JPH028016B2 - - Google Patents

Info

Publication number
JPH028016B2
JPH028016B2 JP56199450A JP19945081A JPH028016B2 JP H028016 B2 JPH028016 B2 JP H028016B2 JP 56199450 A JP56199450 A JP 56199450A JP 19945081 A JP19945081 A JP 19945081A JP H028016 B2 JPH028016 B2 JP H028016B2
Authority
JP
Japan
Prior art keywords
alloy
nickel
chromium
cobalt
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56199450A
Other languages
Japanese (ja)
Other versions
JPS57123950A (en
Inventor
Uorutaa Kaa Sho Suchuwaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inco Europe Ltd
Original Assignee
Inco Europe Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inco Europe Ltd filed Critical Inco Europe Ltd
Publication of JPS57123950A publication Critical patent/JPS57123950A/en
Publication of JPH028016B2 publication Critical patent/JPH028016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Mold Materials And Core Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Nickel-chromium-cobalt base casting alloys having compositions within the range (in percent by weight) Cr 20-23%, Co 17-23%, W 1-2.5%, Mo 0-0.5%, Nb 0.4-1.2%, Ta 0.6-1.4%, Ti 2,95-3.85%, Al 1.6-2.8%, Hf 0.3-1.3%, Zr 0.005-1%, B 0.001-1%, C 0.01-0.25%, balance Ni and impurities, wherein the contents of Nb, Hf, Ti and Al are further specifically correlated, exhibit at high temperatures a combination of good resistance to corrosion and very high creep-rupture lives, particularly when directionally solidified. The alloys are useful as materials for cast blades and vanes for gas turbines for marine and land-based service.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改善された鋳造可能なニツケル−クロ
ム−コバルト基合金に関する。 チタンおよびアルミニウムを含むニツケル−ク
ロム基合金およびニツケル−クロム−コバルト基
合金は、適当な熱処理によつて、高温度で大きな
クリープ破断強さを示し、昇温下で高いストレス
の引きおこされるものに広く応用されている。こ
の例として、たとえばガスタービンエンジンの回
転子翼および羽根がある。しかしながら、陸上に
すえられた或は海上での推力タービンにデイーゼ
ルオイルおような純粋でない燃料を用いると硫黄
による悪影響の問題が生じる。海上や他の塩化物
含有雰囲気でも、深刻な腐食の問題が生じる。 多くのガスタービンや他の部品、とくに複雑な
設計のものは、焼流し精密鋳造によつて最も適切
に作られる。それゆえ、合金は鋳造されて形成さ
れること、および、鋳造された状態で、(1)昇温下
での大きな強度、(2)硫黄含有雰囲気および塩化物
含有雰囲気での耐食性、(3)構造安定性すなわち昇
温下で伸張されて用いられた後でシグマ相が生じ
ないことが要求される。 すでに英国特許第1367661号明細書に、上記の
特性を兼ねそろえて示す合金を開示し、またクレ
ームした。この合金は、0.02〜0.25%の炭素;20
〜25%のクロム;5〜25%のコバルト;%W+
0.5(%Mo)が0.5〜5%を満足する量のモリブデ
ン(3.5%まで)もしくはタングステン(5%ま
で)またはその双方;アルミニウム含量とチタン
含量の和が4〜7%で、かつアルミニウムに対す
るチタンの比が0.75:1〜4:1という条件で
1.7〜5%のチタンおよび1〜4%のアルミニウ
ム;0.5〜3%のタンタル;0〜3%のニオブ;
%Zr+0.5(%Hf)が0.01〜1%という条件での
0.005〜1.0%のジルコニウムおよび0〜1.99%の
ハフニウム;0.001〜0.05%のホウ素;および0
〜0.2%のイツトリウム、もしくはランタンまた
はランタンまたはその双方(双方含む場合も合計
で0〜0.2%)含み、残部が不純物を除き少なく
とも30%のニツケルである。この組成範囲及び本
明細書の他の個所、特許請求の範囲のパーセント
及び比較はすべて重量による。 この明細書に従う一つの合金は1N−939の名称
で市場から入手することができ、それは以下の名
目組成を持つている。 C:0.15%、Cr:22.5%、Co:19%、W:2
%、Ti:3.7%、Al:1.9%、Ta:1.4%、Nb:
1.0%、Zr:0.1%、B:0.01%、Ni:残部 1150℃で4時間の溶体化処理、空冷及び850℃
で16時間の時効からなる熱処理の後で、合金IN
−939の等軸の鋳造品(真空溶融次いで真空下で
再溶融及び鋳造によつて作られた)は典型的には
185N/mm2(19Kgf/mm2)のストレス下で870℃の
温度で約1250時間のクリープ破断期間を持つてお
り、これは同温度で200N/mm2というより高いス
トレス下での約850時間に相当する。合金を方向
性凝固して円柱状の結晶構造を生じせしめるとク
リープ破断期間は、主結晶軸に沿つてストレスを
かけた場合、200N/mm2、870℃で約1170に長くな
る。英国特許第1367661号明細書では、ハフニウ
ムを添加した場合と、しない場合の2つの合金組
成に関してクリープ破断テストの結果が示されて
いる。ハフニウムを含む場合と、含まない場合の
結果の比較によれば、0.75%のハフニウムの存在
は破断時の伸張に関していくらか増加を生き出す
もののクリープ破断期間には影響がないか、また
はほとんどない。 ニツケル、クロム、コバルト、タングステン、
タンタル、炭素、ホウ素及びジルコニウムを含む
合金組成の範囲に於いてチタン、アルミニウム、
ニオブ及びハフニウム含量の特定の相関によつ
て、合金の鋳造品のクリープ破断期間が、特に方
向性凝固された状態で、実質状更に長くなるとい
う発見に基ずいて本発明はなされた。 本発明によれば、ニツケル−クロム−コバルト
合金は、20〜23%のクロム、17〜23%のコバル
ト、1〜2.5%のタングステン、0.4〜1.2%のニオ
ブ、0.6〜1.4%のタンタル、2.95〜3.85%のチタ
ン、1.6〜2.8%のアルミニウム、0.3〜1.3%のハ
フニウム、0.005〜1%のジルコニウム、0.002〜
0.02のホウ素及び0.05〜0.2%の炭素を含み、残部
が不純物を除いてニツケルであり、ニオブ、ハフ
ニウム、チタン及びアルミニウムの含量が(合金
中の重量%で)、 28327(%Nb)+804(%Hf)+36956(%Ti)+115057
(%Al)−6676(%Nb)2−564 (%Hf)2−4847(%Ti)2−54349(Al)2+8392(Al
3−5255〔(%Nb)×(%Ti)〕≧153123 で表われる関係式を満足する。この式の左辺の値
はここで相関因子と呼ばれ好ましくはこれは少は
くとも153223である。 一般的にジルコニウムの含量は、よりせまい範
囲にあるのが好ましく、それは0.005〜0.15%の
ジルコニウムである。なお、本発明において少量
の炭素とホウ素は単結晶鋳造品において存在して
もよく、ここでこれらの粒界強化への寄与は要求
されない。 好ましい組成範囲の中で、本発明の合金は、方
向性凝固した状態で及び溶体化処理、時効の後
で、200N/mm2及び870℃で1600時間を越えるクリ
ープ破断期間を示す。 チタン及びニオブの含量を規定するにさいして
のハフニウム及びアルミニウムに要求される相関
の影響を、0.7%のハフニウム及び2%のアルミ
ニウムを含む合金に関して、第1図に示した。図
において、長円で規定される区域内の点に対応す
る組成の合金は少なくとも153223の相関因子を持
つている。 上に述べた成分は別として、存在してもよい不
純物には、少量のケイ素、マンガン及び鉄が含ま
れるがこれらはできるだけ低く保たれるべきであ
る。ケイ素含量は1%未満であり、好ましくは、
0.5%未満であり、更に好ましくは、0.2%未満で
ある。ケイ素は耐食性を損う。マンガンは1%未
満であり好ましくは0.2%未満である。鉄含量は
3%という多い量であつてもよいが、好ましく
は、0.5%未満である。痕跡の窒素及びイオウが
存在してもよいが好ましくは、それらは0.005%
未満である。本発明の好ましい合金は、Cr:22
%、Co:19%、W:2%、Ta:1.1%、Ti:3.4
%、Nb:0.8%、Hf:0.7%、Al:2%、C:
0.15%、Zr:0.1%、B:0.01%および残部のNi
と不純物である。 この組成物に関して計算した相関因子は153855
である。 合金は真空溶融及びそれに続く真空製錬(例え
ば真空下15〜1時間保持する)によつて作成され
る。合金を再溶融して鋳造品を製造するにさい
し、鋳造ステイツクあるいは他の一次形状品は再
溶融され真空下で鋳造される。 合金は良好な鋳造性を持ち、特に鋳造によつて
形作られる物品あるいは部品の製造に適してい
る。最適の特性、特にクリープ破断期間、耐熱疲
労性、延性を得るために、好ましくは鋳造品は円
柱状結晶構造を得るために方向性凝固される。し
かしながら、本発明は、明らかに、実質上等軸
(equiaxed)の結晶構造および円柱状
(columnar)結晶構造の双方の合金から作られた
成形鋳造品を含む。このような鋳造品はガスター
ビンエンジン部品(たとえば空冷通路を備えたあ
るいは備えないガスタービン固定子もしくは回転
子などの)および一体化ブレードタービン回転子
デイスクを含む。方向性凝固(directionary
solidification)は高温合金に用いられる従来の
方法によつてなされる。 好ましいクリープ破断特性を発現させるため
に、鋳造品に溶体化処理および時効を含む熱処理
を施す必要がある。溶体化処理は、好ましくは、
1120〜1200℃で2〜24時間加熱することにあり、
ついで、1020〜650℃の温度範囲で2〜24時間時
効される。時効は1段で、もしくは2段で(たと
えば1020〜870℃で2〜12時間、ついで860〜650
℃で6〜48時間)なされる。好適な熱処理は、(1)
4時間/1160℃+10時間/843℃(1段時効)ま
たは(2)8時間/1160℃+4時間/900℃+16時
間/760℃(2重時効)である。熱処理の各段階
間で合金は空冷される。 合金組成および相関因子を本発明範囲に維持す
ることの重要性について示すために、第1表に示
した組成を有する一連の合金についてテストがな
された。この中で合金No.1〜3は本発明によるも
のであり、一方合金No.A〜Eはそうではない。す
べての合金は溶融され、真空中で鋳造され、つい
で冷却基体を有する熱耐火物すなわち発熱鋳型を
用いて鋳造され、円柱状結晶構造を有する鋳造品
が形成された。鋳造品は第2表に示したように熱
処理され、標準クリープ破断テスト片は、テスト
片全部がその軸方向に延びる円柱状結晶構造を有
するように規格化され製造された。 ついで、テスト片は200N/mm2のストレス下、
870℃でクリープ破断テストに付され、その結果
を第2表に示した。第2表は、また合金組成から
計算した相関因子も含む。 テストの結果から、本発明の合金No.1〜3は合
金No.A〜Eのクリープ破断期間よりも実質上優れ
ていることが判る。ここで、合金No.EはIN−939
である。
This invention relates to an improved castable nickel-chromium-cobalt based alloy. Nickel-chromium-based alloys and nickel-chromium-cobalt-based alloys containing titanium and aluminum exhibit high creep rupture strength at elevated temperatures and, with appropriate heat treatment, can be used to induce high stresses at elevated temperatures. Widely applied. Examples of this include, for example, rotor blades and vanes of gas turbine engines. However, the use of impure fuels such as diesel oil in land-based or offshore thrust turbines poses the problem of adverse sulfur effects. Serious corrosion problems also occur at sea and in other chloride-containing atmospheres. Many gas turbine and other components, especially those with complex designs, are best made by investment casting. Therefore, the alloy is cast to form and, in the cast state, has (1) great strength at elevated temperatures, (2) corrosion resistance in sulfur-containing and chloride-containing atmospheres, and (3) Structural stability, ie, no sigma phase is required after being stretched and used at elevated temperatures. GB 1367661 has already disclosed and claimed an alloy exhibiting all of the above properties. This alloy contains 0.02-0.25% carbon; 20
~25% chromium; 5-25% cobalt; %W+
Molybdenum (up to 3.5%) or tungsten (up to 5%) or both in an amount such that 0.5 (%Mo) satisfies 0.5-5%; the sum of aluminum content and titanium content is 4-7%, and titanium relative to aluminum under the condition that the ratio of is 0.75:1 to 4:1.
1.7-5% titanium and 1-4% aluminum; 0.5-3% tantalum; 0-3% niobium;
Under the condition that %Zr+0.5 (%Hf) is 0.01~1%
0.005-1.0% zirconium and 0-1.99% hafnium; 0.001-0.05% boron; and 0
Contains ~0.2% yttrium or lanthanum or lanthanum or both (0 to 0.2% in total if both are included), with the balance being at least 30% nickel excluding impurities. All percentages and comparisons in this composition range and elsewhere in this specification and claims are by weight. One alloy according to this specification is commercially available under the designation 1N-939 and has the following nominal composition: C: 0.15%, Cr: 22.5%, Co: 19%, W: 2
%, Ti: 3.7%, Al: 1.9%, Ta: 1.4%, Nb:
1.0%, Zr: 0.1%, B: 0.01%, Ni: remainder Solution treatment at 1150°C for 4 hours, air cooling and 850°C
After a heat treatment consisting of aging for 16 hours at
−939 equiaxed castings (made by vacuum melting followed by remelting and casting under vacuum) typically
It has a creep rupture period of approximately 1250 hours at a temperature of 870°C under a stress of 185N/mm 2 (19Kgf/mm 2 ), which is approximately 850 hours at the same temperature and under a higher stress of 200N/mm 2 . corresponds to Directional solidification of the alloy to produce a columnar crystal structure increases the creep rupture period to approximately 1170 at 200 N/mm 2 and 870° C. when stressed along the main crystal axis. GB 1367661 gives creep rupture test results for two alloy compositions, with and without hafnium addition. Comparison of results with and without hafnium shows that the presence of 0.75% hafnium produces some increase in elongation at break, but has no or little effect on creep rupture time. Nickel, chromium, cobalt, tungsten,
Titanium, aluminum, in a range of alloy compositions including tantalum, carbon, boron and zirconium.
The present invention is based on the discovery that a specific correlation of the niobium and hafnium contents substantially lengthens the creep rupture period of castings of the alloy, especially in the directionally solidified state. According to the invention, the nickel-chromium-cobalt alloy comprises 20-23% chromium, 17-23% cobalt, 1-2.5% tungsten, 0.4-1.2% niobium, 0.6-1.4% tantalum, 2.95% ~3.85% titanium, 1.6~2.8% aluminum, 0.3~1.3% hafnium, 0.005~1% zirconium, 0.002~
Contains 0.02% boron and 0.05-0.2% carbon, the balance is nickel excluding impurities, and the content of niobium, hafnium, titanium and aluminum (in weight % in the alloy) is 28327 (%Nb) + 804 (% Hf) +36956 (%Ti) +115057
(%Al) −6676(%Nb) 2 −564 (%Hf) 2 −4847(%Ti) 2 −54349(Al) 2 +8392(Al
) 3 −5255 [(%Nb) x (%Ti)] ≧153123. The value on the left side of this equation is herein referred to as the correlation factor, and preferably it is at least 153,223. Generally, the zirconium content is preferably in a narrower range, which is 0.005-0.15% zirconium. It should be noted that in the present invention small amounts of carbon and boron may be present in single crystal castings, where their contribution to grain boundary strengthening is not required. Within the preferred composition range, the alloy of the invention exhibits a creep rupture period of over 1600 hours at 200 N/mm 2 and 870° C. in the directionally solidified state and after solution treatment and aging. The effect of the required correlation of hafnium and aluminum in defining the titanium and niobium contents is shown in FIG. 1 for an alloy containing 0.7% hafnium and 2% aluminum. In the figure, alloys of composition corresponding to points within the area defined by the ellipse have a correlation factor of at least 153,223. Apart from the components mentioned above, impurities that may be present include small amounts of silicon, manganese and iron, which should be kept as low as possible. The silicon content is less than 1%, preferably
It is less than 0.5%, more preferably less than 0.2%. Silicon impairs corrosion resistance. Manganese is less than 1% and preferably less than 0.2%. The iron content can be as high as 3%, but is preferably less than 0.5%. Traces of nitrogen and sulfur may be present but preferably they are 0.005%
less than The preferred alloy of the present invention is Cr:22
%, Co: 19%, W: 2%, Ta: 1.1%, Ti: 3.4
%, Nb: 0.8%, Hf: 0.7%, Al: 2%, C:
0.15%, Zr: 0.1%, B: 0.01% and balance Ni
and impurities. The correlation factor calculated for this composition is 153855
It is. The alloy is made by vacuum melting followed by vacuum smelting (e.g., held under vacuum for 15 to 1 hour). In remelting the alloy to produce a casting, the casting stake or other primary shape is remelted and cast under vacuum. The alloy has good castability and is particularly suitable for producing articles or parts shaped by casting. In order to obtain optimum properties, in particular creep rupture duration, thermal fatigue resistance, ductility, the casting is preferably directionally solidified to obtain a columnar crystal structure. However, the present invention clearly includes molded castings made from alloys of both substantially equiaxed and columnar crystal structures. Such castings include gas turbine engine components (eg, gas turbine stators or rotors with or without air cooling passages) and integrated blade turbine rotor disks. Directional coagulation
Solidification is done by conventional methods used for high temperature alloys. In order to develop desirable creep rupture properties, it is necessary to subject the cast product to heat treatment including solution treatment and aging. The solution treatment preferably includes:
It consists of heating at 1120-1200℃ for 2-24 hours,
Then, it is aged for 2 to 24 hours at a temperature range of 1020 to 650°C. Aging is carried out in one stage or in two stages (for example, 1020-870℃ for 2-12 hours, then 860-650℃
℃ for 6-48 hours). The preferred heat treatment is (1)
4 hours/1160°C + 10 hours/843°C (single aging) or (2) 8 hours/1160°C + 4 hours/900°C + 16 hours/760°C (double aging). The alloy is air cooled between each stage of heat treatment. A series of alloys having the compositions shown in Table 1 were tested to demonstrate the importance of maintaining alloy compositions and correlation factors within the inventive range. Among them, alloys Nos. 1-3 are according to the invention, while alloys Nos. A-E are not. All alloys were melted and cast in vacuum and then cast using a refractory or exothermic mold with a cooled substrate to form a casting with a cylindrical crystal structure. The castings were heat treated as shown in Table 2 and standard creep rupture test specimens were standardized and manufactured such that all test specimens had a cylindrical crystal structure extending in the direction of their axis. Next, the test piece was placed under a stress of 200N/ mm2 .
A creep rupture test was carried out at 870°C and the results are shown in Table 2. Table 2 also includes correlation factors calculated from the alloy composition. The test results show that alloys Nos. 1-3 of the present invention are substantially superior to the creep rupture times of alloys Nos. A-E. Here, alloy No.E is IN-939
It is.

【表】【table】

【表】【table】

【表】 熱耐食性テストは、C:0.15%、Cr:22.0%、
Co:19.0%、W:2.0%、Nb:0.8%、Ta:1.1
%、Hf:0.7%、Ti:3.6%、Al:2.0%、Zr:
0.10%、B:0.01%および残部ニツケルの組成を
もつ本発明合金(合金No.4)およびIN−939の試
料(合金No.E)についても行なわれた。合金の熱
処理された鋳造品から機械加工された円筒状の試
験片はは船舶デイーゼル燃料燃焼装置中で、空
気:燃料比が30:1でさらされた。硫化ジターシ
ヤブチルが添加され、燃料の硫黄含量を2%にあ
げ、ついで、空気中の濃度が10ppmとなるように
熱ガス流中にASTM海水食塩が添された。試料
は704℃に加熱され、24時間ごとに強制空冷を用
いることにより室温に熱サイクルがされた。試料
表面からの腐食の貫通深さを測定し、以下の結果
が得られた。 合金No. 平均貫通量(μm) 4 2.5、7.5、7.5、5.0(試料数4) F 38 当初は鋳造品を目指したにもかかわらず、合金
は鋳造された状態(wrought form)にも有用で
ある。これらの状態は単結晶鋳造品(single
crystal castings)の製造に、たとえば単結晶ガ
スタービン翼ないし羽根を製造するのに用いられ
る。真空中で熱処理がなされると、加熱のそれぞ
れの段階のあとに、ガスフアンクエンチングによ
り急速冷却されてもよい。
[Table] Heat corrosion resistance test: C: 0.15%, Cr: 22.0%,
Co: 19.0%, W: 2.0%, Nb: 0.8%, Ta: 1.1
%, Hf: 0.7%, Ti: 3.6%, Al: 2.0%, Zr:
An alloy of the present invention (alloy No. 4) and a sample of IN-939 (alloy No. E) having a composition of 0.10% B, 0.01% B, and the balance nickel were also tested. Cylindrical specimens machined from heat-treated castings of the alloy were exposed to an air:fuel ratio of 30:1 in a marine diesel fuel burner. Diterciabutyl sulfide was added to raise the sulfur content of the fuel to 2%, and then ASTM sea salt was added to the hot gas stream to give an air concentration of 10 ppm. The samples were heated to 704°C and thermal cycled to room temperature by using forced air cooling every 24 hours. The penetration depth of corrosion from the sample surface was measured, and the following results were obtained. Alloy No. Average penetration depth (μm) 4 2.5, 7.5, 7.5, 5.0 (number of samples: 4) F 38 Although initially aimed at casting products, the alloy is also useful in rough form. be. These states are for single crystal castings (single
crystal castings), for example monocrystalline gas turbine blades or vanes. If heat treatment is performed in vacuum, each stage of heating may be followed by rapid cooling by gas fan quenching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は0.7%のHf、2%のAlの場合のTiおよ
びAl含量の規定について示すグラフである。
FIG. 1 is a graph showing the specification of Ti and Al contents in the case of 0.7% Hf and 2% Al.

Claims (1)

【特許請求の範囲】 1 重量で、20〜23%のクロム、17〜23%のコバ
ルト、1〜2.5%のタングステン、0.4〜1.2%のニ
オブ、0.6〜1.4%のタンタル、2.95〜3.85%のチ
タン、1.6〜2.8%のアルミニウム、0.3〜1.3%の
ハフニウム、0.005〜1%のジルコニウム、0.002
〜0.02%のホウ素および0.05〜0.20%の炭素を含
み、不純物を除いて残部がニツケルであり、ニオ
ブ、ハフニウム、チタンおよびアルミニウムの含
量が 28327(%Nb)+804(%Hf)+36956(%Ti)+115057
(%Al)−6676(%Nb)2−564(%Hf)2 −4847(%Ti)2−54349(%Al)2+8392(%Al)3
5255[(%Nb)×(%Ti)]≧153123 で表わされる関係式を満足する関係にあることを
特徴とする鋳造用ニツケル−クロム−コバルト基
合金。 2 重量で、ジルコニウム含量が0.005〜0.15%
である特許請求の範囲第1項記載の鋳造用ニツケ
ル−クロム−コバルト基合金。 3 前記関係式の左辺の値が少なくとも153223で
ある特許請求の範囲第1項または第2項に記載の
鋳造用ニツケル−クロム−コバルト基合金。 4 重量で、22%のクロム、19%のコバルト、2
%のタングステン、1.1%のタンタル、3.4%のチ
タン、0.8%のニオブ、0.7%のハフニウム、2%
のアルミニウム、0.15%の炭素、0.1%のジルコ
ニウムおよび0.01%のホウ素を含み、残部が不純
物を除いてニツケルである特許請求の範囲第1項
記載の鋳造用ニツケル−クロム−コバルト基合
金。
[Claims] 1. By weight, 20-23% chromium, 17-23% cobalt, 1-2.5% tungsten, 0.4-1.2% niobium, 0.6-1.4% tantalum, 2.95-3.85% Titanium, 1.6-2.8% aluminum, 0.3-1.3% hafnium, 0.005-1% zirconium, 0.002
Contains ~0.02% boron and 0.05-0.20% carbon, the balance is nickel except for impurities, and the content of niobium, hafnium, titanium and aluminum is 28327 (%Nb) + 804 (%Hf) + 36956 (%Ti) +115057
(%Al) −6676 (%Nb) 2 −564 (%Hf) 2 −4847 (%Ti) 2 −54349 (%Al) 2 +8392 (%Al) 3
5255 A nickel-chromium-cobalt-based alloy for casting, characterized in that it satisfies the relational expression expressed by [(%Nb)×(%Ti)]≧153123. 2 Zirconium content is 0.005-0.15% by weight
A nickel-chromium-cobalt-based alloy for casting according to claim 1. 3. The nickel-chromium-cobalt-based alloy for casting according to claim 1 or 2, wherein the value of the left side of the relational expression is at least 153223. 4 By weight, 22% chromium, 19% cobalt, 2
% tungsten, 1.1% tantalum, 3.4% titanium, 0.8% niobium, 0.7% hafnium, 2%
The nickel-chromium-cobalt-based alloy for casting according to claim 1, which contains aluminum, 0.15% carbon, 0.1% zirconium, and 0.01% boron, with the balance being nickel excluding impurities.
JP56199450A 1980-12-10 1981-12-10 Nickel-chromium-cobalt base alloy and casting product using same Granted JPS57123950A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8039492 1980-12-10

Publications (2)

Publication Number Publication Date
JPS57123950A JPS57123950A (en) 1982-08-02
JPH028016B2 true JPH028016B2 (en) 1990-02-22

Family

ID=10517874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199450A Granted JPS57123950A (en) 1980-12-10 1981-12-10 Nickel-chromium-cobalt base alloy and casting product using same

Country Status (5)

Country Link
EP (1) EP0053948B1 (en)
JP (1) JPS57123950A (en)
AT (1) ATE9598T1 (en)
CA (1) CA1202505A (en)
DE (1) DE3166370D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102398171A (en) * 2010-09-16 2012-04-04 上海胜僖汽车配件有限公司 Automatic part processing clamp

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119640A (en) * 1984-11-16 1986-06-06 Honda Motor Co Ltd Alloy for exhaust valve
US4810467A (en) * 1987-08-06 1989-03-07 General Electric Company Nickel-base alloy
US20050069450A1 (en) * 2003-09-30 2005-03-31 Liang Jiang Nickel-containing alloys, method of manufacture thereof and articles derived thereform
US10041153B2 (en) * 2008-04-10 2018-08-07 Huntington Alloys Corporation Ultra supercritical boiler header alloy and method of preparation
US20160326613A1 (en) * 2015-05-07 2016-11-10 General Electric Company Article and method for forming an article
CN115094288A (en) * 2022-04-25 2022-09-23 西北工业大学 Modified superalloy prepared by regulating carbon component content and method
CN114921706B (en) * 2022-04-25 2023-08-01 西北工业大学 Modified nickel-base casting superalloy and preparation method thereof
CN114921687B (en) * 2022-04-25 2023-07-04 西安工业大学 Modified superalloy prepared by modulating zirconium and carbon component content and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212618A (en) * 1975-07-17 1977-01-31 Int Nickel Ltd Nickel chrome cobalt alloy
JPS558550A (en) * 1978-07-04 1980-01-22 Mitsubishi Heavy Ind Ltd Pulling out apparatus for tube of heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB607616A (en) * 1945-11-28 1948-09-02 Harold Ernest Gresham Nickel base alloy
FR1071278A (en) * 1951-12-05 1954-08-30 Mond Nickel Co Ltd Improvements to heat-resistant alloys and articles and parts made from such alloys
GB1036179A (en) * 1964-07-13 1966-07-13 Wiggin & Co Ltd Henry Heat treatment of nickel-chromium alloys
GB1298942A (en) * 1969-03-07 1972-12-06 Int Nickel Ltd Nickel-chromium-cobalt alloys
GB1367661A (en) * 1971-04-07 1974-09-18 Int Nickel Ltd Nickel-chromium-cobalt alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212618A (en) * 1975-07-17 1977-01-31 Int Nickel Ltd Nickel chrome cobalt alloy
JPS558550A (en) * 1978-07-04 1980-01-22 Mitsubishi Heavy Ind Ltd Pulling out apparatus for tube of heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102398171A (en) * 2010-09-16 2012-04-04 上海胜僖汽车配件有限公司 Automatic part processing clamp

Also Published As

Publication number Publication date
EP0053948A1 (en) 1982-06-16
CA1202505A (en) 1986-04-01
JPS57123950A (en) 1982-08-02
EP0053948B1 (en) 1984-09-26
ATE9598T1 (en) 1984-10-15
DE3166370D1 (en) 1984-10-31

Similar Documents

Publication Publication Date Title
JP5322933B2 (en) Nickel-based alloys for gas turbines
US5151249A (en) Nickel-based single crystal superalloy and method of making
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
US4935072A (en) Phase stable single crystal materials
US6074602A (en) Property-balanced nickel-base superalloys for producing single crystal articles
RU2289637C2 (en) Nickel base alloy
RU2433197C2 (en) Heat-resistant nickel-based alloy, part manufacturing method, and turbomachine part
JP3902714B2 (en) Nickel-based single crystal superalloy with high γ 'solvus
KR20040007212A (en) Nickel base superalloys and turbine components fabricated therefrom
JPH07138683A (en) Nickel-based single crystal superalloy
US4288247A (en) Nickel-base superalloys
JPH028016B2 (en)
KR100219929B1 (en) Hot corrosion resistant single crystar nickel-based superalloys
AU630623B2 (en) An improved article and alloy therefor
JPH0559474A (en) Improved nickel-base super alloy with balanced properties for producing single crystal product
JPH0456099B2 (en)
US4519979A (en) Nickel-chromium-cobalt base alloys and castings thereof
US20050000603A1 (en) Nickel base superalloy and single crystal castings
KR100224950B1 (en) Nickel-base superalloy of industrial gas turbine components
RU2186144C1 (en) Refractory nickel alloy for single-crystal casting and product made from this alloy
US3854941A (en) High temperature alloy
GB2401113A (en) Nickel-based superalloy
JP4003319B2 (en) Nickel-based single crystal superalloy
JPS6140020B2 (en)
JP2000129381A (en) Nickel-base single crystal superalloy