JPH0280000A - Production of sugar from beet sugar concentrate - Google Patents

Production of sugar from beet sugar concentrate

Info

Publication number
JPH0280000A
JPH0280000A JP23271888A JP23271888A JPH0280000A JP H0280000 A JPH0280000 A JP H0280000A JP 23271888 A JP23271888 A JP 23271888A JP 23271888 A JP23271888 A JP 23271888A JP H0280000 A JPH0280000 A JP H0280000A
Authority
JP
Japan
Prior art keywords
sugar
concentrate
beet
exchange resin
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23271888A
Other languages
Japanese (ja)
Inventor
Yukiteru Tanaka
田中 幸輝
Masayuki Tsukada
塚田 正幸
Yutaka Koga
裕 古賀
Takao Yoshida
吉田 宝生
Tetsuo Muto
武藤 哲郎
Hajime Uchino
肇 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUREN FEDERATION OF AGRICULT COOP
Nippon Rensui Co
Original Assignee
HOKUREN FEDERATION OF AGRICULT COOP
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUREN FEDERATION OF AGRICULT COOP, Nippon Rensui Co filed Critical HOKUREN FEDERATION OF AGRICULT COOP
Priority to JP23271888A priority Critical patent/JPH0280000A/en
Publication of JPH0280000A publication Critical patent/JPH0280000A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sugar of low ash content and good color value by saturating with carbon dioxide a raw juice prepared by warm water extraction of beet roots, pretreatment followed by concentration, desalinating the concentrate by ion exchange membrane electrodialysis, pH adjustment with an OH-type anion exchange resin and decoloring with a Cl-type anion exchange resin. CONSTITUTION:Beet roots are finely chopped into pieces which are then extracted with warm water to produce a raw juice. Lime is then added to the juice followed by saturation with carbon dioxide. The resultant system is then put to pretreatment comprising both softening and decoloring by ion exchange resins into a dilute solution. Thence, this solution is concentrated using a multieffect evaporator to 40-60wt.% in the solid content for the beet sugar concentrate. The resultant concentrate is then desalinated by ion exchange membrane electrodialysis followed by pH adjustment with e.g., OH-type anion exchange resin and then decoloring with e.g., Cl-type anion exchange resin, thus obtaining the objective sugar from beet sugar concentrate.

Description

【発明の詳細な説明】 (発明の対象) 本発明はイオン交換膜電気透析(以下電気透析と称する
)とイオン交換樹脂を用いたビート糖製造工程の改良に
係わるものである。
DETAILED DESCRIPTION OF THE INVENTION (Subject of the Invention) The present invention relates to an improvement in a beet sugar production process using ion exchange membrane electrodialysis (hereinafter referred to as electrodialysis) and an ion exchange resin.

(従来の技術) ビート根を原料に砂糖を製造する場合には第1図に示す
ように、ビート根を細かく切断l&温水で抽出してビー
ト生汁を得て、石灰を加えて炭酸飽充、イオン交換樹脂
による軟化、脱色の前処理を行って希薄液を得る。この
希薄液は多重効用缶で濃縮され濃縮液を得た後、結晶缶
で結晶化され1番糖の白糖が製造されるが、これらの工
程においては脱塩工程がないために、2番糖以降におい
て灰分が濃縮されるので、2番糖以降の砂糖は白糖を得
ることができず再溶解後、イオン交換樹脂により脱色後
前段の工程にリサイクルされたり、糖蜜として処理(イ
オン交換樹脂処理、ステソフェン処理、イオンクロマト
処理等)して清浄工程にリサイクルされている。2番糖
以降も白糖として製品化するための方法としては希薄液
中の灰分をイオン交換樹脂により脱塩する全量脱塩法が
採用されている。この方法により脱塩を行えば2番糖以
降も白糖として製品化することが可能であるがこの全量
脱塩法は膨大な設備を必要とし、かつイオン交換樹脂の
再生に用いる再生剤も多量に要し、さらには再生廃液処
理の問題、イオン交換樹脂に付着する糖分のロスの問題
も生じている。
(Conventional technology) When producing sugar using beet roots as a raw material, as shown in Figure 1, the beet roots are cut into small pieces and extracted with hot water to obtain raw beet juice, which is then added with lime and carbonated. A dilute solution is obtained by pre-treatment of softening and decolorization using an ion exchange resin. This diluted solution is concentrated in a multi-effect can to obtain a concentrated solution, and then crystallized in a crystallizer to produce white sugar, the No. 1 sugar. However, since there is no desalting step in these processes, the No. 2 sugar is Since the ash content is concentrated in the subsequent steps, it is not possible to obtain white sugar from sugars after No. 2 sugar, and after re-dissolving, they are decolorized with ion exchange resin and recycled to the previous process, or treated as molasses (ion exchange resin treatment, Stethofen treatment, ion chromatography treatment, etc.) and recycled to the cleaning process. As a method for commercializing second sugar and subsequent sugars as white sugar, a total desalting method is adopted in which the ash in the dilute solution is desalted using an ion exchange resin. If desalting is performed using this method, it is possible to commercialize sugars from No. 2 to white sugar, but this total desalting method requires a huge amount of equipment and also requires a large amount of regenerating agent used to regenerate the ion exchange resin. In addition, there are also problems in processing recycled waste liquid and loss of sugar adhering to the ion exchange resin.

(発明が解決しようとする問題点) 脱塩を行わない場合には2番糖以降から白糖が得られな
いため多量の糖蜜が生成され、この糖蜜を処理するため
に多量のイオン交換樹脂等を用いるため、前述の再生剤
、再生廃液、糖分のロス等問題をかかえ、なおかつリサ
イクルされる糖は同じ工程を経るため各工程での糖分の
ロスが増え、又リサイクルのため全体の設備がその分大
きくなるという欠点をかかえている。このようにビート
糖製造工程にイオン交換樹脂による脱塩工程を採用して
いない工場では、砂糖の品質向上及び歩留向上の目的で
何らかの脱塩を行なう必要にせまられている。また糖液
に電気透析を用いることは広く紹介されているが、−船
釣には電気透析法では高塩量である程脱塩能力が大きい
という特徴を生かすために、特公昭55−38119や
特公昭56−39638に示されているように廃糖蜜の
ような高塩量の糖液に採用されている。しかしこれらの
特許に述べられているように、このような廃糖蜜にはイ
オン交換膜を汚染する有機物も多量に含まれており、前
処理が必要となる。従って電気透析法を用いる場合には
充分前処理された清浄な液で、かつ塩濃度が高い液を処
理する必要がある。またこれまでビート糖液の脱塩に電
気透析法が採用されない理由としては電気透析を行なう
ことによりビート糖液のpHが低下し転化糖の増加を起
こし、糖の歩留の低下及び糖の着色が起こることが主な
要因であった。
(Problem to be solved by the invention) If desalting is not performed, a large amount of molasses is produced because white sugar cannot be obtained from the second sugar onward, and a large amount of ion exchange resin etc. is used to treat this molasses. However, since recycled sugar goes through the same process, sugar loss increases in each process, and the overall equipment for recycling increases accordingly. It has the disadvantage of being large. As described above, factories that do not employ a desalting process using an ion exchange resin in their beet sugar manufacturing process are forced to carry out some form of desalting for the purpose of improving the quality and yield of sugar. Also, the use of electrodialysis for sugar solutions has been widely introduced, but in order to take advantage of the characteristic that the higher the salt content, the greater the desalination capacity of the electrodialysis method for boat fishing. As shown in Japanese Patent Publication No. 56-39638, it is used for sugar solutions with high salt content such as blackstrap molasses. However, as stated in these patents, such molasses also contains large amounts of organic matter that contaminates ion exchange membranes and requires pretreatment. Therefore, when electrodialysis is used, it is necessary to treat a sufficiently pretreated clean solution with a high salt concentration. In addition, the reason why electrodialysis has not been adopted for desalting beet sugar solution is that electrodialysis lowers the pH of the beet sugar solution and increases invert sugar, resulting in a decrease in sugar yield and coloring of sugar. The main factor was that this occurred.

(問題点を解決するための手段) 本発明は以上の問題点を解決するため、第2図に示すよ
うに、Bx40〜60のビート糖濃縮液を電気透析して
脱塩を行ない、イオン交換樹脂でpH1l整及び脱色処
理する方法を採用する。
(Means for Solving the Problems) In order to solve the above problems, the present invention, as shown in FIG. A method of adjusting the pH to 1L and decolorizing with resin is adopted.

即ちビート糖希釈液を所定の濃度に濃縮したビート糖濃
縮液を電気透析法により脱塩することにより2番糖も製
品白糖とし、リサイクルする2番糖を無くし、かつ糖蜜
処理用のイオン交換樹脂等の負荷を軽減するものである
。また電気透析の処理液をOH型のアニオン交換樹脂等
に通しpH1l整を行ない、さらにCl型のアニオン交
換樹脂等により脱色することにより電気透析の欠点を解
決するものである。
That is, by desalting the beet sugar concentrate obtained by concentrating the diluted beet sugar solution to a predetermined concentration by electrodialysis, the secondary sugar is also produced as white sugar, eliminating the secondary sugar to be recycled, and using an ion exchange resin for molasses processing. This is to reduce the burden of In addition, the electrodialysis treatment solution is passed through an OH type anion exchange resin or the like to adjust the pH to 11, and then decolorized using a Cl type anion exchange resin or the like, thereby solving the drawbacks of electrodialysis.

(作用) 以下本発明を更に詳細に説明する。本発明は前述のよう
に、イオン交換樹脂による全量脱塩を行わずにビート糖
の製造工程を改良するものであるが、前処理として軟化
、脱色されたビート糖液を原料とする必要がある。これ
は電気透析法のイオン交換膜を汚染する物質を極力除去
してやるためである。また電気透析法の特徴である高塩
量はど電流値が高くとれ処理能力が大きいという利点を
生かすために、希薄液ではなく濃縮液を脱塩する必要が
ある。しかし多重効用缶出口から得られる濃縮液はより
高塩量になるが、その濃縮液はBxが65以上あるため
粘性が高く、逆に電流が流れにくくなるのでBxが40
〜60に濃縮された時点で効用缶の途中から抜き出し、
電気透析の耐熱温度の50℃前後に冷却後電気透析にか
ける必要がある。ここで冷却により放熱される熱は再度
効用缶にもどす時の加熱に用いられ、エネルギー的には
わずかの消費ですますことが出来る。また電気透析は温
度が高いほど電流が流れ易くなり処理能力が増大するの
で、電気透析槽の耐熱温度近くの50℃前後で処理する
のが得策である。ここで用いられる電気透析槽は公知の
フィルタープレスタイプのもので良く多数のカチオン交
換膜とアニオン交換膜が交互に配列され、−室おきに脱
塩室と濃縮室が構成されており、その両端に電極室が設
けられている。ビート糖濃縮液を脱塩室に、無機塩溶液
(通常1重量%程度)を濃縮室に循環流通させながら両
端の電極室に設けられた極板に直流電圧をかけるとビー
ト糖液中の灰分が脱塩される。またここで用いられるイ
オン交換膜は、一般市販品の例えばセラミオン″CMV
”  “AMV″(旭硝子社製品名)でよい。特開昭5
1−77588のようにアニオン交換膜のファウリング
を防ぐために孔径が大きい特殊なイオン交換膜を用いる
と、灰分の脱塩と共に糖分も濃縮液に移行し糖ロスを起
こしてしまう。一般用造膜を用いれば糖ロスは0.2%
以下に押さえることが出来る。電気透析法で灰分を90
%以上除去することは可能であるが、通常は灰分の脱塩
率を55〜60%にとどめた方が電気透析の処理能力を
大きくすることができる。また2番糖を製品とする目的
であればこの脱塩率で充分製品化が可能である。具体的
にはBx50のビート糖液中には、カリウムを主成分と
する無機カチオンが6 、 000 m g / l 
a度合まれるが、これらが2,400〜2,700mg
/lまで除去された時点で処理を停止する方が効率的な
運転が可能となる。ビート糖濃縮液中の無機のカチオン
と対をなすアニオン成分には、分子量が比較的大きな有
機酸成分も含まれている。この有機酸はアニオン交換膜
を通過出来ないため無機カチオンが多く脱塩される。こ
のため電気透析処理を行うとビート糖液のpHが8.5
〜90から7.0〜8.0まで低下してしまう。このp
H低下は糖の分解を引き起こし転化糖が増加するため、
糖の純糖率が下がるばかりでなく、製品が着色するトラ
ブルを引き起こす。そのため電気透析処理液はすぐにp
HIj#整を行う必要がある。pH調整をアルカリを加
えることで行なおうとすれば、基量が増すことになり脱
塩の目的に逆行するので、本発明では例えば強塩基性ア
ニオン交換樹脂等をOH型にした樹脂塔に通液すること
によりpH調整することとする。ここで用いられる強塩
基性アニオン交換樹脂は、ゲル型よりもポラス型の方が
糖液による汚染が少なく有効であることが知られている
が、特にポーラス型に限定するものではない。この樹脂
によるpH調整によりp Hは10以上となるが、ビー
ト糖のpHコントロール範囲は9前後であるので全量を
通液する必要はなく、一部分を通液しあとで混合してp
Hを調整する方法が良い。電気透析法のイオン交換膜は
前述のように、糖ロスを押さえるために一般用のイオン
交換膜を用いるが、これは逆に色度成分は除去されにく
いという性質を有している。従って砂糖の結晶化時にこ
の色度成分も濃縮され製品が着色してしま、うので、脱
色の必要がある。本発明では例えば強塩基性アニオン交
換樹脂等をOH型にした樹脂塔に通液することにより脱
色することとする。用いられるアニオン交換樹脂は例え
ばダイヤイオンPA−308(三菱化成社製)のような
一般市販品で良(、NaC1で再生してOH型で使用す
る。これによりビート糖濃縮液の色価は80%以上脱色
される。この脱色されたビート糖濃縮液は前述のように
加温され、多重効用缶に戻しBx65以上の濃縮液とし
てから結晶缶に送られ製品砂糖を製造する。
(Function) The present invention will be explained in more detail below. As mentioned above, the present invention improves the manufacturing process of beet sugar without performing total desalting using an ion exchange resin, but it is necessary to use a softened and decolorized beet sugar solution as a raw material as a pretreatment. . This is to remove as much as possible the substances that contaminate the ion exchange membrane in electrodialysis. Furthermore, in order to take advantage of the advantages of electrodialysis, which are characterized by a high salt content, a high current value, and a large processing capacity, it is necessary to desalt a concentrated solution rather than a diluted solution. However, the concentrated liquid obtained from the outlet of the multi-effect can has a higher salt content, but since the concentrated liquid has a Bx of 65 or more, it has a high viscosity, and conversely, it becomes difficult for current to flow, so the Bx is 40.
When it is concentrated to ~60%, it is extracted from the middle of the can,
It is necessary to apply electrodialysis after cooling to around 50°C, which is the allowable temperature for electrodialysis. The heat radiated by cooling is used for heating when returning to the canister, resulting in a small amount of energy consumption. In addition, in electrodialysis, the higher the temperature, the easier the current flows and the higher the processing capacity, so it is advisable to perform the treatment at around 50° C., which is close to the allowable temperature limit of the electrodialysis tank. The electrodialysis tank used here is a well-known filter press type, in which a large number of cation exchange membranes and anion exchange membranes are alternately arranged, and a demineralization chamber and a concentration chamber are configured in every other chamber, with both ends An electrode chamber is provided in the chamber. While circulating the beet sugar concentrate into the desalination chamber and the inorganic salt solution (usually about 1% by weight) into the concentration chamber, applying a DC voltage to the electrode plates installed in the electrode chambers at both ends will remove the ash in the beet sugar solution. is desalted. The ion exchange membrane used here is a general commercially available product such as Ceramion "CMV".
” “AMV” (Asahi Glass product name) is sufficient.
If a special ion exchange membrane with a large pore diameter is used to prevent fouling of the anion exchange membrane, such as No. 1-77588, the sugar content will also transfer to the concentrate as the ash is desalted, causing sugar loss. Sugar loss is 0.2% when using general purpose membrane formation.
It can be held below. Ash content reduced to 90% by electrodialysis method
Although it is possible to remove more than 50% of the ash content, the throughput of electrodialysis can usually be increased by keeping the ash removal rate to 55 to 60%. Moreover, if the purpose is to make No. 2 sugar into a product, this desalting rate is sufficient to make it into a product. Specifically, the beet sugar solution of Bx50 contains 6,000 mg/l of inorganic cations whose main component is potassium.
It is mixed to a degree, but these are 2,400 to 2,700 mg
Efficient operation is possible by stopping the process when the amount of water per liter has been removed. The anion component that pairs with the inorganic cation in the beet sugar concentrate also contains an organic acid component with a relatively large molecular weight. Since this organic acid cannot pass through an anion exchange membrane, many inorganic cations are desalted. Therefore, when the electrodialysis treatment is performed, the pH of the beet sugar solution becomes 8.5.
It drops from ~90 to 7.0-8.0. This p
Since H reduction causes sugar decomposition and invert sugar increases,
This not only lowers the pure sugar ratio, but also causes problems such as coloring of the product. Therefore, the electrodialyzed solution is immediately p
It is necessary to perform HIj# adjustment. If we attempt to adjust the pH by adding alkali, the amount of bases will increase, which goes against the purpose of desalting. Therefore, in the present invention, for example, a strongly basic anion exchange resin is passed through a resin tower in an OH type. The pH will be adjusted by diluting. It is known that the porous type of strongly basic anion exchange resin used here is more effective than the gel type because it is less contaminated by sugar solution, but it is not particularly limited to the porous type. The pH is adjusted to 10 or more by adjusting the pH with this resin, but since the pH control range of beet sugar is around 9, there is no need to pass the entire amount of the solution, but only a portion of the solution is passed and mixed afterwards.
A better method is to adjust H. As mentioned above, a general ion exchange membrane is used in the electrodialysis method in order to suppress sugar loss, but this has the property that, conversely, chromatic components are difficult to remove. Therefore, when sugar crystallizes, this color component is also concentrated and the product becomes colored, so it is necessary to decolorize it. In the present invention, for example, decolorization is carried out by passing a strongly basic anion exchange resin or the like through a resin tower in an OH type. The anion exchange resin used is a general commercially available product such as Diaion PA-308 (manufactured by Mitsubishi Kasei Corporation).It is regenerated with NaCl and used in the OH type.As a result, the color value of the beet sugar concentrate is 80. This decolorized beet sugar concentrate is heated as described above and returned to the multi-effect can to form a concentrate with Bx65 or higher, and then sent to the crystallization can to produce product sugar.

(実施例) 以下実施例により本発明実施の態様を例示するが、例示
は勿論説明のものであって発明精神の限定を意味するも
のではない。
(Examples) Hereinafter, embodiments of the present invention will be illustrated by Examples, but the examples are, of course, for illustration and do not mean a limitation on the spirit of the invention.

実施例: ビート糖製造工程の多重効用缶の3段目の出
口より濃縮液(シックジュース)を抜き出した。この液
はBx50.5 、pH8,8,純糖率92.2%、灰
分2.87%、スタンマー色価6.76、電気伝導度5
,740μs / c mであった。
Example: A concentrated liquid (thick juice) was extracted from the third stage outlet of a multi-effect can in the process of manufacturing beet sugar. This liquid has Bx50.5, pH 8.8, pure sugar rate 92.2%, ash content 2.87%, Stanmer color value 6.76, and electrical conductivity 5.
, 740 μs/cm.

カチオン交換膜としてセレミオンCMV、アニオン交換
膜としてセレミオンAMVの11対で構成される、脱塩
室9室、有効全膜面a[15,5adのDU−ob型電
気透析槽(旭硝子社!!りを使用し、脱塩室に前述のシ
ックジュース22を、濃縮室と電極室には1%食塩水を
仕込み、温度50〜52℃、初期電流密度0.7A/d
%(極間電圧?、5V)の条件下に回分方式で1.5時
間電気透析を行った。その結果Bx48.5.電気伝導
度1.050μs/cm、灰分0.92%、スタンマー
色価5.40.pH7,2,純糖率96.7%の液21
を得た。
Consisting of 11 pairs of Selemion CMV as the cation exchange membrane and Selemion AMV as the anion exchange membrane, 9 demineralization chambers, DU-ob type electrodialysis tank (Asahi Glass Co., Ltd.) with an effective total membrane area of 15.5ad. using the above-mentioned Sick Juice 22 in the demineralization chamber, and 1% saline in the concentration chamber and electrode chamber, at a temperature of 50 to 52°C and an initial current density of 0.7 A/d.
% (electrode voltage, 5 V) in a batch manner for 1.5 hours. As a result, Bx48.5. Electrical conductivity 1.050μs/cm, ash content 0.92%, Stanmer color value 5.40. Liquid 21 with pH 7.2 and pure sugar rate 96.7%
I got it.

次にジャケット付ガラスカラムにダイヤイオンPA−3
12を20rnl充填し、4%NaOH溶液100mj
?を用いてSV(通液空間速度)2で再生後、純水10
0m1(SV2)でNaOHを押し出し、更に純水20
0mf (SV5)で洗浄した。この再生イオン交換樹
脂に電気透析処理液500m/を51)’C,SV5で
5時間を要シテ通液した。この時の処理液のpHはlO
1θ〜103で安定していた。この処理液500m1l
と電気透析処理成約700 m lを混合し、p Hを
9゜0に調整した。
Next, add Diamond Ion PA-3 to the jacketed glass column.
Fill 20rnl of 12 with 100mj of 4% NaOH solution.
? After regeneration at SV (liquid hourly space velocity) of 2 using
Push out NaOH with 0 m1 (SV2) and then add 20 m of pure water.
Washed with 0 mf (SV5). 500 m of the electrodialyzed solution was passed through the regenerated ion exchange resin at 51)'C, SV5 for 5 hours. The pH of the treatment solution at this time is lO
It was stable at 1θ~103. 500ml of this treatment liquid
and about 700 ml of electrodialyzed solution were mixed and the pH was adjusted to 9.0.

次にジャケット付ガラスカラムにダイヤイオンPA−3
08を商品型(Cl型)のまま20 m j!充填し、
上記混合液500mlを50℃、SV5で5時間かけて
通液した。この処理液はBx478、p)la、s、電
気伝導度1,250.!JS/cm、灰分0,89%、
スタンマー色価0.92、純糖率9768%の液であっ
た。
Next, add Diamond Ion PA-3 to the jacketed glass column.
20 m j with 08 as a product type (Cl type)! Fill and
500 ml of the above mixed solution was passed through at 50° C. and SV5 over 5 hours. This treatment liquid has Bx478, p)la,s, and electrical conductivity of 1,250. ! JS/cm, ash content 0.89%,
The liquid had a Stanmer color value of 0.92 and a pure sugar rate of 9768%.

以上のように電気透析処理後、イオン交換樹脂によりp
H調整及び脱色を行うと高品質の濃縮液が得られること
がわかる。
After electrodialysis treatment as described above, p
It can be seen that a high quality concentrate can be obtained by H adjustment and decolorization.

さらにこの高品質濃縮液を用いて結晶糖の品質を評価す
るために煎糖試験を実施した。イオン交換樹脂処理後の
高品質濃縮液を更に濃縮して、Bx6B、8.pH8,
7,電気伝導度1,850ps/cm、純糖率97.6
%、灰分0.90%スタンマー色債1.26の煎糖試験
用の糖液を得た。これをできるだけ実工程に準じた方法
で煎糖試験を行った結果、1番糖で色価3.6.灰分0
.004%の高品質の砂糖が回収できた。更に2番糖に
おいても色価12.6.灰分0,019%の通常工程の
1番糖並の製品が回収できた。
Furthermore, a decoction test was conducted using this high-quality concentrate to evaluate the quality of crystalline sugar. The high quality concentrate after ion exchange resin treatment was further concentrated to produce Bx6B, 8. pH8,
7. Electrical conductivity 1,850 ps/cm, pure sugar rate 97.6
%, ash content 0.90%, Stanmer color bond 1.26, a sugar solution for decoction sugar test was obtained. We conducted a roasting sugar test using a method similar to the actual process as much as possible, and found that the color value was 3.6 with No. 1 sugar. Ash content 0
.. 0.004% of high quality sugar was recovered. Furthermore, the color value of No. 2 sugar is 12.6. A product with an ash content of 0.019% and comparable to No. 1 sugar produced in the normal process was recovered.

(発明の効果) 以上のようにビート糖製造工程に、電気透析法とイオン
交換樹脂法を組み合わせたプロセスを導入することによ
り以下に述べるような驚くべき効果が発揮される。
(Effects of the Invention) As described above, by introducing a process that combines an electrodialysis method and an ion exchange resin method into the beet sugar production process, the following surprising effects are exhibited.

(1)1番糖は従来よりも灰分含量が低く、色価も良好
な高品質の砂糖が製造される。
(1) No. 1 sugar has a lower ash content than conventional sugar, and high-quality sugar with good color value is produced.

(2)従来再溶解してリサイクルしていた2番糖以降も
、従来同様の品質の砂糖として回収することが可能であ
る。
(2) It is possible to recover sugar of the same quality as that of conventional sugars, even from No. 2 sugar onward, which was conventionally redissolved and recycled.

(3)リサイクルされる2番糖がなくなるため糖のロス
が少なくなり、又各設備に余裕ができるため、原料ビー
トの処理量を増やすことが可能である。
(3) Since there is no second sugar to be recycled, there is less sugar loss, and there is more room in each facility, so it is possible to increase the amount of raw beets processed.

(4)糖蜜処理用のイオン交換樹脂等の負荷は、糖蜜品
質が向上するため減少し、通液時間が延び排水量の低減
、糖ロスの低減等のメリットも期待できる。
(4) The load on ion-exchange resins for molasses treatment will be reduced due to improved molasses quality, and benefits such as extended liquid passage time, reduced wastewater volume, and reduced sugar loss can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のビート糖製造工程図である。第2図は本
発明を採用した時のビート糖製造工程図である。図中の
工程図は勿論説明用の例示であって本発明精神の限定を
意味するものではない。 特許出願人  ホクレン農業協同組合連合会同    
 日本錬水株式会社 ソ1四 : 従来の工g−
FIG. 1 is a diagram of a conventional beet sugar manufacturing process. FIG. 2 is a process diagram for manufacturing beet sugar when the present invention is adopted. The process diagrams in the drawings are, of course, illustrative examples and are not intended to limit the spirit of the present invention. Patent applicant Hokuren Agricultural Cooperative Federation
Nippon Rensui Co., Ltd. So14: Conventional engineering g-

Claims (2)

【特許請求の範囲】[Claims] (1)ビート根を細かく切断後温水で抽出したビート生
汁を炭酸飽充し、軟化、脱色の前処理を行った後、多重
効用缶で濃縮して得られる濃縮液を、イオン交換膜電気
透析法により脱塩した後、OH型アニオン交換樹脂等で
pH調整し、かつCl型アニオン交換樹脂等で脱色する
ことを特徴とするビート糖濃縮液からの砂糖の製造方法
(1) Cut the beetroot into small pieces, extract the raw beet juice with warm water, fill it with carbonic acid, pre-treat it with softening and decolorization, and then concentrate it in a multi-effect can. A method for producing sugar from a beet sugar concentrate, which comprises desalting by dialysis, adjusting the pH with an OH-type anion exchange resin, and decolorizing with a Cl-type anion exchange resin.
(2)上記ビート糖濃縮液の固形分(以下Bxと称す)
が40〜60の範囲にある濃縮液を用いることを特徴と
する特許請求の範囲第1項に記載のビート糖濃縮液から
の砂糖の製造方法。
(2) Solid content of the above beet sugar concentrate (hereinafter referred to as Bx)
The method for producing sugar from a beet sugar concentrate according to claim 1, characterized in that a concentrate having a beet sugar concentration of 40 to 60 is used.
JP23271888A 1988-09-19 1988-09-19 Production of sugar from beet sugar concentrate Pending JPH0280000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23271888A JPH0280000A (en) 1988-09-19 1988-09-19 Production of sugar from beet sugar concentrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23271888A JPH0280000A (en) 1988-09-19 1988-09-19 Production of sugar from beet sugar concentrate

Publications (1)

Publication Number Publication Date
JPH0280000A true JPH0280000A (en) 1990-03-20

Family

ID=16943698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23271888A Pending JPH0280000A (en) 1988-09-19 1988-09-19 Production of sugar from beet sugar concentrate

Country Status (1)

Country Link
JP (1) JPH0280000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372049B1 (en) * 1997-06-02 2002-04-16 Centre for the Advancement of New Technologies “CANTEC” Method of producing sugar syrup from sugar-containing raw materials
JP2009520484A (en) * 2005-12-21 2009-05-28 ダニスコ・シュガー・アクティーゼルスカブ How to recover brown food grade sugar products from sugar beet solution
CN103328656A (en) * 2011-01-21 2013-09-25 大塚制药株式会社 Method for inhibiting the growth of thermotolerant acidophilic bacteria

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077552A (en) * 1973-11-20 1975-06-24
JPS5747498A (en) * 1980-09-01 1982-03-18 Nissin Sugar Mfg Purifying of sugar solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077552A (en) * 1973-11-20 1975-06-24
JPS5747498A (en) * 1980-09-01 1982-03-18 Nissin Sugar Mfg Purifying of sugar solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372049B1 (en) * 1997-06-02 2002-04-16 Centre for the Advancement of New Technologies “CANTEC” Method of producing sugar syrup from sugar-containing raw materials
JP2009520484A (en) * 2005-12-21 2009-05-28 ダニスコ・シュガー・アクティーゼルスカブ How to recover brown food grade sugar products from sugar beet solution
CN103328656A (en) * 2011-01-21 2013-09-25 大塚制药株式会社 Method for inhibiting the growth of thermotolerant acidophilic bacteria
CN103328656B (en) * 2011-01-21 2015-05-27 大塚制药株式会社 Method for inhibiting the growth of thermotolerant acidophilic bacteria

Similar Documents

Publication Publication Date Title
EP1963539B1 (en) Process for the recovery of sucrose and/or non-sucrose components
CA2177706C (en) Sugar beet juice purification process
US3799806A (en) Process for the purification and clarification of sugar juices,involving ultrafiltration
US7226511B2 (en) Direct production of white sugar from sugarcane juice or sugar beet juice
RU2114177C1 (en) Method of production of sugar syrup from sugar-containing raw
US20100043784A1 (en) Treatment of sugar juice
SE441932B (en) PROCEDURE FOR PURIFICATION OF SUGAR SOFT PREPARED BY EXTRACTION OF SUGAR BEETS
US3383245A (en) Process of purifying high d. e.-very sweet syrups
EP0778256B1 (en) Process for producing an organic acid
JPH0280000A (en) Production of sugar from beet sugar concentrate
JP2024507212A (en) Xylitol/caramel color co-production system and method using xylose mother liquor
EP2013367B1 (en) Method for deashing syrup by electrodialysis
RU2556894C1 (en) Method for integrated purification of molasses and its extraction from sucrose
US20220098684A1 (en) Method for Bleaching Sugar With Effluent Recycling
CN216614473U (en) System for utilize xylose mother liquor coproduction xylitol and caramel pigment
WO1982001722A1 (en) Removal of objectionable flavor and odor characteristics in finished sugar products produced from molasses
JPS62255453A (en) Method for separating and purifying valine
RU2016637C1 (en) Method of producing granulated sugar from sugar juices
US2477206A (en) Process for purifying beet juices
JPS6261320B2 (en)
PL244772B1 (en) Method for desalting erythritol fermentation broth
JPS5832600B2 (en) Touekinoseijiyoukahouhou
AU541382B2 (en) Removal of objectionable flavor and odor characteristics in finished sugar products produced from molasses
JPS5853920B2 (en) Desalination and purification method of cane molasses
RU2118664C1 (en) Method for production of syrup from sugar-bearing primary stuff