JPH0280371A - Silicon nitride-based composition - Google Patents

Silicon nitride-based composition

Info

Publication number
JPH0280371A
JPH0280371A JP63232897A JP23289788A JPH0280371A JP H0280371 A JPH0280371 A JP H0280371A JP 63232897 A JP63232897 A JP 63232897A JP 23289788 A JP23289788 A JP 23289788A JP H0280371 A JPH0280371 A JP H0280371A
Authority
JP
Japan
Prior art keywords
silicon nitride
spinel
strength
sintered body
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63232897A
Other languages
Japanese (ja)
Inventor
Shinji Tsuji
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63232897A priority Critical patent/JPH0280371A/en
Publication of JPH0280371A publication Critical patent/JPH0280371A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a silicon nitride-based compsn. forming a silicon nitride sintered body whose strength lowers hardly at high temp. by blending silicon nitride with spinel and aluminum nitride. CONSTITUTION:This silicon nitride-based compsn. consists of 0.5-5wt.% spinel (MgAl2O4), 0.5-5% aluminum nitride(AlN) and the balance silicon nitride (Si3N4). The average particle size of the spinel used is preferably regulated to <=1.0mum so as to enhance the sinterability of the silicon nitride. In the case of >1.0mum average particle size, the density of a formed sintered body and the strength at room temp. and high temp. lower. unpreferably. It is desirable that the aluminum nitride is used in the form of fine particles and the pref. average particle size is <=1mum. The silicon nitride is preferably used in the form of fine powder so as to enhance the sinterability and the pref. average particle size is <=2.0mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばガソリンエンジン、ガスタービンエン
ジン等の部品に適用される構造部材用の窒化ケイ素質組
成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon nitride composition for structural members applied to parts of gasoline engines, gas turbine engines, etc., for example.

[従来の技術l 窒化ケイ素質焼結体は、高温度での強度が^いので内燃
機関用部品等の苛酷な条件で使用される部品に適用する
ことが検討されている。これらの用途は、一般に複雑な
形状が要求される。すなわち、成形性の容易さと高温下
での強度が高い窒化ケイ素′R焼結体が求められている
。この高強度と成形性の容易さを達成するために窒化ケ
イ素に添加剤や、焼結助剤等を添加する組成物が提案さ
れている。例えば特公昭63−23153号公報には、
焼結助剤としてスピネル系化合物0.5〜5重量%およ
び炭化チタン0.5〜5重量%を窒化ケイ累ド添加して
焼結する方法が開示されている。
[Prior Art 1] Silicon nitride sintered bodies have high strength at high temperatures, so their application to parts used under harsh conditions, such as parts for internal combustion engines, is being considered. These applications generally require complex shapes. That is, there is a need for a silicon nitride'R sintered body that is easy to form and has high strength at high temperatures. In order to achieve this high strength and ease of formability, compositions have been proposed in which additives, sintering aids, etc. are added to silicon nitride. For example, in Japanese Patent Publication No. 63-23153,
A method is disclosed in which 0.5 to 5% by weight of a spinel compound and 0.5 to 5% by weight of titanium carbide are added to silicon nitride as sintering aids for sintering.

この窒化ケイ素質組成物を焼結する方法により高温での
強度が高い窒化ケイ素質焼結体がえられるとしている。
It is claimed that this method of sintering a silicon nitride composition allows a silicon nitride sintered body with high strength at high temperatures to be obtained.

また特開昭61−178473@公報には、平均粒t!
0.1μm以Fの酸化アルミニウム、酸化イツトリウム
および酸化マグネシウムの少なくとも一秤の焼結助剤を
総量で2.0@に%を窒化ケイ素に添加した組成物が、
焼結過程における酸化増量を低減し、高温での強度を向
上した窒化ケイ県質焼結体の製造法の開示がある。
Also, in Japanese Patent Application Laid-Open No. 178473/1983, the average grain t!
A composition in which at least one weight of a sintering aid of aluminum oxide, yttrium oxide, and magnesium oxide of 0.1 μm or less F is added to silicon nitride in a total amount of 2.0%,
There is disclosed a method for producing a sintered body made of silicon nitride, which reduces oxidation weight gain during the sintering process and improves strength at high temperatures.

[発明が解決しようとする課題] 前記した焼結助剤としてスピネルを窒化ケイ素と混合し
た組成物の焼結体は、非晶質部分を形成し易く、窒化ケ
イ素質焼結体の高温度での強度を低下させる傾向がある
。また炭化チタンを焼結助剤と共に添加した場合は、炭
化チタンが焼結体中での粒界部分に固溶せず微粉体とし
て存在している。そのため炭化チタンを用いる場合には
、焼結助剤とともに窒化ケイ素への分散をよくしなけれ
ばならない、という問題点をもつ。また焼結助剤のアル
ミナ、マグネシア、イツトリアのうちの一種を総量で2
.0%以下に制限する方法は、少量の焼結助剤を窒化ケ
イ素中に均一に分散させなければならない。
[Problems to be Solved by the Invention] A sintered body made of a composition in which spinel is mixed with silicon nitride as a sintering aid as described above tends to form an amorphous portion, and the silicon nitride sintered body is difficult to form at high temperatures. tends to reduce the strength of Further, when titanium carbide is added together with a sintering aid, titanium carbide is not dissolved in the grain boundary portion of the sintered body but exists as a fine powder. Therefore, when using titanium carbide, there is a problem in that it must be well dispersed in silicon nitride together with a sintering aid. In addition, a total of 2 types of sintering aids such as alumina, magnesia, and ittria are added.
.. The method of limiting the amount to 0% or less requires a small amount of sintering aid to be uniformly dispersed in the silicon nitride.

本発明は、高温度での強度の低下の少ない窒化ケイ素質
焼結体を形成1゛る窒化ケイ素質組成物を19にとを技
術的課題とする。
The technical object of the present invention is to provide a silicon nitride composition that forms a silicon nitride sintered body with little loss of strength at high temperatures.

[課題を解決するための手段1 本発明の窒化ケイ素質組成物は、スピネル(MgAl2
O4)0.5〜5重世%と、窒化アルミニウム(A+N
>0.5〜5重量%と、残部が窒化ケイ素とからなる。
[Means for Solving the Problems 1 The silicon nitride composition of the present invention has spinel (MgAl2
O4) 0.5-5% and aluminum nitride (A+N
>0.5 to 5% by weight, with the remainder being silicon nitride.

スピネル(MgへIr14)の添加量は、0゜5〜5重
量%である。添加量が0.5重量%未満の場合はスピネ
ルの焼結助剤としての効果がなく、窒化ケイ水の焼結性
が向上しない。また、添加量が5重量%を超えると焼結
過程において過剰に液相が生成され、焼れ1;竹が向上
づるが窒化リイ系質焼結体の高温度における強度が低下
するため好ましくない1、 スピネル(MOA l t Oa )の平均粒子径が1
゜0μm以1;であることが窒化ケイ素の焼結性を高め
るために好ましい。平均粒子径が1.0μmを超えると
、得られる焼結体の密度、室温、高温での強度が低下す
るため好ましくない。
The amount of spinel (Ir14 to Mg) added is 0.5 to 5% by weight. If the amount added is less than 0.5% by weight, the spinel will not be effective as a sintering aid, and the sinterability of the silica nitride solution will not improve. Additionally, if the amount added exceeds 5% by weight, an excessive liquid phase is generated during the sintering process, which improves the quality of the bamboo, but it is not preferable because the strength of the nitride-based sintered body at high temperatures decreases. 1. The average particle diameter of spinel (MOAl t Oa) is 1
In order to improve the sinterability of silicon nitride, it is preferable that the thickness is 0 μm or more. If the average particle diameter exceeds 1.0 μm, it is not preferable because the density of the obtained sintered body and the strength at room temperature and high temperature decrease.

窒化アルミニウム(△IN>の添加量は、0゜5・〜5
重1r1%である。添加量が0.5rfu吊%未満の場
合には、添加した効果がなく、511%を超えると窒化
ケイ素質焼結体の強度の改善ダノ果が認められず、逆に
高温強度を低下させる原因となり好ましくない。
The amount of aluminum nitride (△IN> added is 0°5.~5
The weight is 1r1%. If the amount added is less than 0.5 rfu%, the addition has no effect, and if it exceeds 511%, no improvement in the strength of the silicon nitride sintered body is observed, and on the contrary, it causes a decrease in high temperature strength. This is undesirable.

この窒化アルミニウムは、焼結時に窒化ケイ素に固溶化
して粒界での非晶質部分の吊を減少させるため、高温で
の粒界の滑りが41止され強度が向上すると考えられる
(例えば、サイアロン5I3N−Al2O2として固溶
)。このことは、焼結時に固溶しない炭化チタンでは、
認められない現蒙である。
This aluminum nitride is dissolved into silicon nitride during sintering and reduces the suspension of amorphous parts at grain boundaries, so it is thought that slippage of grain boundaries at high temperatures is prevented and strength is improved (for example, solid solution as Sialon 5I3N-Al2O2). This means that titanium carbide, which does not dissolve in solid form during sintering,
This is a current situation that cannot be recognized.

本発明の窒化ケイ素質組成物では、焼結体の粒界での非
晶質部分の邑を減少させるため高温下での強度が低下づ
るのを阻止することができる。なお、この効果を発揮さ
せるためには、窒化アルミニウムは微粒子であることが
望まれ、平均粒子径が1μm以下であることが好ましい
The silicon nitride composition of the present invention reduces the number of amorphous portions at the grain boundaries of the sintered body, thereby preventing the strength from decreasing at high temperatures. In order to exhibit this effect, aluminum nitride is desired to be fine particles, and preferably has an average particle size of 1 μm or less.

また、窒化アルミニウムはスピネルと窒化ケイ素と類似
の成分をもつことにより焼結性を高め固溶化して焼結体
の硬度を^めることができる。
In addition, since aluminum nitride has components similar to spinel and silicon nitride, it can improve sinterability and become a solid solution, reducing the hardness of the sintered body.

ここで使用する窒化ケイ素は、焼結性を高めるために、
微粉末を用いることが好ましい。そのため窒化ケイ素は
、平均粒子径が2.0μm以下であることが好ましい。
The silicon nitride used here is
Preferably, fine powder is used. Therefore, it is preferable that silicon nitride has an average particle diameter of 2.0 μm or less.

またスピネルおよび窒化アルミニウムも窒化ケイ素の焼
結性を高めるために微粉末であることが好ましく平均粒
子径が1.0μm以下であることが望ましい。
Further, in order to improve the sinterability of silicon nitride, spinel and aluminum nitride are preferably fine powders, and preferably have an average particle size of 1.0 μm or less.

窒化ケイ素は、高強度、高硬度材料であるが、本発明で
はその特性を十分に発揮させるために、高純度粉末を使
用するのが好ましい。特にα相の含有量率のへいものを
用いるのが好ましい。
Silicon nitride is a high-strength, high-hardness material, but in the present invention, in order to fully exhibit its characteristics, it is preferable to use high-purity powder. In particular, it is preferable to use a material with a high α-phase content.

本発明の窒化ケイ素質組成物は、特定の焼結法によるし
のでなく、常法の成形、非酸化性雰囲気下での焼結法に
より容易に製造することができる。
The silicon nitride composition of the present invention can be easily produced not by a specific sintering method but by a conventional molding method and a sintering method in a non-oxidizing atmosphere.

すなわち、各成分粉末を混合し通常の方法により所定形
状の型に充填して加圧して圧粉体を形成でる。次いで、
この圧粉体を、非酸化性雰囲気下で常圧、または加圧下
で焼結をおこなう。特にら密な焼結体を得るには、加圧
下で焼結するのが好ましい。例えばホットプレス法やH
fP法が用いられる。イしてその温度条件(1500〜
1800℃)および圧力条件(100に9f/cmZ以
上)は種々の範囲で選択することができる。
That is, each component powder is mixed, filled into a mold of a predetermined shape by a conventional method, and pressed to form a green compact. Then,
This green compact is sintered under normal pressure or under pressure in a non-oxidizing atmosphere. In order to obtain a particularly dense sintered body, it is preferable to sinter under pressure. For example, hot press method or H
The fP method is used. and the temperature conditions (1500~
(1800° C.) and pressure conditions (100 to 9 f/cmZ or higher) can be selected from various ranges.

[発明の作用および効果] 本発明の窒化ケイ素質組成物は、スピネルを0゜5〜5
重槽%と、窒化アルミニウムを0.5〜5重出%とを窒
化ケイ素に配合して焼結して形成したものである。
[Operations and Effects of the Invention] The silicon nitride composition of the present invention has spinel at an angle of 0°5 to 5°.
It is formed by blending 0.5 to 5% aluminum nitride with silicon nitride and sintering the mixture.

この様にスピネルと窒化アルミニウムとを特定量配合す
ることにより得られる窒化ケイ素質組成物は、高温雰囲
気下における強度が向上する。理由については、充分に
解明されていないが、窒化アルミニウムが添加されるこ
とにより添加物が固溶し窒化ケイ素質焼結体の粒界中の
非晶質部分が結晶化して非晶質部分の量が減少すること
により、高温における粒界での窒化ケイ素質焼結体の滑
りが防止でき高温での強度が保持出来るのであると、考
えられる。
The silicon nitride composition obtained by blending spinel and aluminum nitride in specific amounts in this manner has improved strength in a high-temperature atmosphere. The reason is not fully understood, but when aluminum nitride is added, the additive dissolves into solid solution, and the amorphous parts in the grain boundaries of the silicon nitride sintered body crystallize. It is thought that by reducing the amount, slipping of the silicon nitride sintered body at grain boundaries at high temperatures can be prevented and strength at high temperatures can be maintained.

また、得られる窒化ケイ素質焼結体の密度も高まり強度
の向上に寄与していると推定される。
It is also presumed that the density of the obtained silicon nitride sintered body increases, contributing to the improvement in strength.

[実施例] 以下、実施例により具体的に説明する。[Example] Hereinafter, this will be explained in detail using examples.

この窒化ケイ素質組成物は、窒化ケイ素とスピネル(M
(JA I t 04 )と、窒化アルミニウム(Al
N)との混合物を加圧成形して成形体とし、この成形体
を焼結して焼結体としたものである。
This silicon nitride composition consists of silicon nitride and spinel (M
(JA I t 04) and aluminum nitride (Al
N) is pressure-molded into a molded body, and this molded body is sintered to yield a sintered body.

平均粒子径0,7μmの窒化ケイ素粉末と、平均粒子径
0.2μmのスピネル(MgA l t 04 )粉末
と、平均粒子径0.3μmの窒化アルミニウム(AlN
)粉末とを第1表に示す配合割合に配合し、有機溶媒(
エタノール)を用いて、ボールミルにて48時時間式混
合した。その後有機溶媒を留去して(りた混合粉末を1
10℃で約12時間乾燥した後、所定の型にて成形し静
水圧成形法にて3000kQ/crn”の圧力を負荷し
て成形体を形成した。
Silicon nitride powder with an average particle size of 0.7 μm, spinel (MgAl t 04 ) powder with an average particle size of 0.2 μm, and aluminum nitride (AlN) powder with an average particle size of 0.3 μm.
) powder in the proportions shown in Table 1, and an organic solvent (
ethanol) and mixed in a ball mill for 48 hours. After that, the organic solvent was distilled off (the mixed powder was
After drying at 10° C. for about 12 hours, it was molded in a predetermined mold, and a pressure of 3000 kQ/crn was applied using a hydrostatic molding method to form a molded product.

次いで、この成形体を窒素ガス雰囲気中で1700〜1
800℃で焼結して窒化ケイ素質焼結体を(りた。
Next, this molded body was heated to 1,700 to 1
A silicon nitride sintered body was obtained by sintering at 800°C.

mられた窒化ケイ素質焼結体は、粒界には微粒子として
窒化アルミニウムは殆ど存在しないことをTEM (透
過型電子顕微鏡)で確認した。またこの窒化ケイ素質焼
結体の特性として、焼結体の密度、室温と1000℃に
おける3点曲げ強度を測定した。結果を第1表に示す。
It was confirmed using a TEM (transmission electron microscope) that almost no aluminum nitride existed as fine particles in the grain boundaries of the silicon nitride sintered body. Further, as characteristics of this silicon nitride sintered body, the density of the sintered body and the three-point bending strength at room temperature and 1000° C. were measured. The results are shown in Table 1.

尚、1000℃における3点曲げ強度は、窒素ガスの雰
囲気下で室温の場合と同様の形状の試験片でJIS規格
に基づき測定した。
Note that the three-point bending strength at 1000° C. was measured based on the JIS standard using a test piece having the same shape as that at room temperature in a nitrogen gas atmosphere.

スピネルと窒化アルミニウムを所定量添加したNo、2
〜6および8は、焼結密度が95.0%(理論値にだい
する%)以上を示した。一方、スピネルの添加間の少な
いN001は、焼結密度が90.0%と小さい。ところ
が、本発明の添加間の範囲より多いN007、N009
は焼結密度が97.8%、97.7%と高くなっており
スピネル吊が多いことににより高密度になっている。し
かも室温での曲げ強度も同様に高強度を示した。
No. 2 with specified amounts of spinel and aluminum nitride added
-6 and 8 showed a sintered density of 95.0% or more (approximately % of the theoretical value). On the other hand, N001 with less spinel addition has a low sintered density of 90.0%. However, more N007 and N009 than the range between additions of the present invention
The sintered density is as high as 97.8% and 97.7%, and the density is high due to the large number of spinel suspensions. Furthermore, the bending strength at room temperature also showed high strength.

ところが、1000℃での曲げ強度は、室温での強度の
約50%に低下し高温での強度を保持していない。
However, the bending strength at 1000°C is reduced to about 50% of the strength at room temperature, and the strength at high temperatures is not maintained.

また、スピネルが所定量より少ないNo、1では、室温
および1000℃の曲げ強度が極端に低い。しかし、焼
結助剤が本発明の所定の範囲内のN002〜6およびN
008では、曲げ強度の室温と1000℃との差が少な
く、高温での強度が向上していることを示している。特
にNo、5〜6は焼結密度および曲げ強度の室温と10
00℃との差が少ない優れた窒化ケイ素質焼結体である
Further, in No. 1, which contains less than the predetermined amount of spinel, the bending strength at room temperature and at 1000° C. is extremely low. However, if the sintering aid is within the predetermined range of the present invention,
In No. 008, there is little difference in bending strength between room temperature and 1000° C., indicating that the strength at high temperatures is improved. In particular, No. 5 to 6 have sintered density and bending strength of room temperature and 10
It is an excellent silicon nitride sintered body with little difference from 00°C.

なお、焼結助剤のト限聞のN098は、焼結密度が98
.0%と最も高いが、曲げ強度が室温に比べ1000℃
の場合が74%で、強度の低下の限界値に近いことを示
している。
Note that the sintering aid N098 has a sintered density of 98
.. It is the highest at 0%, but the bending strength is 1000℃ compared to room temperature.
The case of 74% is close to the limit value for strength reduction.

したがって、この窒化ケイ素質組成物は、高密度で高温
においても強度の低下の少ない焼結体が得られることを
示している。
Therefore, this silicon nitride composition shows that a sintered body with high density and little decrease in strength even at high temperatures can be obtained.

特許出願人   トヨク自動巾株式会社代理人    
 弁理士 大川 宏
Patent applicant Toyoku Automatic Width Co., Ltd. Agent
Patent attorney Hiroshi Okawa

Claims (1)

【特許請求の範囲】[Claims] (1)スピネル(MgAl_2O_4)0.5〜5重量
%と、窒化アルミニウム(AlN)0.5〜5重量%と
、残部が窒化ケイ素(Si_3N_4)とからなる窒化
ケイ素質組成物。
(1) A silicon nitride composition consisting of 0.5 to 5% by weight of spinel (MgAl_2O_4), 0.5 to 5% by weight of aluminum nitride (AlN), and the remainder silicon nitride (Si_3N_4).
JP63232897A 1988-09-17 1988-09-17 Silicon nitride-based composition Pending JPH0280371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232897A JPH0280371A (en) 1988-09-17 1988-09-17 Silicon nitride-based composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232897A JPH0280371A (en) 1988-09-17 1988-09-17 Silicon nitride-based composition

Publications (1)

Publication Number Publication Date
JPH0280371A true JPH0280371A (en) 1990-03-20

Family

ID=16946552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232897A Pending JPH0280371A (en) 1988-09-17 1988-09-17 Silicon nitride-based composition

Country Status (1)

Country Link
JP (1) JPH0280371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555621A (en) * 1993-03-11 1996-09-17 Calsonic Corporation Method of producing a catalytic converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555621A (en) * 1993-03-11 1996-09-17 Calsonic Corporation Method of producing a catalytic converter

Similar Documents

Publication Publication Date Title
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH0280371A (en) Silicon nitride-based composition
JPS59190274A (en) Silicon nitride sintered body and manufacture
JP3290685B2 (en) Silicon nitride based sintered body
JP2980342B2 (en) Ceramic sintered body
JP2858965B2 (en) Aluminum oxide sintered body
JPH0244066A (en) Silicon nitride sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JPH0656532A (en) Production of silicon nitride-based sintered compact
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH03164472A (en) Production of silicon nitride sintered body
JP3029221B2 (en) Sialon-based sintered body and method for producing the same
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JPH01172276A (en) Production of compound ceramic comprising beta-sialon
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JPH07267734A (en) Particle dispersed silicon nitride sintered compact and its production
JPH02307868A (en) Sic-based uncompressed sintered body