JPH0278274A - Insulated gate field effect transistor - Google Patents

Insulated gate field effect transistor

Info

Publication number
JPH0278274A
JPH0278274A JP23034188A JP23034188A JPH0278274A JP H0278274 A JPH0278274 A JP H0278274A JP 23034188 A JP23034188 A JP 23034188A JP 23034188 A JP23034188 A JP 23034188A JP H0278274 A JPH0278274 A JP H0278274A
Authority
JP
Japan
Prior art keywords
substrate
type silicon
field effect
effect transistor
insulated gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23034188A
Other languages
Japanese (ja)
Inventor
Kazuo Terada
寺田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23034188A priority Critical patent/JPH0278274A/en
Publication of JPH0278274A publication Critical patent/JPH0278274A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a MOSIC which includes a dynamic circuit and is stable even if a reverse bias is not applied to a substrate by a method wherein the thickness of a first conductivity type semiconductor formed on an insulator film is made thinner than that of a depletion layer which is formed on the surface when the FET is ON. CONSTITUTION:A MOSFET is composed of a gate electrode of a conductor 108, a gate insulator film of a silicon oxide 107, a substrate of a P-type silicon 104, a source 105 and a drain 106 of N-type silicon. Here, the thickness of a part of the P-type silicon 104 extending over the silicon oxide film 102 is set thinner than that of a depletion layer which is formed on the surface when the FET is ON. Therefore, the effect of a gate voltage reaches up to the silicon oxide film 102 through the intermediary of the P-type silicon 104. By this setup, even if noised are applied between a source and a drain which are electronically floated and a small forward bias is applied between an electrode and the substrate, minority carriers are not injected into a substrate and consequently malfunction hard to occur.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大規模集積回路への応用に適した絶縁ゲート電
界効果トランジスタ(以下MO3FETという)に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulated gate field effect transistor (hereinafter referred to as MO3FET) suitable for application to large-scale integrated circuits.

〔従来の技術〕[Conventional technology]

通常、 MOSFETを基本回路素子とする集積回路(
以下MO8ICという)では、ダイナミック回路を含む
場合、基板に逆バイアスが加えられる。その理由は電気
的に浮いた電極に加わった雑音による誤動作が生じるの
を防ぐためである。MO3ICではMOSFETのソー
ス電極やドレイン電極と基板との間にPN接合があり、
通常その接合に順バイアスが加わらないようにして、そ
れらの電極と基板との間を絶縁している。ところが、そ
れらの電極が電気的に浮いた場合、それらの電極の電圧
は容量結合を通して周囲の電圧変化の影響を受ける。そ
のため、それらの電極と基板の間に十分な逆バイアスが
加わっていない場合(OVに近い場合)、それらの電極
と基板との間に順バイアスが加わる可能性がある。この
場合、PN接合に電流が流れ、基板に少数キャリアが注
入される。この少数キャリアは基板内を拡散し、周囲の
電極に雑音を与える0通常のダイナミックMO3ICで
は、このようなことが起こらないように、容量結合によ
って起こる電気に浮いた電極の電圧変化よりも十分に大
きい電圧の逆方向バイアスを基板に加えている。
Usually, an integrated circuit (
In the MO8IC (hereinafter referred to as MO8IC), a reverse bias is applied to the substrate when it includes a dynamic circuit. The reason for this is to prevent malfunctions due to noise added to the electrically floating electrodes. In MO3IC, there is a PN junction between the source electrode or drain electrode of the MOSFET and the substrate.
Normally, forward bias is not applied to the junction to insulate the electrodes from the substrate. However, when those electrodes are electrically floating, the voltages on those electrodes are affected by ambient voltage changes through capacitive coupling. Therefore, if sufficient reverse bias is not applied between those electrodes and the substrate (near OV), there is a possibility that forward bias is applied between those electrodes and the substrate. In this case, current flows through the PN junction and minority carriers are injected into the substrate. These minority carriers diffuse within the substrate and give noise to the surrounding electrodes.In order to prevent this from happening in normal dynamic MO3ICs, the voltage changes of the electrically floating electrodes caused by capacitive coupling are sufficiently suppressed. A large voltage reverse bias is applied to the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、基板に逆バイアスを加えることは肋SICの
性能を劣化させることとなる。また、MO5ICの基板
に逆バイアスを加えるためには、その電圧を基板に供給
しなければならない。もしその電圧をMO5IC外部か
ら供給するならば、外部供給電源数が増え、そのMO5
ICは使いにくいものになる。
However, applying a reverse bias to the substrate degrades the performance of the SIC. Furthermore, in order to apply a reverse bias to the substrate of the MO5IC, the voltage must be supplied to the substrate. If that voltage is supplied from outside the MO5IC, the number of external power supplies will increase, and the MO5
ICs become difficult to use.

一方、その電圧をMO5ICの内部で生成するならば、
そのための回路が必要になり、そのMO3ICの設計が
難しくなる。しかも、基板に逆バイアスを加えると、基
板に形成されたPN接合部にできる空乏層が厚くなり、
空乏層内部で熱や放射線によって発生する電荷量が大き
くなる。そのため、基板に逆バイアスを加えたMO5I
Cでは、PN接合洩れ電流が大きくなり、特性が劣化す
る。
On the other hand, if the voltage is generated inside the MO5IC,
A circuit for this is required, making the design of the MO3IC difficult. Moreover, when a reverse bias is applied to the substrate, the depletion layer formed at the PN junction formed in the substrate becomes thicker.
The amount of charge generated inside the depletion layer by heat and radiation increases. Therefore, MO5I with reverse bias applied to the substrate
In C, the PN junction leakage current increases and the characteristics deteriorate.

このように従来のMO5ICでは、ダイナミック回路を
含む場合、基板に逆バイアスを加える必要があるが、そ
の結果その性能が劣化するという問題があった。
As described above, in the conventional MO5IC, when a dynamic circuit is included, it is necessary to apply a reverse bias to the substrate, but as a result, there is a problem that the performance deteriorates.

本発明の目的は上記の困難を克服するため、容量結合を
通して周囲の電圧変化の影響を多少受けたとしても、ソ
ース電極やドレイン電極と基板の間のPN接合が順バイ
アスされることのないMOSFETの構造を提供するこ
とにある。
An object of the present invention is to overcome the above-mentioned difficulties, and to provide a MOSFET in which the PN junction between the source electrode or drain electrode and the substrate is not forward biased even if it is affected by changes in ambient voltage through capacitive coupling. The goal is to provide a structure for

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は第一導電型半導体基
板と、該半導体基板の一主面上に開口部をもつように形
成された絶縁体膜と、前記開口部を通して前記半導体基
板に接し、その一部が前記の絶縁体膜上に延在した第一
導電型半導体と、該第一導電型半導体に接するように前
記絶縁体膜上に形成された第二導電型半導体とを含む絶
縁ゲート電界効果トランジスタにおいて、前記絶縁体膜
上の第一導電型半導体の厚さを、絶縁ゲート電界効果ト
ランジスタの導通時にその表面に形成される空乏層の厚
さよりも薄くしたものである。
In order to achieve the above object, the present invention includes a first conductivity type semiconductor substrate, an insulating film formed to have an opening on one main surface of the semiconductor substrate, and an insulating film that is in contact with the semiconductor substrate through the opening. , an insulation including a first conductivity type semiconductor, a portion of which extends over the insulator film, and a second conductivity type semiconductor formed on the insulator film so as to be in contact with the first conductivity type semiconductor. In the gate field effect transistor, the thickness of the first conductivity type semiconductor on the insulator film is made thinner than the thickness of a depletion layer formed on the surface of the insulated gate field effect transistor when the transistor is conductive.

〔実施例〕〔Example〕

以下1本発明の実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)は本発明の一実施例であるN型チャンネル
MO5FETの構造を示す平面図であり、第1図(b)
は第1図(a)のA−A’で切り開いた場合の断面図で
ある。図において、101はP型シリコン基板、 10
2,103、107.109.110.は酸化シリコン
膜、104はP型シリコン基板101に接し、その上層
の酸化シリコン膜102上まで延在した薄いP型シリコ
ン、105.106はN型シリコン、108,111,
112.は導電体、113,114はコンタクト孔、1
15は前記酸化シリコン膜102の開口部をそれぞれ示
す。前記P型シリコン104は開口部115を通してP
型シリコン基板101に接し、その一部は酸化シリコン
膜102上に延在している。
FIG. 1(a) is a plan view showing the structure of an N-type channel MO5FET which is an embodiment of the present invention, and FIG. 1(b)
is a sectional view taken along line AA' in FIG. 1(a). In the figure, 101 is a P-type silicon substrate, 10
2,103, 107.109.110. is a silicon oxide film, 104 is a thin P-type silicon that is in contact with the P-type silicon substrate 101 and extends to the upper silicon oxide film 102, 105, 106 is N-type silicon, 108, 111,
112. is a conductor, 113 and 114 are contact holes, 1
Reference numeral 15 indicates an opening in the silicon oxide film 102, respectively. The P-type silicon 104 passes through the opening 115
It is in contact with the mold silicon substrate 101 and a portion thereof extends over the silicon oxide film 102 .

N型シリコン105,106はP型シリコン104に接
して酸化シリコン膜102上に形成されている。なお、
第1図(a)の平面図では、わかりにくくなるのを避け
るため、一部の線を省略して示している。
N-type silicon 105 and 106 are formed on silicon oxide film 102 in contact with P-type silicon 104. In addition,
In the plan view of FIG. 1(a), some lines are omitted to avoid obscurity.

上記MO5FETは、導電体108をゲート電極、酸化
シリコン膜107をゲート絶縁体膜、P型シリコン10
4を基板、N型シリコン105.106をソース・ドレ
イン電極としている。
The above MO5FET has a conductor 108 as a gate electrode, a silicon oxide film 107 as a gate insulator film, and a P-type silicon 10
4 is used as a substrate, and N-type silicon 105 and 106 are used as source/drain electrodes.

また、上記MO5FETのP型シリコン104のうち酸
化シリコン膜102上に延在した部分の厚みをMOSF
ETが導通時にその表面に形成される空乏層の厚さより
も薄く設定する。そのため、本発明MO5FETでは、
そのゲート電圧の影響がP型シリコン104を通して酸
化シリコン膜102まで達している。P型シリコン基板
101がOv、このMOSFETが遮断状態、そして一
方のソース・ドレイン電極としてのN型シリコン105
が電気的に浮いている状態の時に、その電極が容量結合
を通して周囲の電圧変化の影響を受け、少し負の電圧に
なった場合を考えてみる。この場合、P型シリコン10
4. N型シリコン105間のPN接合には少し順バイ
アスが加わる。しかしこのMOSFETの場合には、P
N接合近傍のP型シリコン104はゲート電圧の影響で
空乏層化している。
Also, the thickness of the portion of the P-type silicon 104 of the MO5FET that extends over the silicon oxide film 102 is determined by the MOSFET.
The thickness is set to be thinner than the thickness of the depletion layer formed on the surface of the ET when it is conductive. Therefore, in the MO5FET of the present invention,
The influence of the gate voltage reaches the silicon oxide film 102 through the P-type silicon 104. P-type silicon substrate 101 is Ov, this MOSFET is in a cut-off state, and N-type silicon 105 is used as one source/drain electrode.
Let us consider a case where, while electrically floating, the electrode is affected by changes in the surrounding voltage through capacitive coupling, resulting in a slightly negative voltage. In this case, P-type silicon 10
4. A slight forward bias is applied to the PN junction between the N-type silicon 105. However, in the case of this MOSFET, P
The P-type silicon 104 near the N junction has become a depletion layer due to the influence of the gate voltage.

そのため、順バイアスが小さいときには、N型シリコン
105からP型シリコン104へ電子が注入されること
はほとんどない。
Therefore, when the forward bias is small, electrons are hardly injected from the N-type silicon 105 to the P-type silicon 104.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のMOSFETによれば、
電気的に浮いたソース・ドレイン電極に雑音が加わり、
その電極と基板の間に多少順バイアスが加わったとして
も、基板に少数キャリアが注入されることがなく、誤動
作しにくい。そのため、基板に逆バイアスを加えなくて
も安定なダイナミック回路を含むMO5ICt!:W成
できる効果を有するものである。
As explained above, according to the MOSFET of the present invention,
Noise is added to the electrically floating source and drain electrodes,
Even if some forward bias is applied between the electrode and the substrate, minority carriers are not injected into the substrate, making it difficult to malfunction. Therefore, MO5ICt! contains a stable dynamic circuit without applying reverse bias to the board! :W has an effect that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の半導体装置の一実施例の構造を
示す平面図、第1図(b)は(a)のA−A’線断面図
である。 101・・・P型シリコン基板 102・・・酸化シリ
コン膜104・・・P型シリコン   105,106
・・・N型シリコン115・・・開口部
FIG. 1(a) is a plan view showing the structure of an embodiment of the semiconductor device of the present invention, and FIG. 1(b) is a sectional view taken along the line AA' in FIG. 1(a). 101...P-type silicon substrate 102...Silicon oxide film 104...P-type silicon 105, 106
...N-type silicon 115...opening

Claims (1)

【特許請求の範囲】[Claims] (1)第一導電型半導体基板と、該半導体基板の一主面
上に開口部をもつように形成された絶縁体膜と、前記開
口部を通して前記半導体基板に接し、その一部が前記の
絶縁体膜上に延在した第一導電型半導体と、該第一導電
型半導体に接するように前記絶縁体膜上に形成された第
二導電型半導体とを含む絶縁ゲート電界効果トランジス
タにおいて、前記絶縁体膜上の第一導電型半導体の厚さ
を、絶縁ゲート電界効果トランジスタの導通時にその表
面に形成される空乏層の厚さよりも薄くしたことを特徴
とする絶縁ゲート電界効果トランジスタ。
(1) a first conductivity type semiconductor substrate, an insulating film formed to have an opening on one principal surface of the semiconductor substrate, and a part of which contacts the semiconductor substrate through the opening; An insulated gate field effect transistor comprising a first conductivity type semiconductor extending on an insulator film and a second conductivity type semiconductor formed on the insulator film so as to be in contact with the first conductivity type semiconductor. An insulated gate field effect transistor characterized in that the thickness of a first conductivity type semiconductor on an insulator film is made thinner than the thickness of a depletion layer formed on the surface of the insulated gate field effect transistor when the insulated gate field effect transistor is turned on.
JP23034188A 1988-09-13 1988-09-13 Insulated gate field effect transistor Pending JPH0278274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23034188A JPH0278274A (en) 1988-09-13 1988-09-13 Insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23034188A JPH0278274A (en) 1988-09-13 1988-09-13 Insulated gate field effect transistor

Publications (1)

Publication Number Publication Date
JPH0278274A true JPH0278274A (en) 1990-03-19

Family

ID=16906329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23034188A Pending JPH0278274A (en) 1988-09-13 1988-09-13 Insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPH0278274A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136275A (en) * 1978-04-14 1979-10-23 Agency Of Ind Science & Technol Field effect transistor of isolation gate
JPS5583263A (en) * 1978-12-19 1980-06-23 Fujitsu Ltd Mos semiconductor device
JPS63160277A (en) * 1986-12-23 1988-07-04 Nec Corp Manufacture of semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136275A (en) * 1978-04-14 1979-10-23 Agency Of Ind Science & Technol Field effect transistor of isolation gate
JPS5583263A (en) * 1978-12-19 1980-06-23 Fujitsu Ltd Mos semiconductor device
JPS63160277A (en) * 1986-12-23 1988-07-04 Nec Corp Manufacture of semiconductor element

Similar Documents

Publication Publication Date Title
US20110198726A1 (en) Semiconductor device and manufacturing method thereof
US6392277B1 (en) Semiconductor device
US3602782A (en) Conductor-insulator-semiconductor fieldeffect transistor with semiconductor layer embedded in dielectric underneath interconnection layer
JP2001102586A (en) High breakdown voltage semiconductor device
JP2001168340A (en) Soi-structure mis field-effect transistor and its manufacturing method
KR950030309A (en) Protection circuit of semiconductor device
US7339249B2 (en) Semiconductor device
KR900013652A (en) High voltage semiconductor device with SOI structure with reduced on resistance
KR20010070479A (en) Buried metal body contact structure and method for fabricating soi mosfet devices
US6825507B2 (en) Semiconductor device having high electron mobility comprising a SiGe/Si/SiGe substrate
JPS6050066B2 (en) MOS semiconductor integrated circuit device
US4584593A (en) Insulated-gate field-effect transistor (IGFET) with charge carrier injection
JP2825038B2 (en) Semiconductor device
EP0708486B1 (en) Semiconductor field effect transistor with large substrate contact region
JPH0278274A (en) Insulated gate field effect transistor
JPH0191470A (en) Input protecting circuit
JP2598446B2 (en) MIS-FET
JP2004288873A (en) Semiconductor device
JP3106844B2 (en) Lateral insulated gate bipolar transistor
JPH0673377B2 (en) Input protection circuit
JP2785792B2 (en) Power semiconductor device
JP2684712B2 (en) Field effect transistor
JPH0560266B2 (en)
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPH0748552B2 (en) Semiconductor device