より、例えば自動車の空調システムには、
軸と平行に設けられた複数個のシリンダボアをも
つシリンダブロツクと、該シリンダブロツク内に
おいて回転軸により回転される斜板と、該シリン
ダボア内に摺動自在に嵌合されたピストンと、該
ピストンと該斜板との間に介在し、該斜板の回転
により該ピストンを往復運動させるシユーとで構
成される斜板式コンプレツサが使用されている。
このコンプレツサでは、回転軸の回転により斜板
が回転揺動し、これによりピストンが往復運動を
してシリンダ内のガスを圧縮する。 この斜板式コンプレツサにおいて、一般に斜
板、シユーは軽量化等の面からアルミニウムやア
ルミニウム合金が使用されている。ここで斜板や
シユーの摺動面には大きな荷重及び滑り速度が作
用することから、斜板やシユーの摺動面は焼付き
しやすい問題がある。特に斜板やシユーの母材を
形成するアルミニウムあるいはアルミニウム合金
が凝着しやすいために、始動時の無潤滑の状態と
か、摺動荷重が大きいような苛酷な摺動条件下で
は焼付きしやすいという問題がある。 〔発明の目的〕 本発明は上記問題を克服するもので、耐焼付性
に優れた斜板式コンプレツサを提供することを目
的とする。 〔発明の構成〕 本発明の斜板式コンプレツサは、斜板およびシ
ユーの少なくとも一方は、アルミニウム又はアル
ミニウム合金を母材とし、少なくともその摺動面
は該母材上に形成された酸化アルミニウム層の表
面で構成されていることを特徴とするものであ
る。 本発明の斜板式コンプレツサにおいて斜板と
は、シリンダブロツク内において回転軸により回
転されて揺動するものを意味する。 シユーとは、該斜板の摺動面と摺動し、該斜板
の回転によりピストンを往復運動させるものを意
味する。従つてシユーは半球状シユー又は平板状
シユーのいずれでもよい。 本発明の斜板式コンプレツサは斜板、シユー、
ピストン、回転軸、シリンダブロツクの構成部品
を有すれば足り、それら構成部品の形状等は従来
の斜板式コンプレツサと同一でもよい。 本発明の斜板式コンプレツサを特色ずける斜板
およびシユーの少なくとも一方は、アルミニウム
又はアルミニウム合金を母材としている。アルミ
ニウム合金としては例えばAl−Si系合金、Al−
Si−Mg系合金、Al−Si−Cu系合金を使用でき
る。母材は、硬質粗大粒子をアルミニウム又はア
ルミニウム合金のマトリツクス中に含むものを使
用するのが好ましい。ここで、硬質粗大粒子とは
Hv300以上より好ましくは600以上で、平均粒径
が10μ以上、より好ましくは平均粒径が20〜100μ
の粒径をもつものをいい、例えば初晶シリコンが
ある。 硬質粗大粒径を含む代表的な母材材料として、
アルジル合金が知られている。このアルジル合金
はシリコン含有率が13〜30重量%程度と共晶組成
以上の高いシリコン含有量をもち、マトリツクス
中に初晶シリコンを有する。 硬質粗大粒子を含む他の母材材料としては、ア
ルミニウム−マンガン金属間化合物、アルミニウ
ム−シリコン−マンガン金属間化合物、アルミニ
ウム−鉄金属間化合物、アルミニウム−鉄−マン
ガン金属間化合物、アルミニウム−クロム金属間
化合物等の硬質粗大粒子を含むアルミニウム合金
がある。母材が硬質粗大粒子を含む場合には、例
えば初晶シリコンを有するアルジル合金の場合に
は、母材自体がすぐれた摺動特性をもつため、き
びしい摺動条件で使用する斜板やシユーの母材と
して適する。尚、場合によつては母材として、シ
リコン含有量を共晶組成以下例えば1%程度と低
くし、マトリツクス中に初晶シリコンを有しない
アルミニウム−シリコン合金を用いてもよい。 本発明の斜板式コンプレツサを特色ずける斜板
およびシユーの少なくとも一方の摺動面は、酸化
アルミニウム層の表面で構成されている。この酸
化アルミニウム層はその基盤となる斜板やシユー
の母材表面を被覆するもので、凝着をおこしやす
いアルミニウムやアルミニウム合金の母材表面が
摺動面に表出するのを阻止するものである。 酸化アルミニウム層の厚さ、種類等は、斜板や
シユーに作用する荷重の大きさ、摺動速度等の条
件を考慮して決められる。この酸化アルミニウム
層の厚さは1μ以上、より好ましくは3μ以上が良
い。なお、厚さの上限はとくにないが、硬質粗大
粒子を含む母材を用いた場合には該粒子の平均粒
径の1/3程度が好ましく、より好ましくは10μ以
下である。なお特殊な用途の場合には酸化アルミ
ニウム層の厚さを30μ程度あるいはそれ以上が好
ましい場合がある。斜板式コンプレツサにおいて
斜板やシユーの摺動面には大きな荷重及び滑り速
度が作用することを考慮すると、上記酸化アルミ
ニウム層は陽極酸化被膜層特に硬質陽極酸化被膜
層であることが望ましい。アルミニウムの陽極酸
化被膜層は一般に、緻密で硬いため耐摩耗性が大
きく、かつ、母材に対して密着性がよいからであ
る。陽極酸化被膜層としては硬くて緻密なバリヤ
層を使用してもよく、又、バリヤ層の上に多孔質
層を形成して使用してもよい。尚場合によつては
多孔質層の孔に潤滑油を浸透させれば、焼付き防
止に一層効果的となる。陽極酸化法としてはシユ
ウ酸法、硫酸法、シウユ酸・硫酸混液法、クロム
酸法等を使用できる。 本発明を特徴づける斜板又はシユーを製造する
にあたつては、まず鋳造、鍛造、機械加工等によ
つて、母材であるアルミニウム又はアルミニウム
合金を、斜板やシユーの所定の形状に成形した後
に、摺動面となる表面を研磨あるいは研削する。
この場合、母材として硬質粗大粒子を含むものを
用いているときには、摺動面となる表面を、先ず
旋盤切削仕上げを行ない、次にエメリー紙研磨
で、No.400のエメリー紙、No.800のエメリー紙、最
後にNo.1000のエメリー紙により研磨を行ない、さ
らに粒径0.5μのアルミナ粒子を用いてバフ研磨を
行なうとよい。このようにていねいに研磨をすれ
ば硬質粗大粒子の表面からの脱落を防止できるか
らである。 以上のように摺動面となる表面を研磨あるいは
研削したならば、次に母材の表面部を酸化して酸
化アルミニウム層に変える。酸化は通常の陽極酸
化処理で酸化アルミニウム層(アルマイト層)と
することができる。酸化アルミニウム層は30μ以
上と厚くしてもよい。 ここで陽極化被膜層である酸化アルミニウム層
は酸素を外部より取り入れて形成されたものであ
るため、上方に膨張する。 ところで母材として、硬質粗大粒子を含む材料
例えばアルジル合金を使用した場合には、模式図
である第1図に例示したように母材1の表面に3
〜8μの酸化アルミニウム層2を形成し、その表
面を摺動面3とする。母材1中の硬質粗大粒子4
が摺動面3に表出することが望ましい。硬質粗大
粒子を摺動面に表出させる代表的な方法は次のよ
うである。即ち、摺動面となる表面をていねいに
研磨、研削して該硬質粗大粒子の少なくとも過半
数の上端を平らな面あるいは略平らな面にし、次
に研磨、研削された表面を化学研磨あるいは電界
研磨することにより、該硬質粗大粒子を残したま
ま母材の表面部のみを選択的に溶解し、これによ
り母材から該硬質粗大粒子を突出させる。前記し
た化学研磨としては、例えば、苛性ソーダあるい
は苛性カリの10〜30重量%の水溶液を用い、20〜
60℃の温度で10秒〜60秒化学研磨することによ
り、母材の選択的溶解が可能である。なお、電界
研磨の場合には例えば、クロム酸が飽和したリン
酸水溶液を用い、60〜90℃で、3アンペア/dm2
〜100アンペア/dm2の電流密度で1〜30秒電界
研磨することにより同様の選択的溶解が可能とな
る。以上のように硬質粗大粒子を突出させた状態
で陽極酸化処理を行なつて酸化アルミニウム層を
形成し、以て硬質粗大粒子の上端を酸化アルミニ
ウムの表面とを略同一の高さにする。場合によつ
ては該酸化アルミニウム層の表面は硬質粗大粒子
の上端よりわずかに高いか、逆にわずかに低い程
度でもよい。尚、硬質粗大粒子と酸化アルミニウ
ム層との境界に溝を形成するとよい。この溝は潤
滑油の保持の役割をはたす。 本発明の斜板式コンプレツサにおいては、斜板
又はシユーのいずれか一方の摺動面のみ酸化アル
ミニウム層が形成されていてもよいし、あるい
は、斜板とシユーの双方の摺動面に酸化アルミニ
ウム層が形成されていてもよい。 〔発明の効果〕 本発明の斜板式コンプレツサにおいては、摺動
条件が最も厳しい斜板及びシユーの少なくとも一
方は、アルミニウム又はアルミニウム合金を母材
とし、少なくともその摺動面は該母材上に形成さ
れた酸化アルミニウム層の表面で構成されてい
る。従つて摺動面には凝着しやすく耐焼付性低下
の原因となるアルミニウムあるいはアルミニウム
合金の母材が表出していない。このため優れた耐
焼付性を示す斜板式コンプレツサが得られる。 更に本発明において酸化アルミニウム層の表面
で構成される摺動面に硬質粗大粒子を表出させれ
ば、一層優れた耐焼付性を示す斜板式コンプレツ
サが得られる。更に本発明においては、摺動面に
表出させた硬質粗大粒子の上端を平らな面とすれ
ば、摺動の際に該硬質粗大粒子が脱落することを
極力防ぐことができ、従つて一層優れた耐焼付性
を示す斜板式コンプレツサが得られる。 また本発明において酸化アルミニウム層を陽極
酸化被膜層とすれば、陽極酸化被膜層は母材に対
して密着性がよく、かつ硬いため、一層優れた耐
焼付性を示す斜板式コンプレツサが得られる。 また本発明において硬質粗大粒子と酸化アルミ
ニウム層の境界に凹部を形成すると、この凹部は
潤滑油の保持の役割をはたす。このため油膜の形
成がよく、一層優れた耐焼付性を示す斜板式コン
プレツサが得られる。 実施例 1 本発明の1実施例の斜板式コンプレツサの断面
図を第2図に示す。第2図において5はシリンダ
ブロツクであり、このシリンダブロツク5内には
回転軸6が軸受7,8を介して回転自在に軸支さ
れ、この回転軸6には、斜板9が連結固定されて
いる。そして前記シリンダブロツク5には放射状
等間隔位置にシリンダボア10がそれぞれ形成さ
れ、各ボア10内には、ピストン11が摺動自在
に嵌合されている。このシリンダブロツク5の左
端開口部には、バルブプレート12及びフロント
シリンダヘツド13とにより閉塞され、右端開口
部にはバルブプレート14及びリヤシリンダヘツ
ド15により閉塞されている。 前記ピストン11の中央部分には斜板9の外周
部分を受け入れる凹陥部11aが形成され、この
凹陥部11aの軸方向対向面には、それぞれ球状
凹陥部11bが形成されている。そして斜板9の
端面には、半球状のシユー16が摺接され、前記
斜板9の回転をピストン11に往復動して伝達す
るようになつている。なお以上の構成は基本的に
は従来の斜板式コンプレツサの構造と同一であ
る。 本実施例では、斜板9の摺動面が従来のものと
異なつている。即ち、本実施例にかかる斜板9の
母材をAl−Si−Cu系合金とし、研磨としてラツ
プ仕上を施した後、10重量%の硫酸水溶液を使用
し、0℃の浴中において電流密度5A/dm2の電
流反転の条件で陽極酸化した。これにより厚さ約
5μの酸化アルミニウム層(アルマイト層)を形
成した。本実施例の斜板式コンプレツサでは斜板
9の摺動面に硬質粗大粒子として粒径30〜80μの
Siが表出している。尚、摺動の相手材であるシユ
ーの母材はSUJ−2である。 この斜板式コンプレツサの実機テストを実施す
るため、実施例と同じようにして作つた斜板式コ
ンプレツサ5台について、回転数6500r.p.m.コン
プレツサ温度−10℃、10分間運転、2時間停止を
1サイクルとする試験を30サイクル実施した。本
実施例の斜板式コンプレツサでは試験した5台中
5台とも上記のサイクルテストに合格した。 更にはこの斜板式コンプレツサの斜板の母材、
陽極酸化した酸化アルミニウムの厚みを変更した
[Technical Field] The present invention relates to a swash plate compressor. [Prior Art] Traditionally, for example, air conditioning systems for automobiles include
A cylinder block having a plurality of cylinder bores provided parallel to an axis, a swash plate rotated by a rotating shaft within the cylinder block, a piston slidably fitted within the cylinder bore, and the piston. A swash plate type compressor is used, which includes a shoe interposed between the swash plate and the swash plate to cause the piston to reciprocate as the swash plate rotates.
In this compressor, the swash plate rotates and oscillates as the rotating shaft rotates, causing the piston to reciprocate and compress the gas in the cylinder. In this swash plate type compressor, aluminum or aluminum alloy is generally used for the swash plate and shoe in order to reduce weight. Here, since large loads and sliding speeds act on the sliding surfaces of the swash plate and the shoe, there is a problem that the sliding surfaces of the swash plate and the shoe are susceptible to seizure. In particular, the aluminum or aluminum alloy that forms the base material of the swash plate and shoe tends to adhere, so it is easy to seize under severe sliding conditions such as when starting without lubrication or when the sliding load is large. There is a problem. [Object of the Invention] The present invention is intended to overcome the above-mentioned problems and aims to provide a swash plate compressor with excellent seizure resistance. [Structure of the Invention] In the swash plate compressor of the present invention, at least one of the swash plate and the shoe has aluminum or an aluminum alloy as a base material, and at least the sliding surface thereof is the surface of an aluminum oxide layer formed on the base material. It is characterized by being composed of. In the swash plate type compressor of the present invention, the swash plate means a member that is rotated and oscillated by a rotating shaft within the cylinder block. The shoe means something that slides on the sliding surface of the swash plate and causes the piston to reciprocate as the swash plate rotates. Therefore, the shoe may be either a hemispherical shoe or a flat shoe. The swash plate type compressor of the present invention includes a swash plate, a swash plate,
It is sufficient to have the piston, rotating shaft, and cylinder block components, and the shapes of these components may be the same as those of the conventional swash plate type compressor. At least one of the swash plate and the shoe that characterize the swash plate compressor of the present invention is made of aluminum or an aluminum alloy as a base material. Examples of aluminum alloys include Al-Si alloys and Al-Si alloys.
Si-Mg alloy and Al-Si-Cu alloy can be used. The base material preferably contains hard coarse particles in a matrix of aluminum or aluminum alloy. Here, what are hard coarse particles?
Hv is 300 or more, preferably 600 or more, and the average particle size is 10μ or more, more preferably 20 to 100μ
An example of this is primary silicon. As a typical base material containing hard coarse grains,
Argyl alloys are known. This Algyl alloy has a silicon content of about 13 to 30% by weight, which is higher than the eutectic composition, and has primary crystal silicon in the matrix. Other base materials containing hard coarse particles include aluminum-manganese intermetallic compounds, aluminum-silicon-manganese intermetallic compounds, aluminum-iron intermetallic compounds, aluminum-iron-manganese intermetallic compounds, and aluminum-chromium intermetallic compounds. There are aluminum alloys that contain hard coarse particles such as compounds. When the base material contains hard coarse particles, for example, in the case of an algyl alloy containing primary crystal silicon, the base material itself has excellent sliding properties, so it is difficult to use for swash plates and shoes used under severe sliding conditions. Suitable as base material. In some cases, an aluminum-silicon alloy may be used as the base material, with the silicon content being lower than the eutectic composition, for example, about 1%, and having no primary silicon in the matrix. The sliding surface of at least one of the swash plate and the shoe, which characterizes the swash plate compressor of the present invention, is composed of a surface of an aluminum oxide layer. This aluminum oxide layer covers the surface of the base material of the swash plate or shoe, and prevents the surface of the base material of aluminum or aluminum alloy, which is prone to adhesion, from being exposed on the sliding surface. be. The thickness, type, etc. of the aluminum oxide layer are determined in consideration of conditions such as the magnitude of the load acting on the swash plate and the shoe, and the sliding speed. The thickness of this aluminum oxide layer is preferably 1 μm or more, more preferably 3 μm or more. There is no particular upper limit to the thickness, but when a base material containing hard coarse particles is used, it is preferably about 1/3 of the average particle diameter of the particles, more preferably 10 μm or less. Note that for special applications, it may be preferable for the aluminum oxide layer to have a thickness of about 30 μm or more. Considering that large loads and sliding speeds act on the sliding surfaces of the swash plate and shoe in a swash plate type compressor, it is desirable that the aluminum oxide layer is an anodized layer, particularly a hard anodic oxide layer. This is because the anodic oxide film layer of aluminum is generally dense and hard, so it has high wear resistance and good adhesion to the base material. As the anodic oxide coating layer, a hard and dense barrier layer may be used, or a porous layer may be formed on the barrier layer. In some cases, it may be more effective to prevent seizure by allowing lubricating oil to penetrate into the pores of the porous layer. As the anodic oxidation method, oxalic acid method, sulfuric acid method, oxalic acid/sulfuric acid mixture method, chromic acid method, etc. can be used. In manufacturing the swash plate or shoe that characterizes the present invention, the base material, aluminum or aluminum alloy, is first formed into the predetermined shape of the swash plate or shoe by casting, forging, machining, etc. After that, the surface that will become the sliding surface is polished or ground.
In this case, when using a material containing hard coarse particles as the base material, the surface that will become the sliding surface is first finished by lathe cutting, and then polished with emery paper, No. 400 emery paper, No. 800 No. 1 emery paper, and finally No. 1000 emery paper, and then buffing using alumina particles with a particle size of 0.5 μm. This is because by carefully polishing in this way, it is possible to prevent hard and coarse particles from falling off the surface. After polishing or grinding the surface that will become the sliding surface as described above, the surface portion of the base material is then oxidized to turn it into an aluminum oxide layer. Oxidation can be performed to form an aluminum oxide layer (alumite layer) by ordinary anodic oxidation treatment. The aluminum oxide layer may be as thick as 30μ or more. Here, since the aluminum oxide layer which is the anodized coating layer is formed by taking in oxygen from the outside, it expands upward. By the way, when a material containing hard coarse particles, such as an algyl alloy, is used as the base material, as illustrated in FIG.
An aluminum oxide layer 2 with a thickness of ~8μ is formed, and its surface is used as a sliding surface 3. Hard coarse particles 4 in base material 1
It is desirable that this be exposed on the sliding surface 3. A typical method for exposing hard coarse particles to the sliding surface is as follows. That is, the surface that will become the sliding surface is carefully polished and ground to make the upper ends of at least a majority of the hard coarse particles flat or approximately flat, and then the polished and ground surface is chemically polished or electrolytically polished. By doing so, only the surface portion of the base material is selectively dissolved while leaving the hard coarse particles, thereby causing the hard coarse particles to protrude from the base material. For the chemical polishing described above, for example, a 10 to 30% by weight aqueous solution of caustic soda or caustic potash is used,
Selective dissolution of the base material is possible by chemical polishing at a temperature of 60°C for 10 to 60 seconds. In the case of electropolishing, for example, a phosphoric acid aqueous solution saturated with chromic acid is used at 60 to 90°C, at a polishing rate of 3 amperes/dm 2
Similar selective dissolution is possible by electropolishing for 1-30 seconds at a current density of ~100 amperes/dm 2 . As described above, anodizing is performed with the hard coarse particles protruding to form an aluminum oxide layer, so that the upper ends of the hard coarse particles are at approximately the same height as the surface of the aluminum oxide. In some cases, the surface of the aluminum oxide layer may be slightly higher or, conversely, slightly lower than the upper ends of the hard coarse particles. Note that it is preferable to form a groove at the boundary between the hard coarse particles and the aluminum oxide layer. This groove serves to retain lubricant. In the swash plate type compressor of the present invention, the aluminum oxide layer may be formed only on the sliding surface of either the swash plate or the shoe, or the aluminum oxide layer may be formed on the sliding surfaces of both the swash plate and the shoe. may be formed. [Effects of the Invention] In the swash plate compressor of the present invention, at least one of the swash plate and the shoe, which have the most severe sliding conditions, is made of aluminum or an aluminum alloy as a base material, and at least the sliding surface thereof is formed on the base material. The surface consists of a coated aluminum oxide layer. Therefore, the base material of aluminum or aluminum alloy, which easily adheres and causes a decrease in seizure resistance, is not exposed on the sliding surface. Therefore, a swash plate type compressor exhibiting excellent seizure resistance can be obtained. Furthermore, in the present invention, if hard coarse particles are exposed on the sliding surface constituted by the surface of the aluminum oxide layer, a swash plate type compressor exhibiting even better seizure resistance can be obtained. Furthermore, in the present invention, if the upper ends of the hard coarse particles exposed on the sliding surface are made flat, it is possible to prevent the hard coarse particles from falling off during sliding as much as possible. A swash plate compressor exhibiting excellent seizure resistance is obtained. Further, in the present invention, if the aluminum oxide layer is an anodic oxide coating layer, the anodic oxide coating layer has good adhesion to the base material and is hard, so that a swash plate compressor exhibiting even better seizure resistance can be obtained. Further, in the present invention, when a recess is formed at the boundary between the hard coarse particles and the aluminum oxide layer, this recess serves to retain lubricating oil. Therefore, a swash plate type compressor with good oil film formation and superior seizure resistance can be obtained. Embodiment 1 A sectional view of a swash plate compressor according to an embodiment of the present invention is shown in FIG. In FIG. 2, 5 is a cylinder block. A rotating shaft 6 is rotatably supported in the cylinder block 5 via bearings 7 and 8, and a swash plate 9 is connected and fixed to the rotating shaft 6. ing. Cylinder bores 10 are formed in the cylinder block 5 at equal radial intervals, and a piston 11 is slidably fitted into each bore 10. The left end opening of the cylinder block 5 is closed by a valve plate 12 and a front cylinder head 13, and the right end opening is closed by a valve plate 14 and a rear cylinder head 15. A concave portion 11a is formed in the center portion of the piston 11 to receive the outer circumferential portion of the swash plate 9, and spherical concave portions 11b are formed on axially opposing surfaces of the concave portion 11a. A hemispherical shoe 16 is in sliding contact with the end surface of the swash plate 9, and is adapted to reciprocate and transmit the rotation of the swash plate 9 to the piston 11. The above structure is basically the same as that of a conventional swash plate compressor. In this embodiment, the sliding surface of the swash plate 9 is different from the conventional one. That is, the base material of the swash plate 9 according to this embodiment is made of an Al-Si-Cu alloy, and after a lap finish is applied as polishing, a current density is increased in a bath at 0° C. using a 10% by weight sulfuric acid aqueous solution. Anodic oxidation was performed under the condition of current reversal of 5 A/dm 2 . This makes the thickness approx.
A 5 μm aluminum oxide layer (alumite layer) was formed. In the swash plate type compressor of this embodiment, the sliding surface of the swash plate 9 is coated with hard coarse particles having a particle size of 30 to 80μ.
Si is exposed. The base material of the shoe, which is the mating material for sliding, is SUJ-2. In order to conduct an actual machine test of this swash plate type compressor, five swash plate type compressors manufactured in the same manner as in the example were tested at a rotation speed of 6500 rpm, a compressor temperature of -10°C, one cycle of operation for 10 minutes and stop for 2 hours. The test was conducted for 30 cycles. Of the swash plate type compressors of this example, five out of the five tested passed the above cycle test. Furthermore, the base material of the swash plate of this swash plate type compressor,
Changed the thickness of the anodized aluminum oxide

【表】 場合のサイクルテストを行なつた。この試験結果
を試験条件と共に表1に示す。表1に示すように
陽極酸化被膜を形成したNo.1〜No.8のいずれの場
合も、試験した5台中5台とも上記のサイクルテ
ストに合格した。 尚、参考のために陽極酸化被膜を形成しない斜
板を具備した従来の斜板式コンプレツサのサイク
ルテストも行なつた。この試験結果を試験条件と
共に表1に示す。陽極酸化被膜を形成しなかつた
No.10の斜板は試験した5台中3台しかサイクルテ
ストに合格せず、又、同じく陽極酸化被膜を形成
しなかつたNo.11の斜板は試験した5台中1台しか
合格しなかつた。
[Table] A cycle test was conducted for the following cases. The test results are shown in Table 1 along with the test conditions. As shown in Table 1, in all cases of No. 1 to No. 8 in which an anodic oxide film was formed, five out of the five tested machines passed the above cycle test. For reference, a cycle test was also conducted on a conventional swash plate compressor equipped with a swash plate without an anodic oxide coating. The test results are shown in Table 1 along with the test conditions. No anodic oxide film formed
Only 3 of the 5 tested swash plates of No. 10 passed the cycle test, and only 1 of the 5 tested swash plates of No. 11, which also did not form an anodic oxide film, passed the cycle test. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硬質粗大粒子を含む母材上に酸化アル
ミニウム層を形成した状態を模式的に示す断面
図、第2図は本発明の一実施例の斜板式コンプレ
ツサの断面図である。 図中、1は母材、2は酸化アルミニウム層、3
は摺動面、4は硬質粗大粒子、5はシリンダブロ
ツク、6は回転軸、9は斜板、10はシリンダボ
ア、11はピストン、16はシユーを示す。
FIG. 1 is a sectional view schematically showing a state in which an aluminum oxide layer is formed on a base material containing hard coarse particles, and FIG. 2 is a sectional view of a swash plate compressor according to an embodiment of the present invention. In the figure, 1 is the base material, 2 is the aluminum oxide layer, and 3
4 is a sliding surface, 4 is a hard coarse particle, 5 is a cylinder block, 6 is a rotating shaft, 9 is a swash plate, 10 is a cylinder bore, 11 is a piston, and 16 is a shoe.

Claims (1)

【特許請求の範囲】 1 軸と平行に設けられた複数個のシリンダボア
をもつシリンダブロツクと、該シリンダブロツク
内において回転軸により回転される斜板と、該シ
リンダボア内に摺動自在に嵌合されたピストン
と、該ピストンと該斜板との間に摺動自在に介在
し、該斜板の回転により該ピストンを往復運動さ
せるシユーとで構成されるコンプレツサにおい
て、 前記斜板および前記シユーの少なくとも一方
は、アルミニウム又はアルミニウム合金を母材と
し、少なくともその摺動面は該母材上に形成され
た酸化アルミニウム層の表面で構成されているこ
とを特徴とする斜板式コンプレツサ。 2 母材は初晶シリコン等の硬質粗大粒子を含
み、該硬質粗大粒子が摺動面に表出している特許
請求の範囲第1項記載の斜板式コンプレツサ。 3 酸化アルミニウム層は、陽極酸化被膜層であ
る特許請求の範囲第1項記載の斜板式コンプレツ
サ。
[Scope of Claims] 1. A cylinder block having a plurality of cylinder bores provided parallel to an axis, a swash plate rotated by a rotating shaft within the cylinder block, and a swash plate slidably fitted within the cylinder bore. A compressor comprising a piston and a shoe slidably interposed between the piston and the swash plate and causing the piston to reciprocate by rotation of the swash plate, wherein at least the swash plate and the shoe One is a swash plate type compressor, characterized in that the base material is aluminum or an aluminum alloy, and at least the sliding surface thereof is constituted by the surface of an aluminum oxide layer formed on the base material. 2. The swash plate type compressor according to claim 1, wherein the base material contains hard coarse particles such as primary silicon, and the hard coarse particles are exposed on the sliding surface. 3. The swash plate compressor according to claim 1, wherein the aluminum oxide layer is an anodic oxide coating layer.
JP58127112A 1983-07-13 1983-07-13 Swash plate type compressor Granted JPS6019972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127112A JPS6019972A (en) 1983-07-13 1983-07-13 Swash plate type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127112A JPS6019972A (en) 1983-07-13 1983-07-13 Swash plate type compressor

Publications (2)

Publication Number Publication Date
JPS6019972A JPS6019972A (en) 1985-02-01
JPH028152B2 true JPH028152B2 (en) 1990-02-22

Family

ID=14951901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127112A Granted JPS6019972A (en) 1983-07-13 1983-07-13 Swash plate type compressor

Country Status (1)

Country Link
JP (1) JPS6019972A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704272A (en) * 1996-08-26 1998-01-06 Sundstrand Corporation Axial piston energy converting device
JPH11193780A (en) * 1997-12-26 1999-07-21 Toyota Autom Loom Works Ltd Single-headed piston swash plate type compression machine and method for manufacturing swash plate
JP2002155330A (en) * 2000-11-16 2002-05-31 Oiles Ind Co Ltd Aluminum alloy for sliding member
JP2002276567A (en) 2001-03-19 2002-09-25 Hitachi Ltd Scroll compressor
DE10159949C1 (en) * 2001-12-06 2003-05-22 Wieland Werke Ag Use of a copper-aluminum alloy as bearing material in the manufacture of wear resistant sliding bearings used in the car industry
JP6423909B2 (en) * 2017-03-23 2018-11-14 Kyb株式会社 Sliding member and manufacturing method of sliding member

Also Published As

Publication number Publication date
JPS6019972A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
JP3113643B2 (en) Engine with aluminum piston and aluminum bore resistant to wear and scuffing
CA1253722A (en) Aluminium based bearing alloys
JPH0510513B2 (en)
JPH0432233B2 (en)
JPH028152B2 (en)
US6431758B1 (en) Sliding-contact bearings with diamond particles
KR920010879B1 (en) Plain bearings
JPH022475B2 (en)
EP1083246A1 (en) Conversion coating of tin with cobalt and bismuth for aluminum sliding surfaces
US6136454A (en) Cobalt-tin alloy coating on aluminum by chemical conversion
JPH0525696A (en) Al alloy member and production thereof
JP2634617B2 (en) Show for swash plate type compressor
US6543333B2 (en) Enriched cobalt-tin swashplate coating alloy
JP3339874B2 (en) Light alloy cylinders and composite metal plating equipment for engines with excellent wear resistance
JPH0369998B2 (en)
EP0424109A2 (en) Aluminium alloy matrix composite for internal combustion engines
JPS6050863B2 (en) Wear-resistant sintered aluminum alloy
JPH04180599A (en) Sliding material
JPH10237693A (en) Sliding member made of aluminum alloy and cylinder made of aluminum alloy
JPH02101181A (en) Production of wear resistant aluminum alloy member
JPH0229113B2 (en) SHUDOZAIRYO
JP2554812Y2 (en) Vane type gas compressor
KR960005542B1 (en) Scroll manufacturing method with aluminium
JP2000027993A (en) Piston for internal combustion engine and surface treating method therefor
JPH09272998A (en) Aluminum alloy sliding member