JPH027845A - Permanent magnet rotor - Google Patents

Permanent magnet rotor

Info

Publication number
JPH027845A
JPH027845A JP63154147A JP15414788A JPH027845A JP H027845 A JPH027845 A JP H027845A JP 63154147 A JP63154147 A JP 63154147A JP 15414788 A JP15414788 A JP 15414788A JP H027845 A JPH027845 A JP H027845A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
rotor
permanent
magnet rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63154147A
Other languages
Japanese (ja)
Inventor
Kenichi Endo
健一 遠藤
Tatsuya Shimoda
達也 下田
Koji Akioka
宏治 秋岡
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63154147A priority Critical patent/JPH027845A/en
Publication of JPH027845A publication Critical patent/JPH027845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a permanent magnet rotor withstandable against high speed rotation by employing a rear earth permanent magnet mainly composed of rear earth element, transition metal and group IIIb elements. CONSTITUTION:A permanent ring magnet 101 having anisotropy in the radial direction is arranged on the outer circumference of a rotary shaft 102. The rotary shaft 102 and the permanent magnet 101 are solid state jointed 103. The permanent magnet 101 employs a rear earth magnet mainly composed of R(at least one rear earth element including Y), M(at least one transition metal) and X(at least one group IIIb element). A molded magnet 201 is placed in a mold 203 arranged with a soft magnetic shell 202, then a mandrel 204 is pushed out in the direction of an arrow 205 thus radially pressurizing and orienting the magnet.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、整流用刷子を持たない電動機の永久磁石回転
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a permanent magnet rotor for an electric motor without commutating brushes.

[従来の技術] 永久磁石回転子を有する電動機は、駆動用の半導体素子
の発達と、整流用刷子を持つ整流子付電動機に比べ、刷
子部分がなく信頼性が高いために、OA用を中心に大型
のFA用電電動機分野までその使用される分野が広がっ
ている。
[Prior art] Electric motors with permanent magnet rotors are mainly used for OA applications due to the development of semiconductor elements for driving and because they do not have a brush part and are more reliable than commutator-equipped motors with commutator brushes. The fields in which it is used are expanding to the field of large FA electric motors.

従来の回転磁界に永久磁石を使用した永久磁石回転子(
インナーロータ用回転子)の例を第4図に示す。 (a
)は側面図、 (b)は断面図である。
A permanent magnet rotor that uses permanent magnets in the conventional rotating magnetic field (
An example of a rotor for an inner rotor is shown in FIG. (a
) is a side view, and (b) is a cross-sectional view.

回転軸401の周囲にラジアル異方性のフェライト磁石
402を接着固定した例である。 (b)のようにフェ
ライト磁石は4極に着磁されている。
This is an example in which a radially anisotropic ferrite magnet 402 is adhesively fixed around a rotating shaft 401. As shown in (b), the ferrite magnet is magnetized into four poles.

第5図は他の従来例であり永久磁石501としてラジア
ル方向に異方性を持つ樹脂結合型希土類磁石を使用し、
6極に着磁されている。
FIG. 5 shows another conventional example in which a resin-bonded rare earth magnet with radial anisotropy is used as the permanent magnet 501.
It is magnetized with 6 poles.

上述の永久磁石回転子は、固定子(図示せず)に設置さ
れた駆動コイルを順次励磁することにより回転する構造
となっている。
The above-mentioned permanent magnet rotor has a structure in which it rotates by sequentially exciting drive coils installed on a stator (not shown).

第6図は、固定子601が回転子602の内側に設置さ
れた、いわゆるアウターロータ型電動機の例である。
FIG. 6 shows an example of a so-called outer rotor type electric motor in which a stator 601 is installed inside a rotor 602.

回転子602の内側に永久磁石603が接着固定され、
回路基板604上に設置したホールIC605により、
永久磁石603の回転位置を検出し、回転子601に巻
装された駆動コイル606を永久磁石位置に対応して、
選択的に通電する事により回転子602を回す構造とな
っている。
A permanent magnet 603 is adhesively fixed inside the rotor 602,
With the Hall IC 605 installed on the circuit board 604,
The rotational position of the permanent magnet 603 is detected, and the drive coil 606 wound around the rotor 601 is rotated in accordance with the permanent magnet position.
The structure is such that the rotor 602 is rotated by selectively applying electricity.

[発明が解決しようとする課題] しかし従来のフェライト磁石を永久磁石として使用した
回転子においては、界磁用永久磁石として必要とされる
最大エネルギー積が、はぼ58GOe以下と、希土類磁
石に比べ劣るために (1)効率が低い。
[Problem to be solved by the invention] However, in a rotor using conventional ferrite magnets as permanent magnets, the maximum energy product required as a permanent magnet for a field is approximately 58 GOe or less, which is lower than that of rare earth magnets. (1) Efficiency is low.

(2)十分なギャップ磁束密度を得るためには、磁気回
路のパーミアンスを高くしなくてはならないために、永
久磁石回転子が大型になってしまう。
(2) In order to obtain a sufficient gap magnetic flux density, the permeance of the magnetic circuit must be increased, resulting in a large permanent magnet rotor.

という課題があった。There was a problem.

またアルニコ磁石は、最大エネルギー積ではフェライト
磁石よりも大きいものの、保磁力が1゜5kOe程度し
かないために、電動機に使用した場合、動作中に生ずる
逆起電力、特に始動時には始動電流に起因する強い逆起
電力が加わるために減磁してしまうという問題があり、
あまり使用されていなかった。
Furthermore, although alnico magnets have a larger maximum energy product than ferrite magnets, their coercive force is only about 1.5 kOe, so when used in electric motors, they generate back electromotive force during operation, especially when starting due to starting current. There is a problem that demagnetization occurs due to the addition of a strong back electromotive force.
It wasn't used much.

一方、焼結型希土類磁石は、高いエネルギー積を持ち、
且つ保磁力も大きいことから永久磁石回転子の磁石とし
ては最適であるが、原料が高価である上に製造工程が、
溶解、鋳造により合金インゴットを作製し、粉砕して3
μm程度の粒径を有する磁石粉とした後、成形助剤であ
るバインダーと混練され、磁場中でプレス成形し、この
成形体をアルゴン中で1000℃前後の温度で1時間焼
結して、その後600°C前後の温度で熱処理しなくて
はならないために、複雑であり磁石がさらに高価になっ
てしまうという課題を有していた。加えて焼結磁石は、
焼結時の収縮率が配向方向とその直角方向とで大きく違
うために割れてしまい薄いラジアル異方性リング状磁石
の製造は不可能であるという課題を有していた。
On the other hand, sintered rare earth magnets have a high energy product,
Since it also has a large coercive force, it is ideal as a permanent magnet rotor magnet, but the raw materials are expensive and the manufacturing process is slow.
An alloy ingot is produced by melting and casting, and then crushed and
After forming magnet powder with a particle size of about μm, it is kneaded with a binder as a forming aid, press-molded in a magnetic field, and this compact is sintered in argon at a temperature of around 1000°C for 1 hour. After that, heat treatment must be performed at a temperature of around 600°C, which poses a problem in that the magnet is complicated and becomes even more expensive. In addition, sintered magnets are
The shrinkage rate during sintering is greatly different between the orientation direction and the direction perpendicular to the orientation direction, resulting in cracking, making it impossible to manufacture thin radially anisotropic ring-shaped magnets.

また、樹脂結合型の希土類磁石では、形状任意性・耐(
j撃性には優れ、ラジアル異方性リング状磁石の製作は
容易であるが、磁石粉末と樹脂との混合物であるため磁
気特性は、焼結磁石に比べ劣っていた。
In addition, resin-bonded rare earth magnets offer shape flexibility and resistance (
It has excellent impact resistance and is easy to manufacture as a radially anisotropic ring-shaped magnet, but because it is a mixture of magnet powder and resin, its magnetic properties are inferior to that of sintered magnets.

さらに、どの磁石を使用したインナーロータ型の永久磁
石回転子にも共通した課題として、高速回転電′#J機
用に使用する場合、遠心力が回転軸への永久磁石の固着
力より大きくなってしまうと、永久磁石が回転軸より剥
離し、電動機が壊れてしまうという課題を有していた。
Furthermore, a common problem with inner rotor type permanent magnet rotors using any magnets is that when used for high-speed rotating electric machines, the centrifugal force becomes larger than the fixation force of the permanent magnets to the rotating shaft. If this occurs, the permanent magnet may separate from the rotating shaft, resulting in damage to the motor.

そこで本発明は、このような問題点を解決するもので、
その目的とするところは、永久磁石としてR(但しRは
Yを含む希土類元素のうち少なくとも1種)、M(但し
遷移金属のうち少なくとも1種)、及びX(但しIII
 b族元素のうち少なくとも1種)を基本組成とし、ヨ
ークも同時に製造でき、且つ、回転軸と磁石とが同相接
合しているために高速回転時にも破壊しない永久磁石回
転子を低コストで提供するところにある。
Therefore, the present invention aims to solve these problems.
The purpose is to use permanent magnets that include R (where R is at least one rare earth element including Y), M (at least one transition metal), and X (however, III
We provide a permanent magnet rotor at low cost that has a basic composition of at least one type of group B element), can manufacture a yoke at the same time, and does not break even during high-speed rotation because the rotating shaft and magnets are in-phase joined. It's there.

[課題を解決するための手段] 本発明の永久磁石回転子は、磁界発生のための永久磁石
と軟磁性体のヨークとから構成される永久磁石回転子に
おいて、永久磁石としてR(但しRはYを含む希土類元
素のうち少なくとも1種)、M(但し遷移金属のうち少
なくとも1種)、及びX(但しIII b族元素のうち
少なくとも1種)を基本成分とする希土類磁石を使用し
、永久磁石と軟磁性体から成るヨークとが固相接合して
いることを特徴とする。さらに永久磁石用回転子用の永
久磁石は、ラジアル異方性リング状磁石であることを特
徴とする特 [実施例コ (実施例1) 第1図に本発明によるインナーロータ型永久磁石回転子
の一実施例の断面図を示す。
[Means for Solving the Problems] A permanent magnet rotor of the present invention includes a permanent magnet for generating a magnetic field and a yoke made of a soft magnetic material. A rare earth magnet whose basic components are at least one rare earth element (including Y), M (but at least one transition metal), and It is characterized by solid-phase bonding between the magnet and the yoke made of a soft magnetic material. Furthermore, the permanent magnet for the permanent magnet rotor is a radially anisotropic ring-shaped magnet. 1 shows a cross-sectional view of one embodiment of the invention.

ラジアル方向に異方性を持ったリング状永久磁石101
が回転軸102の外周に設置されている。
Ring-shaped permanent magnet 101 with anisotropy in the radial direction
is installed on the outer periphery of the rotating shaft 102.

回転軸と永久磁石との接合部分103は固相接合となっ
てい為、従来の接着等による固定強度の10倍以上の固
定強度がある。
Since the joint portion 103 between the rotary shaft and the permanent magnet is a solid state joint, the fixing strength is ten times or more that of conventional fixing strength such as adhesive.

以下に、本発明の永久磁石回転子の製造方法を詳細に説
明する。
Below, the method for manufacturing a permanent magnet rotor of the present invention will be explained in detail.

第1表に本発明で作製した磁石の合金組成を示す。Table 1 shows the alloy composition of the magnet produced according to the present invention.

第1表 だだし、磁石の組成としては表1に示した組成に限らず
、希土類金属としては、Y、  La、  Ce、Pr
S Nd、  Sm、  Eu、  Gd% Tb、 
 Dy、  Ho、Er、Tm、Yb、Luが候補とし
て挙げられ、これらの内1種類、あるいは2種類以上を
組み合わせて用いられる。最も高い磁気特性は、Prで
得られる。遷移金属としてはFe、  Ni、  CU
等が候補として挙げられ、これらの内一種類、あるいは
2種類以上を組み合わせて用いられる。
However, the composition of the magnet is not limited to those shown in Table 1, and the rare earth metals include Y, La, Ce, Pr.
SNd, Sm, Eu, Gd% Tb,
Dy, Ho, Er, Tm, Yb, and Lu are listed as candidates, and one type or a combination of two or more of these can be used. The highest magnetic properties are obtained with Pr. Transition metals include Fe, Ni, CU
etc. are listed as candidates, and one or a combination of two or more of these may be used.

また、小ユの添加元素、例えば重希土類のDy、Tb等
や、A1、Si、Mo、Ga等は保磁力の向上に有効で
ある。
Further, small additive elements such as heavy rare earth elements Dy, Tb, etc., Al, Si, Mo, Ga, etc. are effective in improving the coercive force.

第1表の組成となるように、希土類、遷移金属およびボ
ロンを秤量し、誘導加熱炉で溶解鋳造し、得られた鋳造
インゴットを平均粒径5μm(フィッシャーサブシーブ
サイザーによる)にまで粉砕し、グラファイト型中で外
径φ50mm、高さ40mmのバルク体に成形した。
Rare earths, transition metals, and boron were weighed to have the composition shown in Table 1, melted and cast in an induction heating furnace, and the resulting cast ingot was crushed to an average particle size of 5 μm (by Fischer subsieve sizer). It was molded into a bulk body with an outer diameter of 50 mm and a height of 40 mm in a graphite mold.

第2図に後方押し出し機の1概略図を示す。FIG. 2 shows a schematic diagram of the rear extruder.

磁石成形体201を軟磁性体からなるシェル202を設
置した型203内に入れ、外形φ20mmのマンドレル
204を矢印205の方向に押し出すことにより、磁石
成形体201をマンドレル204の進行方向の逆方向(
後方)へ押し出し磁石をラジアル方向に加圧し配向させ
た。900°Cの雰囲気で熱間加工するため押し出され
た磁石成形体は、シェルに固相接合するため、強力な密
着力を得ることができた。磁石の押し出し前の断面積を
押し出し後の断面積で割った押し出し比は、約4で加工
を行った。
The magnet molded body 201 is placed in a mold 203 in which a shell 202 made of a soft magnetic material is installed, and a mandrel 204 having an outer diameter of 20 mm is pushed out in the direction of an arrow 205, thereby moving the magnet molded body 201 in the direction opposite to the direction of movement of the mandrel 204 (
The extruded magnet was pressed in the radial direction (rearward) and oriented. The extruded magnet molded body was hot-processed in an atmosphere of 900°C and was solid-phase bonded to the shell, so it was possible to obtain strong adhesion. The processing was performed at an extrusion ratio of approximately 4, which is the cross-sectional area of the magnet before extrusion divided by the cross-sectional area after extrusion.

できあがったリング状磁石を切り出しr方向(径方向)
、U方向(弦方向)、2方向(軸方向)の3方向の磁気
測定を行った結果を第2表に示す。
Cut out the completed ring-shaped magnet and cut it in the r direction (radial direction)
Table 2 shows the results of magnetic measurements in three directions: , U direction (chord direction), and 2 directions (axial direction).

としてそのまま使用し、アウターロータ型永久磁石回転
子を得た例である。
This is an example in which an outer rotor type permanent magnet rotor was obtained by using the rotor as is.

マンドレルは高速度工具鋼を使用して、磁石とは固相接
合しない材料を選んでいるが、マンドレルを交換可能な
構造とし、高硬度の軟磁性材料で拡散スピードの大きな
材料とすることで、マンドレルと磁石との間で固相接合
させ、インナーロータ型永久磁石回転子を製造すること
も可能である。
The mandrel uses high-speed tool steel, a material that does not form a solid phase bond with the magnet, but by making the mandrel replaceable and using a high-hardness, soft-magnetic material that has a high diffusion speed, It is also possible to manufacture an inner rotor type permanent magnet rotor by solid phase joining between a mandrel and a magnet.

この場合にはシェルは不用であり、型材料は磁石との間
で固相接合を起こしにくい材料で製作することで外形加
工をなくすこともできる。
In this case, the shell is unnecessary, and the mold material can be made of a material that does not readily cause solid phase bonding with the magnet, thereby eliminating the need for external processing.

第  2  表 r方向の磁気特性が最も高く、後方押し出しによりラジ
アル配向していることがわかる。本実施例の製造方法は
、シェルを第6図に示したヨーク(実施例2) 表1に示した組成の合金を秤量し、誘導加熱炉で溶解・
鋳造し、得られた鋳造インゴットを平均粒径5μmまで
粉砕した後、ダイフロンと混合し、湿式で外形がφ10
0mm、内径φ40mm、厚み30mmのリング状に仮
成形した。これに純鉄等の軟磁性体円柱301を内側に
入れ、外側には、ボロンナイトライドを塗布した5us
304製の厚み2mmのパイプ302を挿入した後、脱
気してパイプの両端を閉じた後、大気中で第3図に示す
押し出し機にてバイブ302厚みが元厚の10%にまる
までプレスした。次にパイプを除去して磁気特性を測定
した。結果を第3表に示す。
It can be seen that the magnetic properties in the r direction in Table 2 are the highest, indicating radial orientation due to backward extrusion. In the manufacturing method of this example, the shell is a yoke shown in FIG. 6 (Example 2). An alloy having the composition shown in Table 1 is weighed, melted in an induction heating furnace,
After casting, the obtained cast ingot is crushed to an average particle size of 5 μm, mixed with Daiflon, and wet-processed to reduce the outer diameter to φ10.
It was temporarily formed into a ring shape with a diameter of 0 mm, an inner diameter of 40 mm, and a thickness of 30 mm. A soft magnetic cylinder 301 made of pure iron or the like is placed inside this, and a 5us cylinder coated with boron nitride is placed on the outside.
After inserting a pipe 302 made of 304 with a thickness of 2 mm, deaerate the pipe, close both ends of the pipe, and press in the atmosphere with an extruder shown in Fig. 3 until the thickness of the vibrator 302 becomes 10% of the original thickness. did. Next, the pipe was removed and its magnetic properties were measured. The results are shown in Table 3.

電動機の特性を満たすギャップ磁束密度が得られれば、
外側の5us304を除去することなしに保護用として
外周に残すことも可能である。また厚みが十分に薄けれ
ば、磁性材料でも外周のパイプ材料はよい。
If we can obtain a gap magnetic flux density that satisfies the characteristics of the electric motor,
It is also possible to leave the outer 5us304 on the outer periphery for protection without removing it. Also, the outer pipe material may be made of magnetic material as long as the thickness is sufficiently thin.

第  3  表 r方向及びU方向の磁気特性が高い面内異方性の磁石が
できていることがわかる。この磁石を第1図に示すイン
ナーロータ型の永久磁石回転子として、軸を押し出し加
工時に使用した円柱をそのまま使ったため、軸と永久磁
石との結合加工が不用で生産性の高い永久磁石回転子と
なった。軸と永久磁石とは、固相接合しているため高い
密着強度が得られ、高速回転時にも破壊のない永久磁石
回転子を得ることができた。
Table 3 It can be seen that a magnet with high in-plane anisotropy and high magnetic properties in the r direction and the U direction was produced. This magnet is used as the inner rotor type permanent magnet rotor shown in Figure 1, and the cylinder used when extruding the shaft is used as it is, so there is no need to process the connection between the shaft and the permanent magnet, resulting in a highly productive permanent magnet rotor. It became. Since the shaft and the permanent magnet are solid-phase welded, high adhesion strength is obtained, and a permanent magnet rotor that does not break even during high-speed rotation can be obtained.

(実施例3) 第4表に示した組成の合金を、アモルファス合金を製造
する真空メルトスピニング装置を使用して、厚さ30μ
m程度の急冷薄片を造り、この薄片をホットプレスし、
バルク化した後、実施例1で述べた後方押し出し加工す
ることによりラジアル配向した永久磁石がヨークに固相
接合した永久磁石回転子を得ることができた。
(Example 3) An alloy having the composition shown in Table 4 was prepared using a vacuum melt spinning device for producing amorphous alloys to a thickness of 30 μm.
A quenched thin piece of about m size is made, and this thin piece is hot pressed.
After bulking, by performing the backward extrusion process described in Example 1, it was possible to obtain a permanent magnet rotor in which radially oriented permanent magnets were solid-phase joined to the yoke.

第  4  表 [発明の効果コ 以上本発明によれば、押し出し加工によりラジアル異方
性の永久磁石(面内異方性も含む)をヨークと一体で製
造でき、且つ、その接合部が固相接合となっているため
に、特にインナーロータ型の回転子では、高速回転形の
電動機に使用しても破壊することのない永久磁石回転子
が得られる。
Table 4 [Effects of the Invention] According to the present invention, a permanent magnet with radial anisotropy (including in-plane anisotropy) can be manufactured integrally with a yoke by extrusion processing, and the joint portion is formed in a solid phase. Because of the bonded structure, a permanent magnet rotor can be obtained that will not break even when used in a high-speed rotating electric motor, especially in the case of an inner rotor type rotor.

さらに永久磁石とヨークとの接合工程が不用となるため
に永久磁石回転子を低コスト・高生産性で製造できると
いう効果も有する。
Furthermore, since the step of joining the permanent magnets and the yoke is not necessary, the permanent magnet rotor can be manufactured at low cost and with high productivity.

型     204・・マンドレル 矢印    301・・軟磁性体円柱 パイプ   401・・回転軸 フェライト磁石 樹脂結合型希土類磁石 固定子   602・・回転子 永久磁石  604・・回路基板 ホールIC606・・駆動コイルMold 204...Mandrel Arrow   301... Soft magnetic cylinder Pipe 401... Rotating shaft ferrite magnet Resin bonded rare earth magnet Stator 602...Rotor Permanent magnet 604...Circuit board Hall IC606...Drive coil

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の永久磁石回転子の外略図第2図は、
後方押し出し機の概略図。 第3図は、押し出し機の概略図。 第4図(a)(b)は、従来の永久磁石回転子概略図で
、 (a)は側面図、 (b)は断面図。 第5図は、他の従来の永久磁石回転子の概略図。 第6図は、アウターロータ型電動機の断面図。 101・・リング状永久磁石 102・・回転軸   103・・接合部分201・・
磁石成形体 202・・シェル以上 出願人 セイコーエプソン株式会社 代理人 弁理士 銘木 喜三部 他1名第 図 (α) 第4図 第5図 jIZ図 第3図 陵4回路墓叡 60”3朱ユλ蕊石 ゴロ図
FIG. 1 is a schematic diagram of the permanent magnet rotor of the present invention. FIG.
Schematic diagram of the backward extruder. FIG. 3 is a schematic diagram of the extruder. FIGS. 4(a) and 4(b) are schematic diagrams of a conventional permanent magnet rotor, with (a) being a side view and (b) being a sectional view. FIG. 5 is a schematic diagram of another conventional permanent magnet rotor. FIG. 6 is a sectional view of the outer rotor type electric motor. 101...Ring-shaped permanent magnet 102...Rotating shaft 103...Joint part 201...
Magnetic molded body 202...Shell and above Applicant Seiko Epson Co., Ltd. agent Patent attorney Kisanbe Meiki and 1 other person Figure (α) Figure 4 Figure 5 jIZ Figure 3 Ryo 4 circuit gravestone 60" 3 vermilion Yu lamb stone grounder map

Claims (3)

【特許請求の範囲】[Claims] (1)磁界発生のための永久磁石と軟磁性体のヨークと
から構成される永久磁石回転子において、前記永久磁石
としてR(但しRはYを含む希土類元素のうち少なくと
も1種)、M(但し遷移金属のうち少なくとも1種)、
及びX(但しIIIb族元素のうち少なくとも1種)を
基本成分とする希土類磁石を使用したことを特徴とする
永久磁石回転子。
(1) In a permanent magnet rotor composed of a permanent magnet for generating a magnetic field and a yoke made of a soft magnetic material, the permanent magnets are R (where R is at least one rare earth element including Y), M ( However, at least one of the transition metals),
A permanent magnet rotor characterized in that a rare earth magnet having a basic component of and X (at least one of group IIIb elements) is used.
(2)前記永久磁石と前記軟磁性体から成るヨークとが
固相接合していることを特徴とする請求項1に記載の永
久磁石回転子。
(2) The permanent magnet rotor according to claim 1, wherein the permanent magnet and the yoke made of the soft magnetic material are solid phase joined.
(3)前記永久磁石は、ラジアル異方性リング状磁石で
あることを特徴とする請求項1に記載の永久磁石回転子
(3) The permanent magnet rotor according to claim 1, wherein the permanent magnet is a radially anisotropic ring-shaped magnet.
JP63154147A 1988-06-22 1988-06-22 Permanent magnet rotor Pending JPH027845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154147A JPH027845A (en) 1988-06-22 1988-06-22 Permanent magnet rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154147A JPH027845A (en) 1988-06-22 1988-06-22 Permanent magnet rotor

Publications (1)

Publication Number Publication Date
JPH027845A true JPH027845A (en) 1990-01-11

Family

ID=15577898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154147A Pending JPH027845A (en) 1988-06-22 1988-06-22 Permanent magnet rotor

Country Status (1)

Country Link
JP (1) JPH027845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963450A (en) * 1988-01-14 1990-10-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member with disazo pigment
EP0724322A1 (en) * 1995-01-20 1996-07-31 ELECTRO-PARTS S.p.A. Permanent magnet, particularly a rotor for electric motors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963450A (en) * 1988-01-14 1990-10-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member with disazo pigment
EP0724322A1 (en) * 1995-01-20 1996-07-31 ELECTRO-PARTS S.p.A. Permanent magnet, particularly a rotor for electric motors

Similar Documents

Publication Publication Date Title
JP4796788B2 (en) Coreless motor
EP1308970B1 (en) Radial anisotropic sintered magnet production method
US5223759A (en) DC brushless motor with solid rotor having permanent magnet
JP6419813B2 (en) Anisotropic composite sintered magnet containing manganese bismuth and its atmospheric pressure sintering method
TWI298892B (en) Radial anisotropic ring magnet and method of manufacturing the ring magnet
WO2007119393A1 (en) Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
JP2004120892A (en) Ring magnet, its manufacturing method, and rotor and motor using this ring magnet
JPH08256441A (en) Permanent magnet rotor
JP4735716B2 (en) Permanent magnet rotor and motor using the same
JPH11206075A (en) Manufacture of rare-earth resin magnet embedded rotor
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JP4890620B2 (en) Mold, magnetic field molding machine, and method for manufacturing permanent magnet
WO2008065898A1 (en) Radial-direction gap type magnet motor
JPH027845A (en) Permanent magnet rotor
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JP2006180677A (en) Integrated skew magnetic rotor with core, and its manufacturing method
JP4471698B2 (en) Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet
JP2629846B2 (en) Permanent magnet rotor
JPH0993845A (en) Surface magnet type rotor
JP2579787B2 (en) Manufacturing method of permanent magnet
WO2023053307A1 (en) Rotor and electric motor
JPH08322175A (en) Permanent magnet stepping motor
JPH05129127A (en) Anisotropic segment type magnet
JP2018038162A (en) Polar anisotropic magnet and permanent magnet type motor generator