JPH0280395A - Formation of diamond film - Google Patents

Formation of diamond film

Info

Publication number
JPH0280395A
JPH0280395A JP22835188A JP22835188A JPH0280395A JP H0280395 A JPH0280395 A JP H0280395A JP 22835188 A JP22835188 A JP 22835188A JP 22835188 A JP22835188 A JP 22835188A JP H0280395 A JPH0280395 A JP H0280395A
Authority
JP
Japan
Prior art keywords
substrate
electrode
holder
diamond film
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22835188A
Other languages
Japanese (ja)
Inventor
Akitomo Tejima
手島 章友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22835188A priority Critical patent/JPH0280395A/en
Publication of JPH0280395A publication Critical patent/JPH0280395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a high quality diamond film at a high rate by converting gas contg. a carbon compd. into plasma with a stable and very high density electric field formed around a fine leading wire of a specified thickness or below. CONSTITUTION:A meshy electrode 1 made of stretched W wires of 0.1mmphi is fitted to one side of a ring-shaped meshy electrode holder 2 made of a leading wire of <=0.5mm thickness. The electrode 1 and a substrate holder 4 made of stainless steel and provided with a built-in heater are set in a quartz tube 5 and a substrate 3 is put on the holder 4. The tube 5 is evacuated by a vacuum pump, high voltage is impressed between the electrode 1 and the holder 4 and gaseous starting material 6 is allowed to flow in the tube 5 from the top to the bottom. A product produced by decomposition with a high electric field near the electrode 1 deposits on the substrate 3.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、良質のダイヤモンドを高速で堆積させる低圧
気相ダイヤモンド成膜法に関し、実用的に十分な膜質の
ダイヤモンド膜を実用的な高速で形成できるダイヤモン
ド成膜法を提供することを目的とし、 太さ0.5 tm以下の導線とそれより下流側の基板と
を収容した気密流路内で、上記導線に電圧を印加するこ
とによって上記導線にコロナ放電を発生させながら、炭
素化合物含有ガスを、上記導線の周囲を通ってから上記
基板に到達するように流すことによって上記基板上にダ
イヤモンドを堆積させるように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a low-pressure vapor phase diamond deposition method for depositing high-quality diamond at high speed. The purpose of this method is to apply a voltage to the conductive wire in an airtight channel containing a conductive wire with a thickness of 0.5 tm or less and a substrate downstream of the conductive wire, thereby causing corona to the conductive wire. Diamond is deposited on the substrate by flowing a carbon compound-containing gas around the conducting wire and then reaching the substrate while generating an electric discharge.

〔産業上の利用分野〕[Industrial application field]

本発明は良質のダイヤモンドを高速で堆積させる低圧気
相ダイヤモンド成膜法に関する。
The present invention relates to a low pressure vapor phase diamond deposition method for depositing high quality diamond at high speed.

ダイヤモンドはあらゆる材料のうち最高の硬度や、熱伝
導率を有し、電気的には絶縁体で、光学的には、紫外か
ら赤外まで広い範囲で透明で、屈折率も高い。従って、
このような特徴を生かして、工具や、ヒートシンクをは
じめ、各種の応用が期待されている。
Diamond has the highest hardness and thermal conductivity of all materials, is an electrical insulator, optically transparent in a wide range from ultraviolet to infrared, and has a high refractive index. Therefore,
Taking advantage of these characteristics, it is expected to be used in a variety of applications, including tools and heat sinks.

〔従来の技術〕[Conventional technology]

低圧気相ダイヤモンド成膜法としては、マイクロ波プラ
ズマCVD法、rfプラズマCVD法、アーク放電を利
用する方式をはじめ各種方式が提案されている。しかし
、マイクロ波やrf(無線周波数)を使う方式は成膜速
度が著しく遅く (〜0.5n/h)、膜質もグラファ
イト等のため黒ずんでおり実用的に不十分である。アー
ク放電を利用する方式は成膜速度は大きい(〜200μ
m/h)が、膜質はやはり同様に黒ずんでおり実用的に
不十分である。
Various methods have been proposed as a low-pressure vapor phase diamond film forming method, including a microwave plasma CVD method, an RF plasma CVD method, and a method using arc discharge. However, methods using microwaves or RF (radio frequency) have extremely slow film formation speeds (~0.5 n/h), and the film quality is darkened due to graphite, etc., making it unsatisfactory for practical use. The method using arc discharge has a high deposition rate (~200 μ
m/h), but the film quality is similarly darkened and is insufficient for practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、実用的に十分な膜質のダイヤモンド膜を実用
的な高速で形成できるダイヤモンド成膜法を提供するこ
とを目的とする。
An object of the present invention is to provide a diamond film forming method that can form a diamond film of practically sufficient film quality at a practical high speed.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、太さQ、 5 m以下の導線とそれより
下流側の基板とを収容した気密流路内で、上記導線に電
圧を印加することによって上記導線にコロナ放電を発生
させながら、炭素化合物含有ガスを、上記導線の周囲を
通ってから上記基板に到達するように流すことによって
上記基板上にダイヤモンドを堆積させることを特徴とす
るダイヤモンド成膜法によって達成される。
The above purpose is to generate a corona discharge in the conductive wire by applying a voltage to the conductive wire in an airtight flow path that accommodates a conductive wire with a thickness Q of 5 m or less and a substrate downstream from it. This is achieved by a diamond film forming method characterized in that diamond is deposited on the substrate by flowing a carbon compound-containing gas around the conductive wire and then reaching the substrate.

本発明の方法においては、太さ0.5 u+以下の細い
導線に、コロナ放電を発生させる範囲の電圧を印加する
ことによって、導線の周囲に極めて高密度の電界を安定
して形成させる。炭素化合物含有ガスは導線の周囲でこ
の高電界によって完全に分解してプラズマ化し、ダイヤ
モンド膜の形成に特に寄与の大きいspコ軌道を持った
炭素(C)のみが、上記プラズマ化したガスの流れに運
ばれて基板に到達し、ダイヤモンド膜として堆積する。
In the method of the present invention, a voltage in a range that generates corona discharge is applied to a thin conductive wire with a thickness of 0.5 U+ or less, thereby stably forming an extremely high-density electric field around the conductive wire. The carbon compound-containing gas is completely decomposed and turned into plasma by this high electric field around the conductor, and only carbon (C) with the sp co-orbital, which particularly contributes to the formation of the diamond film, is present in the flow of the plasma-turned gas. It reaches the substrate and is deposited as a diamond film.

これによって、グラファイトや無定形炭素を含まない高
品質のダイヤモンド膜を高速で形成させることができる
As a result, a high-quality diamond film containing no graphite or amorphous carbon can be formed at high speed.

炭素化合物含有ガスを完全に分解させるのに十分な高密
度の電界を形成させるために、導線の太さは0.5 n
+以下であることが必要であり、0.3 u+以下が望
ましく、0.1 mm以下が最も望ましい。太さの下限
は特に限定する必要はない。ただし、・ガスの分解に必
要なエネルギーの電界が形成される程度に細ければよく
、特にそれ以下に細くしても効果の増加は少ない。導線
の製作上からは101M程度が現状の実際的な下限であ
ろう。
The thickness of the conductor was 0.5 nm in order to create a high-density electric field sufficient to completely decompose the carbon compound-containing gas.
+ or less, preferably 0.3 u+ or less, and most preferably 0.1 mm or less. There is no need to particularly limit the lower limit of the thickness. However, it is sufficient that the electric field is as thin as possible to form an electric field with the energy necessary to decompose the gas, and even if the electric field is made thinner than that, the effect will not increase much. From the viewpoint of manufacturing the conducting wire, the current practical lower limit is about 101M.

導線に印加する電圧は、直流電圧、交流電圧のいずれで
もよく、コロナ放電を発生させる範囲の電圧が適当であ
る。この範囲より高い電圧ではアーク放電が発生するた
め、放電が不安定化してダイヤモンド膜質が劣化する。
The voltage applied to the conducting wire may be either a direct current voltage or an alternating current voltage, and a voltage within a range that causes corona discharge is appropriate. At a voltage higher than this range, arc discharge occurs, which makes the discharge unstable and deteriorates the quality of the diamond film.

逆に、この範囲より低い電圧ではコロナ放電が発生せず
、炭素化合物含有ガスを完全に分解できる高電界が形成
されない。コロナ放電の電圧は、導線の太さ、上記ガス
の圧力等に応じて適当に選択する。
Conversely, at a voltage lower than this range, corona discharge will not occur and a high electric field that can completely decompose the carbon compound-containing gas will not be formed. The voltage for corona discharge is appropriately selected depending on the thickness of the conducting wire, the pressure of the gas, etc.

炭素化合物含有ガスとしては、ダイヤモンド気相成長法
に用いられるガスであればいずれも用いることができる
。ダイヤモンド形成に特に寄与の大きいs p 3軌道
を持った炭素を含む化合物が特に存利である。その典型
的な例は、メタン、アセトン、メチルアルコール、エチ
ルアルコール等である。
As the carbon compound-containing gas, any gas used in the diamond vapor phase growth method can be used. Compounds containing carbon having the sp3 orbital, which makes a particularly large contribution to diamond formation, are particularly advantageous. Typical examples thereof are methane, acetone, methyl alcohol, ethyl alcohol, etc.

〔作 用〕[For production]

本発明の方法は、細い導線の周囲に形成される高密度の
電界によって安定なコロナ放電を発生させ、これによっ
て炭素化合物ガスを完全に分解して高エネルギーのプラ
ズマとし、これをガス流で搬送して基板上に堆積させる
ので、高品質のダイヤモンド膜を高速で形成させること
ができる。
The method of the present invention uses a high-density electric field formed around a thin conductive wire to generate a stable corona discharge, which completely decomposes carbon compound gas into high-energy plasma, which is transported by a gas flow. Since the diamond film is deposited on the substrate, a high quality diamond film can be formed at high speed.

以下に、添付図面を参照し、実施例によって本発明を更
に詳しく説明する。
In the following, the invention will be explained in more detail by means of examples with reference to the accompanying drawings.

〔実施例〕〔Example〕

第1図に、本発明にしたがった方法を行うための装置の
一例を示す。(A)、(B)はそれぞれ上方、正面から
見た配置であり、一部断面で示しである。
FIG. 1 shows an example of a device for carrying out the method according to the invention. (A) and (B) are the arrangement seen from above and from the front, respectively, and are partially shown in cross section.

第1図に示すように、高電圧を印加する導線として、リ
ング状のメフシニ電極ホルダ(アルミナ製)2の片面に
0.1fiφのW(タングステン)ワイヤを3f1間隔
で張ったメツシュ状電極lを用いた。基板ホルダ4はス
テンレス製で内部にヒータを有しており、所定の温度に
コントロールできるようになっている。このメッシュ状
電極1および基板ホルダ4は石英管5の中にはいってお
り真空ポンプにより減圧にできるようになっている。
As shown in Fig. 1, a mesh-like electrode l made of 0.1fiφ W (tungsten) wire stretched at intervals of 3f1 is used as a conductor for applying high voltage on one side of a ring-shaped mesh electrode holder (made of alumina) 2. Using. The substrate holder 4 is made of stainless steel and has a heater inside, so that the temperature can be controlled to a predetermined temperature. The mesh electrode 1 and the substrate holder 4 are placed in a quartz tube 5 and can be reduced in pressure by a vacuum pump.

メツシュ電極lと基板ホルダ4の間に高電圧を印加した
状態で石英管の上方より下方へ原料ガス6を流す。する
とメツシュ電極1近傍の高電界による分解生成物が基板
ホルダ4上の基板3に堆積する。
While a high voltage is applied between the mesh electrode 1 and the substrate holder 4, the raw material gas 6 is caused to flow from above to below the quartz tube. Then, decomposition products due to the high electric field near the mesh electrode 1 are deposited on the substrate 3 on the substrate holder 4.

本実施例では、原料ガス6として、1%のCH。In this example, the raw material gas 6 is 1% CH.

(メタン)を含むH2(水素)ガスを用いた(流量は2
005CCM)。基板3としては(111) S i基
板を用いた。反応中のガス圧は100Torr、に、基
板温度は850℃に設定した。また、メッシュ電極1と
基板3との距離は15mmにし、その間の印加電圧は直
流1kVとした。
H2 (hydrogen) gas containing (methane) was used (flow rate was 2
005CCM). As the substrate 3, a (111) Si substrate was used. The gas pressure during the reaction was set at 100 Torr, and the substrate temperature was set at 850°C. Further, the distance between the mesh electrode 1 and the substrate 3 was 15 mm, and the voltage applied therebetween was 1 kV DC.

このような条件下で、5時間反応を行ったところ、基板
表面に白濁した半透明の膜が得られた。
When the reaction was carried out for 5 hours under these conditions, a cloudy, translucent film was obtained on the surface of the substrate.

厚さは120−だったので毎時24−の成膜速度である
。この膜をX&’i1回折およびラマン分光法で調べた
ところ、グラファイトや無定形炭素を殆ど含まない良質
のダイヤモンド膜であることが確認できた。
Since the thickness was 120 mm, the film formation rate was 24 mm per hour. When this film was examined by X&'i1 diffraction and Raman spectroscopy, it was confirmed that it was a high quality diamond film containing almost no graphite or amorphous carbon.

本実施例では、石英管の内部を排気してから原料ガスを
導入したが、排気せずに原料ガスでパージし、はぼ大気
圧のガス圧で反応させてもよい。
In this embodiment, the raw material gas was introduced after the inside of the quartz tube was evacuated, but the raw material gas may be purged without exhausting the interior of the quartz tube, and the reaction may be performed at a gas pressure close to atmospheric pressure.

ガス圧は特に限定する必要はないが、通常は50〜76
0Torrの範囲で設定するとよい。
There is no need to limit the gas pressure, but it is usually between 50 and 76
It is preferable to set it in the range of 0 Torr.

便利のためメツシュ電極の相手電極を基板ホルダーとし
たが、相手電極は、メツシュ電極に高電界のコロナ放電
を発生させられれば、石英管内の適当な位置に別途設け
てもよい。
For convenience, the mating electrode of the mesh electrode was set as a substrate holder, but the mating electrode may be provided separately at an appropriate position within the quartz tube as long as a corona discharge of a high electric field can be generated in the mesh electrode.

なお上記実施例では、原料ガスとして、H2とCH4を
用いたが、これに限定されるものでないことは云うまで
もない。CH40代わりにアセトンや、メチルアルコー
ル、エチルアルコール等、s p 3軌道を持った、炭
素を含むものは殆ど全て適用可能である。基板もSiに
限定されるものではなくMoやpt等、他の基板も適用
可能である。また、メツシュ電極の代わりに平行に多数
張った導線を用いても効果は殆ど同じである。電極の材
質も導体でありさえすれば他のものに置き代えることは
可能である。
In the above embodiment, H2 and CH4 were used as the raw material gases, but it goes without saying that the material gases are not limited to these. In place of CH40, almost all carbon-containing substances having sp3 orbitals, such as acetone, methyl alcohol, and ethyl alcohol, can be used. The substrate is not limited to Si, and other substrates such as Mo and PT may also be used. Moreover, the effect is almost the same even if a large number of conductive wires stretched in parallel are used instead of the mesh electrode. The material of the electrode can be replaced with another material as long as it is a conductor.

3・・・基板、 5・・・石英管、 4・・・基板ホルダー 6・・・原料ガス。3... Board, 5...quartz tube, 4... Board holder 6... Raw material gas.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明による方法で、半透明で高純度
のダイヤモンド膜が得られることが分かった。成膜速度
は、アーク放電を利用する方式には及ばないものの、マ
イクロ波やrfを使った方式に比べるとはるかに大きい
0本発明によるダイヤモンド膜は、従来にない、高品質
であり、かつ、成膜速度も実用的に大きいと云える。
As described above, it has been found that a semitransparent and highly pure diamond film can be obtained by the method according to the present invention. Although the film-forming speed is not as fast as the method using arc discharge, it is much higher than the method using microwaves or RF.The diamond film according to the present invention has unprecedented high quality, and It can be said that the film formation rate is also high for practical purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)および(B)は、本発明にしたがったダイ
ヤモンド成膜法を実施するための装置の一例を示し、(
A)は横断面図、(B)は縦断面図である。
FIGS. 1(A) and 1(B) show an example of an apparatus for carrying out the diamond film forming method according to the present invention;
A) is a cross-sectional view, and (B) is a longitudinal cross-sectional view.

Claims (1)

【特許請求の範囲】 1、太さ0.5mm以下の導線とそれより下流側の基板
とを収容した気密流路内で、上記導線に電圧を印加する
ことによって上記導線にコロナ放電を発生させながら、
炭素化合物含有ガスを、上記導線の周囲を通ってから上
記基板に到達するように流すことによって上記基板上に
ダイヤモンドを堆積させることを特徴とするダイヤモン
ド成膜法。 2、前記導線をメッシュ状に張ったことを特徴とする請
求項1記載のダイヤモンド成膜法。
[Claims] 1. In an airtight flow path containing a conductor having a thickness of 0.5 mm or less and a substrate downstream thereof, a voltage is applied to the conductor to generate corona discharge in the conductor. While
A diamond film forming method characterized in that diamond is deposited on the substrate by flowing a carbon compound-containing gas so as to pass around the conductive wire and then reach the substrate. 2. The diamond film forming method according to claim 1, wherein the conducting wire is stretched in a mesh shape.
JP22835188A 1988-09-14 1988-09-14 Formation of diamond film Pending JPH0280395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22835188A JPH0280395A (en) 1988-09-14 1988-09-14 Formation of diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22835188A JPH0280395A (en) 1988-09-14 1988-09-14 Formation of diamond film

Publications (1)

Publication Number Publication Date
JPH0280395A true JPH0280395A (en) 1990-03-20

Family

ID=16875102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22835188A Pending JPH0280395A (en) 1988-09-14 1988-09-14 Formation of diamond film

Country Status (1)

Country Link
JP (1) JPH0280395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776553A (en) * 1996-02-23 1998-07-07 Saint Gobain/Norton Industrial Ceramics Corp. Method for depositing diamond films by dielectric barrier discharge
US6082294A (en) * 1996-06-07 2000-07-04 Saint-Gobain Industrial Ceramics, Inc. Method and apparatus for depositing diamond film
KR100900442B1 (en) * 2007-07-06 2009-06-01 유제열 Recycling machine of stainless steel mesh

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776553A (en) * 1996-02-23 1998-07-07 Saint Gobain/Norton Industrial Ceramics Corp. Method for depositing diamond films by dielectric barrier discharge
US6082294A (en) * 1996-06-07 2000-07-04 Saint-Gobain Industrial Ceramics, Inc. Method and apparatus for depositing diamond film
KR100900442B1 (en) * 2007-07-06 2009-06-01 유제열 Recycling machine of stainless steel mesh

Similar Documents

Publication Publication Date Title
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
EP0286306B1 (en) Method and apparatus for vapor deposition of diamond
JPS6232157B2 (en)
US5201986A (en) Diamond synthesizing method
JPH04958B2 (en)
US5380516A (en) Process for synthesizing diamond in a vapor phase
JPH0280395A (en) Formation of diamond film
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
Tanaka et al. Diamond synthesis on Si by plasma chemical vapor deposition using microwave sheath-voltage combination plasma
US5824368A (en) Process of diamond growth from C70
JPH0518794B2 (en)
JP2840750B2 (en) Coating method
WO2023218990A1 (en) Film forming device and film forming method
JPH0283298A (en) Forming of diamond film
JPS6383271A (en) Production of diamond-like carbon film
JP4480192B2 (en) Method for synthesizing high purity diamond
JP2001152338A (en) Manufacturing apparatus for diamond-like high conductivity carbon(dlc) thin film
JP2636856B2 (en) Method for producing diamond thin film
JPH01298165A (en) Manufacture of carbon film
JP2019116643A (en) Method and apparatus for forming graphene film
JPH06158323A (en) Method for synthesizing hard carbon coating film in vapor phase
JPH02156087A (en) Formation of diamond film
JPH0411515B2 (en)
JP2695155B2 (en) Film formation method
JP2636167B2 (en) Gas phase synthesis of diamond