JPH0280905A - Height measuring method - Google Patents

Height measuring method

Info

Publication number
JPH0280905A
JPH0280905A JP23218188A JP23218188A JPH0280905A JP H0280905 A JPH0280905 A JP H0280905A JP 23218188 A JP23218188 A JP 23218188A JP 23218188 A JP23218188 A JP 23218188A JP H0280905 A JPH0280905 A JP H0280905A
Authority
JP
Japan
Prior art keywords
height
measured
apex
scanning
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23218188A
Other languages
Japanese (ja)
Other versions
JP2557960B2 (en
Inventor
Yutaka Hashimoto
豊 橋本
Keiji Imai
啓二 今井
Hiroaki Ijichi
伊地知 弘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Computer Electronics Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Computer Electronics Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Electronics Co Ltd, Hitachi Ltd filed Critical Hitachi Computer Electronics Co Ltd
Priority to JP63232181A priority Critical patent/JP2557960B2/en
Publication of JPH0280905A publication Critical patent/JPH0280905A/en
Application granted granted Critical
Publication of JP2557960B2 publication Critical patent/JP2557960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly measure a height with high accuracy by performing the scanning of laser beam in an X-axis direction and calculating the position of an inflection point on a scanning line from the quantity of reflected beam and subsequently performing the scanning in a Y-axis direction to calculate the position of an apex to measure a height. CONSTITUTION:The quantity of reflected beam and a height signal are detected while a Y-stage 5 is moved around the apex of an object 3 to be measured at a constant speed by a control means 9. The center position 17 between a position 15 where the quantity 10 of reflected beam exceeds a judge level TH and a position 16 where said quantity 10 is short of said level TH is judged at an inflection point by a judge means 12 and set to the Y-coordinates of an apex position 2. Next, the stage 5 is moved so that an initial position comes to the Y-coordinates of the position 2 by the means 9, and the quantity of reflected beam and the height signal are detected while an X-stage 6 is moved. The center position 19 is judged from the quantity 10 of reflected beam in the same way. Since this position 19 is the apex position of the object 3, the height signal of this position becomes that of the apex position. Therefore, scanning is respectively once performed in the X- and Y-axis directions to make it possible to rapidly measure a height with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ビームを利用して被測定物体の高さを測定
する方法に係り、特に被測定物体が厳密な位置決めがさ
れていない場合にその頂点位置の高さを測定する方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of measuring the height of an object to be measured using a light beam, particularly when the object to be measured is not precisely positioned. The present invention relates to a method for measuring the height of the apex position.

〔従来の技術〕[Conventional technology]

従来、光ビームを用いて非接触で物体の高さを測定する
方法は種々知られている。そのうち、被測定物体の厳密
な位置決めがされていない場合、すなわち被測定物体の
頂点が所定の位置にない場合、その高さを知る方法とし
て、例えば特開昭60−196608に記載の方法が知
られている。この方法は、x、y、zを三次元直交座標
として、光ビームをY座標に対し粗いステップで走査し
、所定の検査方法により変曲点付近を検知し、その変曲
点付近をY/!IHIに対しさらに細かいステップで走
査し、ついでX座標に対し1ステツプ走査し、さらにこ
れらを繰り返し行なうものである。
Conventionally, various methods are known for measuring the height of an object in a non-contact manner using a light beam. Among them, when the precise positioning of the object to be measured is not performed, that is, when the apex of the object to be measured is not at a predetermined position, the method described in Japanese Patent Application Laid-open No. 196608-1983 is known as a method for determining the height of the object. It is being This method uses x, y, and z as three-dimensional orthogonal coordinates, scans the Y coordinate with a light beam in coarse steps, detects the vicinity of the inflection point using a predetermined inspection method, and then scans the vicinity of the inflection point with Y/ ! The IHI is scanned in finer steps, then the X coordinate is scanned in one step, and these steps are repeated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、測定時間については配慮がされておら
ず、被測定物体の頂点が所定の位置にないとき、被測定
物体の頂点付近を全面走査して頂点位置を見つけ出す必
要があり、高精度ではあるが、高速測定に適さないとい
う問題があった。
The above conventional technology does not take measurement time into consideration, and when the apex of the object to be measured is not at a predetermined position, it is necessary to scan the entire area around the apex of the object to find the apex position, resulting in high accuracy. However, there was a problem that it was not suitable for high-speed measurement.

本発明の目的は、被測定物体の頂点が所定の位置にない
場合でも、高精度で速やかに被測定物体の高さを測定す
る方法を提供することにある。
An object of the present invention is to provide a method for quickly and accurately measuring the height of an object to be measured even when the apex of the object is not at a predetermined position.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、球面状の被測定物体に斜め上方から光ビー
ムを照射し、上記光ビームを被測定物体に対して相対的
に走査し、その反射光を位置検出素子で検出することに
より被測定物体の光ビーム照射位置の高さを測定し、被
測定物体の頂点の高さを測定する方法において、上記光
ビームの相対的走査を被測定物体の座標軸のX軸方向に
行ない。
The above purpose is to irradiate a spherical object to be measured with a light beam from diagonally above, scan the light beam relative to the object to be measured, and detect the reflected light with a position detection element. In a method of measuring the height of a light beam irradiation position of an object and measuring the height of the vertex of the object to be measured, relative scanning of the light beam is performed in the X-axis direction of the coordinate axes of the object to be measured.

上記光ビームの反射光量からその走査線上の変曲点の位
置を求め、ついで上記光ビームの相対的走査を該変曲点
を含むY軸方向に行ない、上記光ビームの反射光量から
頂点の位置を求め、該頂点の位置の被測定物体の高さを
上記反射光より求めることを特徴とする高さ測定方法に
よって達成される。
The position of the inflection point on the scanning line is determined from the amount of reflected light of the light beam, and then relative scanning of the light beam is performed in the Y-axis direction including the inflection point, and the position of the apex is determined from the amount of reflected light of the light beam. This is achieved by a height measuring method characterized in that the height of the object to be measured at the position of the vertex is determined from the reflected light.

〔作用〕[Effect]

本発明においては、光ビームの相対的な走査がX軸方向
、Y軸方向にそれぞれ一回でよいので。
In the present invention, the relative scanning of the light beam only needs to be done once in each of the X-axis direction and the Y-axis direction.

厳密な位置決めがされていない球面状の被測定物体の頂
点位置高さを敏速に高精度で求めることができる。
The apex position and height of a spherical object to be measured whose position has not been precisely determined can be quickly and accurately determined.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail using the drawings.

第2図は、本発明を行なうための高さ測定装置の構成を
示す構成図である。半球状の被測定物体3がベース4上
に近接して複数個搭載されている。
FIG. 2 is a configuration diagram showing the configuration of a height measuring device for carrying out the present invention. A plurality of hemispherical objects 3 to be measured are mounted close to each other on a base 4.

検出器7は従来の高さ測定器の検出ヘッド部であり、光
ビームを斜め方向に発する光源と、反射光の位置検出素
子を有する。被測定物体と検出器との距離は三角法の原
理で測定される。測定器本体8よりメモリ13及び判定
手段12を有する制御手段9に反射光量10及び高さ信
号11が送られる。ベース4はXステージ6、Yステー
ジ5によりX方向、Y方向に移動可能である。
The detector 7 is a detection head portion of a conventional height measuring instrument, and has a light source that emits a light beam in an oblique direction and a position detection element for reflected light. The distance between the object to be measured and the detector is measured using the principle of trigonometry. A reflected light amount 10 and a height signal 11 are sent from the measuring device main body 8 to a control means 9 having a memory 13 and a determining means 12. The base 4 is movable in the X direction and the Y direction by an X stage 6 and a Y stage 5.

第1図は1本発明の測定方法の原理を説明する説明図で
ある。また、第3図、第4図は、それぞれステージ移動
によるY方向、X方向の光ビーム走査位置と反射光量及
び光ビーム照射位置の物体の高さとの関係を示す図であ
る。
FIG. 1 is an explanatory diagram illustrating the principle of the measuring method of the present invention. Further, FIGS. 3 and 4 are diagrams showing the relationship between the light beam scanning position in the Y direction and the X direction, the amount of reflected light, and the height of the object at the light beam irradiation position, respectively, due to stage movement.

以下、−個の被測定物体3の頂点の高さを測定する場合
について説明する。第1図に示すように、被測定物体3
の頂点位置2の周辺をY方向走査位置1aに従って光ビ
ームが走査するように制御手段9によりYステージ5を
定速で移動させながら反射光量及び高さ信号を検出し、
第3図に示す反射光量lO及び高さ信号11が検出され
る。判定手段12は、反射光量10がある判定レベル1
4を越えた位置15と切った位置16との中心位置17
を変曲点と判定する。この位置は頂点位置2のY座標と
なる。
Hereinafter, a case will be described in which the heights of the vertices of - number of objects to be measured 3 are measured. As shown in Fig. 1, the object to be measured 3
Detecting the amount of reflected light and the height signal while moving the Y stage 5 at a constant speed by the control means 9 so that the light beam scans around the apex position 2 according to the Y direction scanning position 1a,
The amount of reflected light lO and the height signal 11 shown in FIG. 3 are detected. The determination means 12 determines the determination level 1 with the amount of reflected light 10.
Center position 17 between position 15 beyond 4 and position 16 cut
is determined to be an inflection point. This position becomes the Y coordinate of vertex position 2.

つぎに、制御手段9により、初期位置が上記Y座標上に
くるようYステージ5を移動し、光ビームがX方向走査
位置1bに従って走査するようにXステージ6を定速で
移動させながら反射光量及び高さ信号を検出し、第4図
に示す結果を得る。
Next, the control means 9 moves the Y stage 5 so that the initial position is on the Y coordinate, and moves the X stage 6 at a constant speed so that the light beam scans according to the X direction scanning position 1b, and the amount of reflected light is and height signals are detected, and the results shown in FIG. 4 are obtained.

反射光量10について前述と同じ方法で中心位置19を
判定する。この中心位置19が被測定物体3の頂点位置
2であるため、この位置の高さ信号が求める頂点位置の
高さとなる。
For the amount of reflected light 10, the center position 19 is determined in the same manner as described above. Since this center position 19 is the apex position 2 of the object to be measured 3, the height signal at this position becomes the height of the desired apex position.

X方向、Y方向のステージ走査スピードはサンプリング
ピッチとの関係で決定する。また被測定物体3が異なり
、その表面の反射率が異なる場合でも判定レベル14を
変えることにより対応できる。
The stage scanning speed in the X direction and Y direction is determined in relation to the sampling pitch. Furthermore, even if the object to be measured 3 is different and its surface has a different reflectance, this can be handled by changing the determination level 14.

第5図は3列3行に並んだ複数の球状被測定物体3の各
頂点位置高さを計測する場合のXステージ6、Yステー
ジ5の走査順序を示した図である。
FIG. 5 is a diagram showing the scanning order of the X stage 6 and the Y stage 5 when measuring the height of each vertex of a plurality of spherical objects to be measured 3 arranged in three columns and three rows.

手順としては、列ごとに1度のYステージ5の走査で各
球状被測定物体3のY方向頂点座標を前記の方法で求め
、この座標を制御手段9内のメモリ13に記憶する0次
に行ごとにXステージ6の走査を連続して行ない反射光
量10及び高さ信号11をサンプリングする。この際、
各球状被測定物体3の手前で、先にメモリ13に記憶し
たそれぞれのY方向頂点座標位置にYステージ5を補正
移動する。
The procedure is to scan the Y stage 5 once for each column to obtain the coordinates of the apex in the Y direction of each spherical object 3 using the method described above, and to store these coordinates in the memory 13 in the control means 9. The X stage 6 is continuously scanned row by row, and the amount of reflected light 10 and the height signal 11 are sampled. On this occasion,
In front of each spherical object to be measured 3, the Y stage 5 is corrected and moved to the respective Y-direction apex coordinate positions previously stored in the memory 13.

この補正移動は5反射光量及び高さ信号のサンプリング
は伴わないため定速で移動する必要はなく、容易に実現
できる。最後にサンプリングした各被測定物体ごとの反
射光量及び高さ信号よりそれぞれの頂点位置高さを前記
した方法で求める。この演算処理は各被測定物体の走査
が終わるごとにリアルタイムで行なうことも可能である
Since this correction movement does not involve sampling of the amount of reflected light and the height signal, it is not necessary to move at a constant speed, and it can be easily realized. Using the method described above, the height of each vertex is determined from the amount of reflected light and the height signal of each sampled object to be measured. This arithmetic processing can also be performed in real time every time the scanning of each object to be measured is completed.

上述の実施例においては、Y方向走査を先に行ない次に
X方向走査を行なったが、これは次に述べる計測精度り
の理由による。すなわち、検出器7の発する光ビームの
スポット径は1例えば数十−の有限な大きさをもってお
り5光ビームの受光素子は特性上ビームの重心位置で高
さを判定する。
In the above-described embodiment, the Y-direction scan was performed first and the X-direction scan was performed next, but this is due to the measurement accuracy described below. That is, the spot diameter of the light beam emitted by the detector 7 has a finite size of 1, for example, several tens of digits, and the height of the light receiving element for the 5 light beams is determined based on the position of the center of gravity of the beam.

このため1球状被測定物体3の頂点位置2の前後におい
ては、光ビームの入射、反射方向を含む面に垂直なY方
向走査では第3図に示すように安定して高さを検出でき
るのに比べ、上記面に対して平行なX方向走査では第4
図に示すように頂点位置前後でオフセットされた高さ信
号を出力する。
Therefore, the height can be stably detected before and after the apex position 2 of the spherical object 3 by scanning in the Y direction perpendicular to the plane including the incident and reflected directions of the light beam, as shown in Fig. 3. Compared to
As shown in the figure, a height signal offset before and after the vertex position is output.

つまり、補正移動の分解能及び位置決め精度の影響を受
けにくくするために、Xステージ走査を後に行なった方
が最終的な頂点位置計測精度は向上する。
In other words, the final apex position measurement accuracy will be improved if the X stage scanning is performed later in order to make it less susceptible to the influence of the resolution of correction movement and positioning accuracy.

以上述べた実施例によれば、−個の被測定物体の頂点位
置高さを計測するのに二回のサンプリング走査で終ねり
、また複数個の球状被測定物体の頂点位置高さを測定す
る場合、行または列単位にまとめて連続サンプリング走
査が可能であるためステージの加減速時間を省略でき迅
速な頂点位置高さ計測が可能になる。被測定物体の数が
増せばさら1こ効率は向上する。
According to the embodiment described above, two sampling scans are required to measure the apex positions and heights of - number of objects to be measured, and the apex positions and heights of a plurality of spherical objects to be measured are measured. In this case, since continuous sampling scanning can be performed in units of rows or columns, the acceleration/deceleration time of the stage can be omitted, and the apex position and height can be quickly measured. As the number of objects to be measured increases, the efficiency will further improve.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光ビームの相対的な走査が、X軸方向
、Y軸方向にそれぞれ一回、計二回で。
According to the present invention, the relative scanning of the light beam is performed twice in total, once in the X-axis direction and once in the Y-axis direction.

厳密な位置決めがされていない被測定物体の頂点位置を
判定できるので、速やかに高さ計測することができる。
Since the apex position of the object to be measured, which has not been precisely positioned, can be determined, the height can be quickly measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の測定方法の原理を説明する説明図、
第2図は1本発明を行なうための高さ測定装置の一実施
例の構成を示す構成図、第3図及び第4図は、それぞれ
ステージ移動によるY方向、X方向の光ビーム走査位置
と反射光量及び光ビーム照射位置の物体の高さとの関係
を示す図、第5図はステージ走査説明図である。 1a・・・Y方向走査位置  1b・・・X方向走査位
置2・・・頂点位置     3・・・被測定物体4・
・・ベース      5・・・Yステージ6・・・X
ステージ    7・・・検出器8・・・測定器本体 
   9・・・制御手段10・・・反射光量     
11・・・高さ信号12・・・判定手段     13
・・・メモリ14・・・判定レベル    15.16
・・・位置17.19・・・中心位置 代理人弁理士  中 村 純之助 第5図
FIG. 1 is an explanatory diagram illustrating the principle of the measurement method of the present invention,
Fig. 2 is a block diagram showing the structure of an embodiment of a height measuring device for carrying out the present invention, and Figs. 3 and 4 show the light beam scanning position in the Y direction and the X direction by stage movement, respectively. FIG. 5 is a diagram showing the relationship between the amount of reflected light and the height of the object at the light beam irradiation position, and is an explanatory diagram of stage scanning. 1a...Y direction scanning position 1b...X direction scanning position 2...Vertex position 3...Object to be measured 4.
...Base 5...Y Stage 6...X
Stage 7...Detector 8...Measuring instrument body
9...Control means 10...Reflected light amount
11... Height signal 12... Judgment means 13
...Memory 14...Judgment level 15.16
...Position 17.19...Central position attorney Junnosuke Nakamura Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、球面状の被測定物体に斜め上方から光ビームを照射
し、上記光ビームを被測定物体に対して相対的に走査し
、その反射光を位置検出素子で検出することにより被測
定物体の光ビーム照射位置の高さを測定し、被測定物体
の頂点の高さを測定する方法において、上記光ビームの
相対的走査を被測定物体の座標軸のX軸方向に行ない、
上記光ビームの反射光量からその走査線上の変曲点の位
置を求め、ついで上記光ビームの相対的走査を該変曲点
を含むY軸方向に行ない、上記光ビームの反射光量から
頂点の位置を求め、該頂点の位置の被測定物体の高さを
上記反射光より求めることを特徴とする高さ測定方法。
1. A light beam is irradiated onto a spherical object to be measured from diagonally above, the light beam is scanned relative to the object to be measured, and the reflected light is detected by a position detection element to detect the object to be measured. In a method of measuring the height of a light beam irradiation position and measuring the height of a vertex of an object to be measured, the relative scanning of the light beam is performed in the X-axis direction of the coordinate axis of the object to be measured,
The position of the inflection point on the scanning line is determined from the amount of reflected light of the light beam, and then relative scanning of the light beam is performed in the Y-axis direction including the inflection point, and the position of the apex is determined from the amount of reflected light of the light beam. , and the height of the object to be measured at the position of the vertex is determined from the reflected light.
JP63232181A 1988-09-19 1988-09-19 Height measurement method Expired - Fee Related JP2557960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232181A JP2557960B2 (en) 1988-09-19 1988-09-19 Height measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232181A JP2557960B2 (en) 1988-09-19 1988-09-19 Height measurement method

Publications (2)

Publication Number Publication Date
JPH0280905A true JPH0280905A (en) 1990-03-22
JP2557960B2 JP2557960B2 (en) 1996-11-27

Family

ID=16935282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232181A Expired - Fee Related JP2557960B2 (en) 1988-09-19 1988-09-19 Height measurement method

Country Status (1)

Country Link
JP (1) JP2557960B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906309A (en) * 1995-12-05 1999-05-25 Hitachi, Ltd. Solder bump measuring method and apparatus
EP0975019A2 (en) * 1998-07-24 2000-01-26 Shinko Electric Industries Co. Ltd. Chip mounting board and method of measuring it
EP1020702A1 (en) * 1997-09-30 2000-07-19 Ibiden Co., Ltd. Apparatus for judging whether bump height is proper or not
EP1982145A2 (en) * 2006-02-03 2008-10-22 Gilson, Inc. Alignment correction system and methods of use thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906309A (en) * 1995-12-05 1999-05-25 Hitachi, Ltd. Solder bump measuring method and apparatus
US6196441B1 (en) 1995-12-05 2001-03-06 Hitachi, Ltd. Solder bump measuring method and apparatus
US6340109B2 (en) * 1995-12-05 2002-01-22 Hitachi, Ltd. Solder bump measuring method and apparatus
EP1020702A1 (en) * 1997-09-30 2000-07-19 Ibiden Co., Ltd. Apparatus for judging whether bump height is proper or not
EP1020702A4 (en) * 1997-09-30 2000-12-06 Ibiden Co Ltd Apparatus for judging whether bump height is proper or not
EP0975019A2 (en) * 1998-07-24 2000-01-26 Shinko Electric Industries Co. Ltd. Chip mounting board and method of measuring it
EP0975019A3 (en) * 1998-07-24 2000-11-29 Shinko Electric Industries Co. Ltd. Chip mounting board and method of measuring it
US6259038B1 (en) 1998-07-24 2001-07-10 Shinko Electric Industries Co., Ltd. Semiconductor chip mounting board and method of inspecting the same mounting board
EP1982145A2 (en) * 2006-02-03 2008-10-22 Gilson, Inc. Alignment correction system and methods of use thereof
JP2009525883A (en) * 2006-02-03 2009-07-16 ギルソン インコーポレイテッド Alignment correction system and method of using the same
JP4664412B2 (en) * 2006-02-03 2011-04-06 ギルソン インコーポレイテッド Alignment correction system and method of using the same
EP1982145A4 (en) * 2006-02-03 2012-10-24 Gilson Inc Alignment correction system and methods of use thereof

Also Published As

Publication number Publication date
JP2557960B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
US4701053A (en) Mark position detecting method and apparatus
US6069701A (en) Method and apparatus for measuring the height of an object
JP3678916B2 (en) Non-contact 3D measurement method
JPH0280905A (en) Height measuring method
US20230358804A1 (en) Systems, devices, and methods for performing a non-contact electrical measurement on a cell, non-contact electrical measurement cell vehicle, chip, wafer, die, or logic block
JPH11351840A (en) Noncontact type three-dimensional measuring method
JPH09196624A (en) Method and apparatus for measurement of very small size
Lee et al. A laser sensor with multiple detectors for freeform surface digitization
CN115218792A (en) Method and device for measuring spindle rotation error based on optical principle
CN113639637A (en) Method for detecting focus in femtosecond laser processing by using image sensor and application thereof
JPH10339616A (en) Device and method for measuring object shape without any contact
Lee et al. A laser sensor with multiple detectors for freeform surface digitization
JPH07253304A (en) Multi-axial positioning unit and length measuring method therefor
JPS5880510A (en) Automatic measuring device for ridgeline coordinates
JP3897203B2 (en) Ball grid array ball height measurement method
JPH06221811A (en) Method for two-dimensional measurement of light and method and apparatus for measuring surface roughness
JPH0448204A (en) Height measurement system
KR101833055B1 (en) 3-dimensional measuring system
JP3873331B2 (en) Bump inspection apparatus and bump inspection method
JPS59171812A (en) Optical inspection device and method
US11605526B2 (en) Systems, devices, and methods for aligning a particle beam and performing a non-contact electrical measurement on a cell and/or non-contact electrical measurement cell vehicle using a registration cell
JPH04162337A (en) Electron beam device
IE41669B1 (en) Opto-electronic scanning system for dimensional gauging ofparts
JPS6367508A (en) Method and instrument for measuring coordinates of tape end

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees