JPH0278420A - Method of supplying absorbent slurry to absorption column of wet type exhaust gas desulfurizer - Google Patents

Method of supplying absorbent slurry to absorption column of wet type exhaust gas desulfurizer

Info

Publication number
JPH0278420A
JPH0278420A JP63231683A JP23168388A JPH0278420A JP H0278420 A JPH0278420 A JP H0278420A JP 63231683 A JP63231683 A JP 63231683A JP 23168388 A JP23168388 A JP 23168388A JP H0278420 A JPH0278420 A JP H0278420A
Authority
JP
Japan
Prior art keywords
absorbent
absorption tower
concentration
absorption
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63231683A
Other languages
Japanese (ja)
Other versions
JP2690754B2 (en
Inventor
Okikazu Ishiguro
石黒 興和
Takeshi Okawa
剛 大川
Yasuki Hashimoto
泰樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63231683A priority Critical patent/JP2690754B2/en
Publication of JPH0278420A publication Critical patent/JPH0278420A/en
Application granted granted Critical
Publication of JP2690754B2 publication Critical patent/JP2690754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To maintain pH at a target value in all operating states by installing a computing element which predicts the concn. of the absorbent in a liquid absorbent and can calculate the supply rate of the absorbent at which the pH can be maintained at the target value. CONSTITUTION:The predicted value 12 of the concn. of the absorbent in the liquid absorbent in an absorption column at the present point of time is calculated from the supply rate and withdrawal rate of the absorbent slurry and the absorption rate of the sulfur oxide in the absorption column and a dissolution rate constant 13 of the absorbent is determined in accordance with the sulfur oxide absorption rate and the concn. of the total Ca ions in the liquid absorbent in the absorption column and the predicted value 12 in the computing element 7. Further, the predicted value 14 of the concn. of the absorbent in the absorption column 14 after n-minutes is calculated from the sulfur oxide absorption rate calculated by the predicted load after n-minutes of the prescribed time and the predicted value 14 of the concn. of the absorbent in the absorption column necessary after n-minutes is calculated from the intensity of the hydrogen ions after n-minutes, the sulfur oxide absorption rate in the absorption column, the constant 13 and the concn. of the total Ca ions in the liquid absorbent are calculated in the computing element 11. The supply rate of the absorbent slurry to the absorption column is controlled in accordance with the deviation between the predicted values 14 and 15 in a coefft. device 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、湿式排ガス脱硫装置への吸収剤スラリの供給
方法に係り、特に吸収塔内の吸収液スラリのpHを目標
値に維持するのに好適な吸収塔への吸収剤スラリの供給
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for supplying an absorbent slurry to a wet flue gas desulfurization device, and particularly to a method for maintaining the pH of an absorbent slurry in an absorption tower at a target value. The present invention relates to a method for supplying absorbent slurry to an absorption tower suitable for.

〔従来の技術〕[Conventional technology]

従来の湿式排煙脱硫装置の制御方法は第2図に示される
様に、排ガスをダクト22から吸収塔23中に入れ、こ
こで吸収塔23、循環ポンプ26、循環ライン31を経
て、循環する吸収液24と気液接触させる。排ガス中の
so2は吸収液に吸収された後、排ガスは排出ライン3
0を通って煙突から排出される。
As shown in FIG. 2, the conventional method of controlling a wet flue gas desulfurization equipment is to introduce exhaust gas into an absorption tower 23 from a duct 22, and circulate it there through the absorption tower 23, circulation pump 26, and circulation line 31. It is brought into gas-liquid contact with the absorption liquid 24. After the SO2 in the exhaust gas is absorbed by the absorption liquid, the exhaust gas is transferred to the exhaust line 3.
0 and is exhausted from the chimney.

一方、so2を吸収した吸収液24は、塔底部からタン
ク25に流下する。タンク25には吸収剤スラリ供給ラ
イン28から吸収剤が供給されており、これによりS0
2の吸収性能を回復した液は吸収塔循環ポンプ26によ
り循環ライン31を通って吸収塔23に供給される。な
お、循環液の一部はt友出しライン27を通って排出さ
れ、後工程において石こうに酸化される。
On the other hand, the absorption liquid 24 that has absorbed SO2 flows down to the tank 25 from the bottom of the tower. Absorbent is supplied to the tank 25 from an absorbent slurry supply line 28, so that S0
The liquid that has recovered the absorption performance of No. 2 is supplied to the absorption tower 23 through the circulation line 31 by the absorption tower circulation pump 26. Incidentally, a part of the circulating fluid is discharged through the discharge line 27 and is oxidized into gypsum in a subsequent process.

このso2吸収装置において、従来は吸収剤供給量を次
のように制御している。p H計4で吸収液のp H値
を検出し、調節計19bに入力する。
In this SO2 absorber, the amount of absorbent supplied is conventionally controlled as follows. The pH value of the absorption liquid is detected by the pH meter 4 and inputted to the controller 19b.

調節計19bでは塔頂に至る吸収液のp H値が一定に
なるように信号を加算器18bに入力する。
The controller 19b inputs a signal to the adder 18b so that the pH value of the absorption liquid reaching the top of the column is constant.

一方、負荷検出器21で系内に入る5o21、すなわち
脱硫プラントの負荷を検出し、加算器18bに入力する
。加算器1.8 bでは調節計19bからの信号と負荷
検出器21からの信号とを加算し、調節計19bに設定
値信号として入力する。
On the other hand, the load detector 21 detects the load of 5o21 entering the system, that is, the load of the desulfurization plant, and inputs it to the adder 18b. Adder 1.8b adds the signal from controller 19b and the signal from load detector 21, and inputs the result to controller 19b as a set value signal.

また吸収剤スラリ供給ライン28の流量を吸収剤スラリ
流量計5で検出し、調節計1.9 cに入力する。調節
計19cは、これら信号にもとづいて吸収剤スラリ流量
調整弁20を制御する。
Further, the flow rate of the absorbent slurry supply line 28 is detected by the absorbent slurry flowmeter 5 and inputted to the controller 1.9c. The controller 19c controls the absorbent slurry flow rate regulating valve 20 based on these signals.

しかし、湿式排煙脱硫装置においては、吸収剤スラリの
投入に対するp Hの応答性は非常におそい(時定数は
40分程度)ので、p Hが設定値に達するまでには、
時定数相当の時間を要する。このため、pHを設定値に
維持するためには、吸収剤供給量を変化させた場合に、
pHが0分後にどの程度変化するかを予測しないと、精
度の良いpH制御は不可能である。特に、p Hの偏差
に応じて吸収剤を供給する従来の制御方式では、大幅な
負荷変化時には、pHの制御性が悪化するという点につ
いては配慮されていなかった。
However, in wet flue gas desulfurization equipment, the pH response to the addition of absorbent slurry is very slow (time constant is about 40 minutes), so by the time the pH reaches the set value,
It takes time equivalent to a time constant. Therefore, in order to maintain the pH at the set value, when changing the amount of absorbent supplied,
Accurate pH control is impossible unless you predict how much the pH will change after 0 minutes. In particular, conventional control systems that supply absorbent in accordance with pH deviations do not take into account the fact that pH controllability deteriorates when the load changes significantly.

このpHの制御性を改善するための制御方式としては、
特開昭61−97019号、特開昭62−204829
号等が挙げられる。
As a control method to improve the controllability of this pH,
JP-A-61-97019, JP-A-62-204829
For example, the number etc.

特開昭61−97019号は第3図に示される様に、p
H予測演算器(1)42を用いてpH将来値予測信号4
4とpH設定値信号40との偏差にもとづいて、吸収剤
スラリ供給量を補正するものである。この方式では、p
Hの予測値が吸収剤スラリ供給量に大きく影響するので
、pHの予測程度が問題となる可能性がある。
JP-A No. 61-97019, as shown in Figure 3, p.
The pH future value prediction signal 4 is generated using the H prediction calculator (1) 42.
4 and the pH set value signal 40, the absorbent slurry supply amount is corrected. In this method, p
Since the predicted value of H greatly affects the amount of absorbent slurry supplied, the degree of pH prediction may become a problem.

そこで、特開昭62−204829号では、第4図に示
されるように、オンラインで計測されるpH計4の出力
信号とpH予測演算器(2)43の出力信号であるpH
現在値予測信号45とが一致するように、パラメータ修
正信号46を演算器43に入力することにより、pHの
予測精度を向上させる制御方式が考えられた。ここで、
41は脱硫率設定信号である。
Therefore, in Japanese Patent Application Laid-open No. 62-204829, as shown in FIG.
A control method has been devised in which the parameter correction signal 46 is input to the calculator 43 so that it matches the current value prediction signal 45, thereby improving the pH prediction accuracy. here,
41 is a desulfurization rate setting signal.

しかしながら、これらの制御方式では、p Hの設定値
と実測値との間の偏差にもとづいて吸収剤を供給してい
るため、吸収液中の亜硫酸塩の酸化状態(例えば全量酸
化状態、準全量酸化状態、部分酸化状態)によって、同
一のpH偏差でも、必要な吸収剤供給量が大幅に異なる
ことがある。特に、準全量酸化状態(吸収液中の亜硫酸
塩の濃度がほとんどゼロの状態で、亜硫酸イオンが過飽
和の状態で存在する)では、吸収剤の溶解速度すなわち
、中和反応速度が極端に低下し、必要なp H偏差を補
修するには、当量の数倍程度の吸収剤の大幅な過剰投入
が必要な場合も生ずる。
However, in these control methods, the absorbent is supplied based on the deviation between the set pH value and the measured value, so the oxidation state of the sulfite in the absorbent (e.g. total oxidation state, semi-total oxidation state) Depending on the oxidation state (oxidation state, partial oxidation state), the required amount of absorbent supply may vary significantly even for the same pH deviation. In particular, in a quasi-total oxidation state (the concentration of sulfite in the absorption liquid is almost zero and sulfite ions are present in a supersaturated state), the dissolution rate of the absorbent, that is, the neutralization reaction rate, is extremely reduced. In order to correct the necessary pH deviation, it may be necessary to add a large amount of absorbent in excess of several times the equivalent amount.

このように、従来技術による制御方式では、必ずしも、
吸収液のpHを設定値に維持することができないという
欠点があった。
In this way, the conventional control method does not necessarily
There was a drawback that the pH of the absorption liquid could not be maintained at a set value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、吸収剤の投入に対する吸収液p Hの
応答性が悪いことおよび亜硫酸塩の酸化状態による吸収
剤の必要量の相違等についての配慮がされておらず、大
幅な負荷変動時および準全量酸化状態ではpHを目標値
近傍に維持することができず、吸収剤の適正な供給が行
なわれること、pHの変動により脱硫性能が安定しない
こと、pHの変動はスケールの生成を促進すること等と
いう問題があった。
The above-mentioned conventional technology does not take into consideration the poor responsiveness of the absorbent pH to the addition of absorbent and the difference in the amount of absorbent required depending on the oxidation state of sulfite. In a quasi-total oxidation state, it is not possible to maintain the pH near the target value, so the absorbent is not properly supplied, the desulfurization performance is unstable due to pH fluctuations, and pH fluctuations promote scale formation. There was a problem with that.

本発明の目的は、吸収液中の吸収剤濃度を予測すること
により、pHを目標値に維持できる吸収剤供給量を計算
できる演算器を設置して、p Hをあらゆる運転状態で
目標値に維持することにある。
The purpose of the present invention is to install a calculator that can calculate the amount of absorbent supplied to maintain the pH at the target value by predicting the concentration of the absorbent in the absorbent liquid, and to maintain the pH at the target value under all operating conditions. It is about maintaining.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、排ガスを吸収塔に導き、吸収塔内で吸収剤
スラリと接触させて排ガス中の硫黄酸化物を吸収除去す
る湿式排ガス脱硫装置の吸収塔への吸収剤スラリの供給
方法において、吸収塔での吸収剤スラリの供給量と抜出
し澄および硫黄酸化物吸収量より現時点における吸収塔
内吸収液中の吸収剤濃度の予測値を算出する工程と、吸
収塔での硫黄酸化物吸収量と吸収液中の全カルシウムイ
オン濃度および上記吸収剤濃度予測値に基づき吸収剤の
溶解速度定数を求める工程と、所定時間n分後の予想負
荷に基づき算出した吸収塔での硫黄酸化物吸収量と、前
記現時点での吸収塔内の吸収剤濃度予測値および吸収剤
の溶解速度定数から所定時間n分後の吸収塔内の吸収剤
濃度予測値を算出する工程と、所定時間n分後のp H
設定値から求めた水素イオン強度と吸収塔内での硫黄酸
化物吸収量と吸収剤の熔解速度定数および吸収液中の全
カルシウムイオン濃度より所定時間n分後に必要とされ
る吸収塔内吸収剤の濃度予測値を算出する工程と、所定
時間n分後における吸収塔内の吸収剤濃度予測値と必要
とされる吸収剤濃度予測値との偏差量に基づき吸収塔へ
の吸収剤スラリ供給量を制御する工程とを有することを
特徴とする湿式排ガス脱硫装置の吸収塔への吸収剤スラ
リの供給方法により達成される。
The above purpose is to introduce an absorbent slurry into an absorption tower of a wet flue gas desulfurization equipment in which flue gas is introduced into an absorption tower and brought into contact with an absorbent slurry in the absorption tower to absorb and remove sulfur oxides from the flue gas. A process of calculating the predicted value of the absorbent concentration in the absorption liquid in the absorption tower at the present time from the supply amount of absorbent slurry in the tower, the amount of extracted liquid and the amount of sulfur oxides absorbed, and the amount of sulfur oxides absorbed in the absorption tower. A step of determining the dissolution rate constant of the absorbent based on the total calcium ion concentration in the absorbent and the predicted value of the absorbent concentration, and the amount of sulfur oxide absorbed in the absorption tower calculated based on the expected load after a predetermined time of n minutes. , calculating a predicted value of absorbent concentration in the absorption tower after a predetermined time n minutes from the predicted value of absorbent concentration in the absorption tower at the current time and a dissolution rate constant of the absorbent; and p after a predetermined time n minutes. H
Based on the hydrogen ion strength determined from the set value, the amount of sulfur oxide absorbed in the absorption tower, the dissolution rate constant of the absorbent, and the total calcium ion concentration in the absorption liquid, the absorbent in the absorption tower required after a predetermined time of n minutes. and the amount of absorbent slurry supplied to the absorption tower based on the amount of deviation between the predicted absorbent concentration in the absorption tower after a predetermined time n minutes and the required predicted absorbent concentration. This is achieved by a method for supplying an absorbent slurry to an absorption tower of a wet flue gas desulfurization apparatus, which comprises a step of controlling.

〔実施例〕〔Example〕

本発明の吸収剤供給量制御方法の具体的実施例を第1図
に示す。第1図において、lは排ガス流歪計、2は入口
so2濃度計、3は出口so2/lI!!度計、4はp
H計、5は吸収剤スラリ流量計、6は吸収塔23から外
部へのスラリ抜出流量計、8は負荷要求信号、9は微粉
器、IOはp H設定値、11は吸収剤濃度演算器(2
) 、12は吸収剤濃度信号、13は吸収剤溶解速度定
数信号である。
A specific embodiment of the absorbent supply amount control method of the present invention is shown in FIG. In FIG. 1, l is an exhaust gas flow strain meter, 2 is an inlet so2 concentration meter, and 3 is an outlet so2/lI! ! meter, 4 is p
H meter, 5 is an absorbent slurry flow meter, 6 is a flow meter for extracting slurry from the absorption tower 23 to the outside, 8 is a load request signal, 9 is a pulverizer, IO is a pH setting value, 11 is an absorbent concentration calculation Vessel (2
), 12 is an absorbent concentration signal, and 13 is an absorbent dissolution rate constant signal.

7は吸収剤濃度演算器(1)であり、以下の演算を実施
する。吸収塔内の吸収液24中の吸収剤濃度バランスは となる。ここに、■=タンク体積(1)、χ:吸収剤濃
度(mo A/n) 、t ;時間(h)、y:吸収剤
スラリ濃度(−)、yp:吸収剤純度(−) 、M a
 :吸収剤分子Wk (kg/m o l ) 、G 
sl:吸収剤スラリ流量(kg/ h) 、Rsoz 
: S 02吸収M(mo /l/h) 、Gd :抜
き出し流Et(kg/h)、γ:吸収液比重量Ckg/
h)Gg:排ガス流M (N j! / h ) 、2
 ++20  :排ガス中水分(−) 、Cso、  
:入口so2濃度(ppm)、ζ:説硫率((Cso、
 −C’so、 ) /Cso、 ) 、C’so、 
 :出口so2濃度である。
7 is an absorbent concentration calculator (1), which performs the following calculations. The absorbent concentration balance in the absorption liquid 24 in the absorption tower is as follows. Here, ■=tank volume (1), χ: absorbent concentration (mo A/n), t: time (h), y: absorbent slurry concentration (-), yp: absorbent purity (-), M a
: Absorbent molecule Wk (kg/mol), G
sl: absorbent slurry flow rate (kg/h), Rsoz
: S02 absorption M (mo/l/h), Gd: withdrawal flow Et (kg/h), γ: absorption liquid specific weight Ckg/
h) Gg: Exhaust gas flow M (N j! / h), 2
++20: Moisture in exhaust gas (-), Cso,
: Inlet SO2 concentration (ppm), ζ: Sulfur ratio ((Cso,
-C'so, ) /Cso, ), C'so,
: Outlet SO2 concentration.

したがって(1)、(2)式をオンライン計測信号1.
2.3.4.5.6にもとづいて解くことにより、現在
の吸収剤濃度の予測値χ (第1図の12)が求められ
る。
Therefore, equations (1) and (2) are used for online measurement signal 1.
By solving based on 2.3.4.5.6, the predicted value χ (12 in FIG. 1) of the current absorbent concentration is obtained.

一方、除去された5o21と吸収剤消REtは等しいの
で、 Rsoz = V ・T a            
=i3)γ β (Ca2”) となる。ここに、Ta ;吸収剤消費量(moff/ε
・h)、k:吸収剤熔解速度定数、()l”):水素イ
オン濃度(mol/Il)、(Ca ”〕:吸収液中の
全カルシウムイオン濃度(mo1/’j2)、α、β、
T:定数である。
On the other hand, since the removed 5o21 and the absorbent removal REt are equal, Rsoz = V ・T a
= i3) γ β (Ca2'') where Ta ; absorbent consumption (moff/ε
・h), k: Absorbent dissolution rate constant, ()l''): Hydrogen ion concentration (mol/Il), (Ca''): Total calcium ion concentration in the absorption liquid (mol/'j2), α, β ,
T: Constant.

(3)、(4)式を、(1)、(2)式から求まる現在
の吸収剤濃度χを用いて解くと、吸収剤の溶解速度定数
kがオンライン固定できる。準仝量酸化状態ではこの溶
解速度定数が極端に小さくなる。なお、〔Ca2+〕は
pHおよびC1’bN度より容易に推定できる。すなわ
ち、 CaSO4;  Ca2”   +   304CaS
O4の形で液中に存在するCa2+はpi−1の増加と
ともに増加し次いで飽和する関係をもち、pHによって
決まる。また、 CaCji2  :  Ca2”  +  2()、1
1−液中のCa2+およびC11−は上式の形で存在す
るので、Cji−がl m o l / EであればC
a計は1 / 2 m o l / il!となる。
When equations (3) and (4) are solved using the current absorbent concentration χ determined from equations (1) and (2), the dissolution rate constant k of the absorbent can be fixed online. In a semi-slightly oxidized state, this dissolution rate constant becomes extremely small. Note that [Ca2+] can be easily estimated from pH and C1'bN degree. That is, CaSO4; Ca2” + 304CaS
Ca2+, which is present in the liquid in the form of O4, increases as pi-1 increases and then becomes saturated, and is determined by the pH. Also, CaCji2: Ca2” + 2(), 1
1- Since Ca2+ and C11- in the liquid exist in the form of the above formula, if Cji- is l mol / E, C
A total is 1/2 mol/il! becomes.

したがって、(Ca ”)はCaSO4およびCaCA
’2の和となる。よって (Ca””)=f1  (pH)+f2  (Cji1
  )このようにして、吸収剤濃度演算器(1)7によ
り、現在の吸収剤濃度予測信号(χ)12および吸収剤
溶解速度定数信号(k)13が求められる。
Therefore, (Ca”) represents CaSO4 and CaCA
'It becomes the sum of 2. Therefore, (Ca””)=f1 (pH)+f2 (Cji1
) In this way, the current absorbent concentration prediction signal (χ) 12 and the absorbent dissolution rate constant signal (k) 13 are determined by the absorbent concentration calculator (1) 7.

次に、11は吸収剤濃度演算器(2)であり、ここでは
オンライン計測信号5.6.8、lOおよび微粉器9の
出力信号を用いて以下の演算を実施する。まず、n分後
の運転条件を、次式から予測する。
Next, 11 is an absorbent concentration calculation unit (2), which performs the following calculation using the online measurement signal 5.6.8, IO, and the output signal of the pulverizer 9. First, the operating conditions after n minutes are predicted using the following equation.

ここに、L:負荷(%)、R:オーバまたはアンダファ
イヤリング率。
Here, L: load (%), R: over or under firing rate.

この運転条件をもとに、(1)〜(4)式より、n分後
の吸収剤濃度予測信号χ t+n14を求める。このと
き初期吸収剤濃度としては、吸収剤濃度信号12を用い
る。なお、(4)式のkは吸収剤溶解速度定数信号13
を用いる。
Based on this operating condition, the absorbent concentration prediction signal χ t+n14 after n minutes is determined from equations (1) to (4). At this time, the absorbent concentration signal 12 is used as the initial absorbent concentration. Note that k in equation (4) is the absorbent dissolution rate constant signal 13
Use.

(1)式を差分に展開すると t+Δt  t   TV   V    Maここに
、 T、■、Δt、Ma、y、Yp、Z  H2Oは既知で
あり、GdXGsg 、Gg、C3O2,77はオンラ
イン計測により求まる。
When formula (1) is expanded into a difference, t+Δt t TV V Ma where, T, ■, Δt, Ma, y, Yp, Z H2O is known, and GdXGsg, Gg, C3O2, 77 can be found by online measurement.

上式をiΔt=nとなるまでくり返し計算することによ
りχtよりχ t+nが求められる。なお、操作量であ
るGd、GQ 、GsQは現状の値を使用し、Gg、C
5o2については負荷の予測値より(5)〜(7)式を
使って求める。
By repeatedly calculating the above equation until iΔt=n, χ t+n is obtained from χt. In addition, the current values are used for the manipulated variables Gd, GQ, and GsQ, and Gg, C
5o2 is determined using equations (5) to (7) from the predicted load value.

ηはpHt+Δ(、L/G <Gl t/Gg t +
Δt) 、C5o2  t+Δtより求める。ここで、
GQは吸収塔での吸収剤スラリのスプレィ量である。
η is pHt+Δ(, L/G <Glt/Gg t +
Δt), C5o2 t+Δt. here,
GQ is the amount of absorbent slurry sprayed in the absorption tower.

η   −r (pH、L/c、 c      )t
+Δ1    1+Δt      so2  t+Δ
t(3)、 (4)式より pH=−j!ogto(H”     )L+Δ t 
              j+Δ tR=G   
  (1−χ   )C・η    ・10−6/22
.4so2  L+Δt   gt+Δt   1+2
0  5o2t+Δ11+Δt(Ca2+) =r1(
pH) +f2  (Cj’−’)t+Δ1     
  1+Δt n分後に必要な吸収剤濃度予測信号15は、−p Hs
et (H”)−10・・・(8) (ここに、pH5et:pH設定値)として(2)、(
3)、(4)式より計算できる。
η −r (pH, L/c, c)t
+Δ1 1+Δt so2 t+Δ
t(3), From equation (4), pH=-j! ogto(H”)L+Δt
j+ΔtR=G
(1-χ)C・η・10-6/22
.. 4so2 L+Δt gt+Δt 1+2
0 5o2t+Δ11+Δt(Ca2+) =r1(
pH) +f2 (Cj'-')t+Δ1
The absorbent concentration prediction signal 15 required after 1+Δt n minutes is −pHs
et (H")-10...(8) (here, pH5et: pH setting value) (2), (
It can be calculated using equations 3) and (4).

t+n 上式よりχ j+n5etが求まる。なお、Rso2j
+n、(Ca2”   )は上述の手順による。
t+n From the above equation, χ j+n5et is found. In addition, Rso2j
+n, (Ca2'') according to the procedure described above.

t+n なお、半金量酸化状態では、(4)式のkが極端に小さ
くなり、必要な吸収剤濃度予測信号15が極端に大きく
なる。このようにして、吸収剤濃度演算器(2)11で
は、n分後の吸収剤濃度予測信号14およびn分後に必
要な吸収剤濃度予測信号15が計算できる。
t+n Note that in the half-metal oxidation state, k in equation (4) becomes extremely small, and the required absorbent concentration prediction signal 15 becomes extremely large. In this manner, the absorbent concentration calculator (2) 11 can calculate the absorbent concentration prediction signal 14 after n minutes and the absorbent concentration prediction signal 15 necessary after n minutes.

減算器16aでは、n分後の吸収剤濃度予測信号14と
n分後に必要な吸収剤濃度予測信号15との偏差を求め
、係数器17で一定の係数を掛は合わせ、加算器18a
において、従来制御方式の吸収剤供給デマンド信号29
を加えて、引算器16bで吸収剤スラリ流量計5の出力
信号との偏差を求め、調節計193で信号処理して、吸
収剤スラリ流量調整弁20を開閉することにより吸収剤
供給量を調節する。
The subtracter 16a calculates the deviation between the absorbent concentration prediction signal 14 after n minutes and the absorbent concentration prediction signal 15 required after n minutes, multiplies them by a constant coefficient in the coefficient unit 17, and adds them together.
In the conventional control system, the absorbent supply demand signal 29
is added, the subtractor 16b calculates the deviation from the output signal of the absorbent slurry flow meter 5, the controller 193 processes the signal, and the absorbent supply amount is adjusted by opening and closing the absorbent slurry flow rate regulating valve 20. Adjust.

本発明はこのような構成なので、吸収剤の供給量を操作
した場合の吸収液中の吸収剤濃度の変化を予測でき、吸
収液pHを設定値に精度良く制御できる。特に大幅な負
荷変動時および半金1酸化状態において本発明は有効で
ある。
Since the present invention has such a configuration, it is possible to predict the change in the concentration of the absorbent in the absorbent when the supply amount of the absorbent is manipulated, and the pH of the absorbent can be accurately controlled to a set value. The present invention is particularly effective when the load fluctuates significantly and when the half metal is in a single oxidation state.

第5図に本発明の制御方法にもとづいて、pHを制御し
た場合の実例を示す。
FIG. 5 shows an example of pH control based on the control method of the present invention.

〔試験条件〕〔Test conditions〕

排ガス量: 〜240 N m / 11、入ロso2
濃度:580ppm、pH設定値:5.7第5図におい
て、実戦が本発明の制御方式によるp H制御であり、
破線の従来型制御に比較してpHは、はぼ設定値近傍に
維持されており、これに伴なって、脱硫率の変化中も小
さくなり、大幅な負荷変動時においても安定した脱硫性
能が得られている。
Exhaust gas amount: ~240 Nm/11, input so2
Concentration: 580 ppm, pH setting value: 5.7 In Fig. 5, the actual test is pH control using the control method of the present invention.
Compared to the conventional control shown by the dashed line, the pH is maintained close to the set value, and as a result, it becomes smaller even during changes in the desulfurization rate, ensuring stable desulfurization performance even during large load fluctuations. It has been obtained.

第6図は全量酸化状態から、半金量酸化状態への移行時
の挙動を示したものである。従来型制御では、pHが低
下し、脱硫率が一定に維持できないが、本発明の制御で
は良好なpH制御性が得られている。
FIG. 6 shows the behavior when transitioning from a fully oxidized state to a half-metal oxidized state. With conventional control, the pH decreases and the desulfurization rate cannot be maintained constant, but with the control of the present invention, good pH controllability is obtained.

なお、従来の制御方法では、pHの偏差に着目しており
、この偏差に対応する吸収剤補正量を大きくすることに
より対応可能にみえるが、酸化状態の判定が自動的にで
きな、いので、半金量酸化状態以外の場合には、pHが
設定値から大きくはずれてしまう。
In addition, in the conventional control method, the focus is on the pH deviation, and it seems possible to deal with this deviation by increasing the amount of absorbent correction corresponding to this deviation, but it is not possible to automatically determine the oxidation state. , in cases other than the half-metal oxidation state, the pH deviates significantly from the set value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、吸収剤供給量の変動に伴なって、将来
の吸収液中の吸収剤濃度が予測できるので、以下に示す
ような効果がある。
According to the present invention, the future absorbent concentration in the absorbent liquid can be predicted in accordance with changes in the absorbent supply amount, resulting in the following effects.

(1)大幅な負荷変動時においても、吸収液pHを設定
値近傍に維持できるので、安定した脱硫性能を確保でき
る。
(1) Even when the load fluctuates significantly, the pH of the absorbent liquid can be maintained near the set value, so stable desulfurization performance can be ensured.

(2)pHの変動が小さくなるので、吸収塔におけるス
ケール生成量を低減できる。。
(2) Since the pH fluctuation is reduced, the amount of scale produced in the absorption tower can be reduced. .

(3)酸化状態の予測が、溶解速度定数を通して自動的
に行なわれることになるので、半金量酸化状態のような
吸収剤の活性低下に対しても、吸収液pHを設定値近傍
に維持できるので、安定した脱硫性能を確保できる。
(3) Since the oxidation state is automatically predicted based on the dissolution rate constant, the absorbent pH can be maintained near the set value even when the activity of the absorbent decreases due to the half-metal oxidation state. As a result, stable desulfurization performance can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図に第4図は従来
技術になる湿式排ガス脱硫装置への吸収剤スラリの供給
量制御系統図、第5図〜第6図は本発明の効果の検証側
説明図である。 ■・・・排ガス流量計、2・・・入口so2濃度計、3
・・・出口S○2i!!1度計、4・・・pH計、5・
・・吸収剤スラリ流量計、6・・・吸収剤スラリ抜出し
量流量計、7・・・吸収剤濃度演算器(1) 、8・・
・負荷要求信号、9・・・微分器、10・・・pH設定
器、11・・・吸収剤濃度演算器、12・・・現在の吸
収剤濃度信号、13・・・吸収剤熔解速度定数信号、1
4・・・n分後の吸収剤濃度予測信号、15・・・n分
後に必要な吸収剤濃度予測信号、16・・・減算器、1
7・・・係数器、18・・・加算器、19・・・調節計
、2o・・・吸収剤スラリ流量調整弁、29・・・吸収
剤供給デマンド信号。 代理人 弁理士 川 北 武 長 第2図 2】:負荷検出器 22:ダクト 23:吸収塔 24:吸収液 25:タンク 26:吸収液循環ポンプ 時間(分) 第6図
Figure 1 is a detailed explanatory diagram of the present invention, Figures 2 and 4 are prior art system diagrams for controlling the supply amount of absorbent slurry to a wet exhaust gas desulfurization equipment, and Figures 5 and 6 are diagrams of the present invention. It is an explanatory diagram on the verification side of the effect of. ■...Exhaust gas flow meter, 2...Inlet SO2 concentration meter, 3
...Exit S○2i! ! 1 degree meter, 4... pH meter, 5.
...Absorbent slurry flow meter, 6...Absorbent slurry extraction flow meter, 7...Absorbent concentration calculator (1), 8...
- Load request signal, 9... Differentiator, 10... pH setting device, 11... Absorbent concentration calculator, 12... Current absorbent concentration signal, 13... Absorbent melting rate constant signal, 1
4...Absorbent concentration prediction signal after n minutes, 15...Absorbent concentration prediction signal required after n minutes, 16...Subtractor, 1
7... Coefficient unit, 18... Adder, 19... Controller, 2o... Absorbent slurry flow rate adjustment valve, 29... Absorbent supply demand signal. Agent Patent Attorney Takenaga Kawakita Figure 2: Load detector 22: Duct 23: Absorption tower 24: Absorption liquid 25: Tank 26: Absorption liquid circulation pump time (minutes) Figure 6

Claims (1)

【特許請求の範囲】[Claims] 排ガスを吸収塔に導き、吸収塔内で吸収剤スラリと接触
させて排ガス中の硫黄酸化物を吸収除去する湿式排ガス
脱硫装置の吸収塔への吸収剤スラリの供給方法において
、吸収塔での吸収剤スラリの供給量と抜出し量および硫
黄酸化物吸収量より現時点における吸収塔内吸収液中の
吸収剤濃度の予測値を算出する工程と、吸収塔での硫黄
酸化物吸収量と吸収液中の全カルシウムイオン濃度およ
び上記吸収剤濃度予測値に基づき吸収剤の溶解速度定数
を求める工程と、所定時間n分後の予想負荷に基づき算
出した吸収塔での硫黄酸化物吸収量と、前記現時点での
吸収塔内の吸収剤濃度予測値および吸収剤の熔解速度定
数から所定時間n分後の吸収塔内の吸収剤濃度予測値を
算出する工程と、所定時間n分後のpH設定値から求め
た水素イオン強度と吸収塔内での硫黄酸化物吸収量と吸
収剤の溶解速度定数および吸収液中の全カルシウムイオ
ン濃度より所定時間n分後に必要とされる吸収塔内吸収
剤の濃度予測値を算出する工程と、所定時間n分後にお
ける吸収塔内の吸収剤濃度予測値と必要とされる吸収剤
濃度予測値との偏差量に基づき吸収塔への吸収剤スラリ
供給量を制御する工程とを有することを特徴とする湿式
排ガス脱硫装置の吸収塔への吸収剤スラリの供給方法。
Absorption in the absorption tower is a method for supplying absorbent slurry to the absorption tower of a wet flue gas desulfurization equipment in which flue gas is introduced into the absorption tower and brought into contact with an absorbent slurry in the absorption tower to absorb and remove sulfur oxides in the flue gas. The process of calculating the predicted value of the absorbent concentration in the absorption liquid in the absorption tower at the present time from the supply amount and withdrawal amount of agent slurry and the amount of sulfur oxide absorbed, and the process of calculating the predicted value of the absorbent concentration in the absorption liquid in the absorption tower and A step of determining the dissolution rate constant of the absorbent based on the total calcium ion concentration and the predicted value of the absorbent concentration, the amount of sulfur oxide absorbed in the absorption tower calculated based on the expected load after a predetermined time of n minutes, and the amount of sulfur oxide absorbed at the above-mentioned current time. A step of calculating a predicted absorbent concentration in the absorption tower after a predetermined time n minutes from a predicted value of the absorbent concentration in the absorption tower and a dissolution rate constant of the absorbent, and a step of calculating from a pH setting value after a predetermined time n minutes. Based on the hydrogen ion strength, the amount of sulfur oxide absorbed in the absorption tower, the dissolution rate constant of the absorbent, and the total calcium ion concentration in the absorption liquid, the predicted value of the concentration of the absorbent in the absorption tower required after a predetermined time n minutes. and a step of controlling the amount of absorbent slurry supplied to the absorption tower based on the amount of deviation between the predicted absorbent concentration in the absorption tower after a predetermined time n minutes and the required predicted absorbent concentration. A method for supplying absorbent slurry to an absorption tower of a wet flue gas desulfurization apparatus, comprising:
JP63231683A 1988-09-16 1988-09-16 Method for supplying absorbent slurry to absorption tower of wet exhaust gas desulfurization equipment Expired - Fee Related JP2690754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63231683A JP2690754B2 (en) 1988-09-16 1988-09-16 Method for supplying absorbent slurry to absorption tower of wet exhaust gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63231683A JP2690754B2 (en) 1988-09-16 1988-09-16 Method for supplying absorbent slurry to absorption tower of wet exhaust gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JPH0278420A true JPH0278420A (en) 1990-03-19
JP2690754B2 JP2690754B2 (en) 1997-12-17

Family

ID=16927357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63231683A Expired - Fee Related JP2690754B2 (en) 1988-09-16 1988-09-16 Method for supplying absorbent slurry to absorption tower of wet exhaust gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JP2690754B2 (en)

Also Published As

Publication number Publication date
JP2690754B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JPH1015343A (en) Oxidation control method in exhaust gas desulfurization treatment
JP2529244B2 (en) Absorption liquid circulation controller for wet flue gas desulfurization equipment
JPH0278420A (en) Method of supplying absorbent slurry to absorption column of wet type exhaust gas desulfurizer
US20230166211A1 (en) State quantity prediction device and state quantity prediction method
JP3091247B2 (en) Method and apparatus for controlling flow rate of circulating absorption liquid to absorption tower in wet exhaust gas desulfurization unit
JP3272562B2 (en) Predictive control device and control method for wet flue gas desulfurization plant
JP2809411B2 (en) Slurry circulation control system for wet flue gas desulfurization unit
JP2538184B2 (en) Control method for wet flue gas desulfurization equipment
JPH03137918A (en) Supply amount control apparatus of oxidizing air for wet waste desulfurization equipment
JP3009190B2 (en) Control method and control device for wet exhaust gas desulfurization device
JP2798973B2 (en) Exhaust gas desulfurization equipment
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
JPH1066825A (en) Desulfurization control apparatus
JPH06238126A (en) Abnormality diagnostic device for wet flue gas desulfurizer
JPH0355171B2 (en)
JP2000005557A (en) Method for controlling wet exhaust gas desulfurizer and device therefor
JPH03267114A (en) Method and device for controlling supply of absorbent to wet type desulfurization equipment
JPS6339613A (en) Absorbing liquid circulation flow rate controller for wet-type exhaust gas desulfurizer
JPH0729023B2 (en) Wet exhaust gas desulfurization method
JPH0857251A (en) Method for controlling injection amount of ammonia in denitrification apparatus and apparatus therefor
WO2023228901A1 (en) State quantity prediction device, state quantity prediction method, state quantity prediction system, and method for controlling state quantity prediction system
JPH0899015A (en) Apparatus for controlling amount of feeding of absorbent for wet type flue gas desulfurization facility
JPH0871364A (en) Method and apparatus for controlling supply amount of absorbent in wet exhaust gas desulfurization equipment
JPH06319941A (en) Apparatus and method for controlling flue gas desulfurization in wet process
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees