JPH0278238A - Sealing method for electronic part - Google Patents

Sealing method for electronic part

Info

Publication number
JPH0278238A
JPH0278238A JP63228586A JP22858688A JPH0278238A JP H0278238 A JPH0278238 A JP H0278238A JP 63228586 A JP63228586 A JP 63228586A JP 22858688 A JP22858688 A JP 22858688A JP H0278238 A JPH0278238 A JP H0278238A
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
sulfide resin
lead frame
resin
electronic part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63228586A
Other languages
Japanese (ja)
Inventor
Hitoshi Izutsu
井筒 齋
Toshihide Yamaguchi
敏秀 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP63228586A priority Critical patent/JPH0278238A/en
Publication of JPH0278238A publication Critical patent/JPH0278238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Insulating Of Coils (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Details Of Resistors (AREA)

Abstract

PURPOSE:To improve the tight adhesiveness between an electronic part and polyaryene lsulfide resin and to improve reliability by a method wherein triazine thiol is provided on the interface between the electronic part and the polyarylene sulfide resin. CONSTITUTION:After a 16-pin IC lead frame, consisting of a copper alloy, has been dipped into the methanol solution of sodium salt of dimethylaminotriazinediol, the lead frame is pulled up, methanol solution is evaporated, and a traizimethiol treatment is conducted. On the other hand, after glass fiber has been mixed to polyarylene sulfide, polyarylene sulfide resin is melted, kneaded, and pelletized. The lead frame, which is triazinthiol- treated using said polyarylene sulfide resin, is sealed. Through these procedures, the tight adhesiveness of the lead frame and the polyarylene sulfide resin can be improved, and reliability can also be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規かつ改良された電子部品の封止方法に関す
るものであり、詳しくは電子部品とポリアリーレンスル
フィド樹脂との界面にトリアジンチオールを介在させる
ことにょシ、電子部品とポリアリーレンスルフィド樹脂
との密着性が改善され、高められた信頼性を有する電子
部品を与える方法に関する。該電子部品の例としては、
IC。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a new and improved method for encapsulating electronic components, and more specifically, the present invention relates to a new and improved method for encapsulating electronic components, and more specifically, by interposing triazine thiol at the interface between electronic components and polyarylene sulfide resin. The present invention relates to a method of improving the adhesion between an electronic component and a polyarylene sulfide resin and providing an electronic component with increased reliability. Examples of such electronic components include:
I.C.

ハイブリッドIC,)ランソスター、ダイオード。Hybrid IC,) Lanso Star, Diode.

トリオード、キャノ4ジター、レジスター、サイリスタ
ー、コイル、バリスター、フィルター、トランス、サー
ジアブソーバ−、モーター、コネクター、トランスデユ
ーサ−、フォトカプラー、ホール素子、水晶発振器、セ
ンサー、ヒユーズ、整流器、電源スイツチ類及びこれら
の複合部品などが挙げられるが、必らずしもこれらに限
定されるものではない。
Triode, cano 4 jitter, resistor, thyristor, coil, varistor, filter, transformer, surge absorber, motor, connector, transducer, photocoupler, Hall element, crystal oscillator, sensor, fuse, rectifier, power switch, etc. and composite parts thereof, but are not necessarily limited to these.

(従来の技術および発明が解決しようとする課題)電子
部品、たとえばIC,)ランシスター、ダイオード、コ
ンデンサー、レジスター等ではそれらの保護、電気絶縁
性の保持、外部雰囲気による特性劣化の防止などの目的
で電子部品を合成樹脂で封止することが広く行われてい
る。その際の合成樹脂としてはエポキシ樹脂やシリコー
ン樹脂などの熱硬化性樹脂が使用されているが、これら
の熱硬化性樹脂は成形時間が長くなること、ポストキュ
アーが盛装であること、パリが出やすいこと。
(Prior art and problems to be solved by the invention) For electronic components such as ICs, diodes, capacitors, resistors, etc., the purpose is to protect them, maintain electrical insulation, and prevent characteristic deterioration due to external atmosphere. It is widely practiced to seal electronic components with synthetic resin. Thermosetting resins such as epoxy resins and silicone resins are used as synthetic resins in this case, but these thermosetting resins require a long molding time, need for post-curing to be covered, and have problems with Paris. It's easy.

スゲルー、ランナーなどのスクラップの再利用ができな
いこと、材料自体の取扱いが容易でないこと叫の欠点を
有する。
Disadvantages include that scraps such as snails and runners cannot be reused, and that the material itself is not easy to handle.

そこでこれらの熱硬化性樹脂の有する欠点をなくする目
的から熱可塑性樹脂であるポリアリーレンスルフィド樹
脂で封止することが提案されている。電子部品の封止材
料としての基本的性能は耐湿性の優れていることが要求
され、ポリアリーレンスルフィド樹tjの場合にはシラ
ンカッブリング剤などを無機フィラーと共に配合するこ
とにより封止材料自体の耐湿性の向上をはかることがで
きる。
Therefore, in order to eliminate the drawbacks of these thermosetting resins, it has been proposed to seal with polyarylene sulfide resin, which is a thermoplastic resin. Basic performance as a sealing material for electronic components is required to be excellent in moisture resistance, and in the case of polyarylene sulfide resin TJ, the sealing material itself can be improved by blending a silane coupling agent with an inorganic filler. Moisture resistance can be improved.

他力、電子部品の信頼性は封止材料自体から侵入する水
だけでなく外部に出ているリードと封止桐料との界面か
らの水の侵入にも大きく依存しておシ封止材料とリード
との密着性が重要である。
The reliability of electronic components depends not only on water entering from the sealing material itself, but also on water entering from the interface between the external lead and the sealing material. Adhesion between the lead and the lead is important.

しかしながら、ポリアリーレンスルフィド樹脂のリード
との密着性はエポキシ樹脂に比較して大巾に劣るためl
大な欠点となっている。
However, the adhesion of polyarylene sulfide resin to leads is significantly inferior to that of epoxy resin.
This is a major drawback.

(課題を解決するための手段) 本発明者らは上記の如き状況に鑑み、ポリアリーレンス
ルフィド樹脂と電子部品、とくにリードとの密着性が改
善された電子部品を得るべく鋭意検討した結果、ポリア
リーレンスルフィド樹脂と電子部品との界面にトリアジ
ンチオールを介在させることで上記問題点が解決される
ことを見出し、本発明に至り九ものである。
(Means for Solving the Problems) In view of the above-mentioned circumstances, the inventors of the present invention have made intensive studies to obtain electronic components with improved adhesion between polyarylene sulfide resin and electronic components, especially leads. It has been found that the above problems can be solved by interposing triazinethiol at the interface between the arylene sulfide resin and the electronic component, and the present invention has been achieved.

本発明のポリアリーレンスルフィド樹脂は未架橋又は一
部架橋したポリアリーレンスルフィド樹脂でありその共
重合例えはランダム、ブロック。
The polyarylene sulfide resin of the present invention is an uncrosslinked or partially crosslinked polyarylene sulfide resin, and examples of its copolymerization include random and block copolymers.

Rはアルキル基、ニトロ基、フェニル基、カルボキシル
基、カルボン酸の金属塩基、アルコキシ基。
R is an alkyl group, a nitro group, a phenyl group, a carboxyl group, a metal base of carboxylic acid, or an alkoxy group.

明のポリアリーレンスルフィド樹脂は対象となる電子部
品の種類により各穐の分子量のものが用いられ特に制限
はないが、通常ASTM D1238−34(316℃
、、5kl?荷重)で測定したメルトフローレイトで2
0〜30,000.9/10分の範囲のものが用いられ
る。好ましい範囲は200〜20,000II/10分
である。
The polyarylene sulfide resin used has a different molecular weight depending on the type of target electronic component, and there is no particular restriction, but it is usually ASTM D1238-34 (316 ° C.
,,5kl? 2 in the melt flow rate measured at
A range of 0 to 30,000.9/10 minutes is used. The preferred range is 200 to 20,000 II/10 minutes.

本発明のトリアジンチオールは、分子内に少なくとも1
個のチオール基を有するトリアジン化合物であう、好ま
しくは (式中、Mは水素原子又はアルカリ金属であシ、Xは例
えば−8H、−8M 、 −OH、−OR、−NH2゜
−NR2、−NHRなどの置換基金示す。Rは置換又は
非置換の炭素数が1〜30の炭化水素基である。)で示
される分子内に少くとも2個のチオール基金有するトリ
アジン化合物である。上記一般式で示される6−位置換
1,3.5− トリアジン−2,4−ジチオールの具体
例には、6−位の置換基として例えば−8H、−8Na
 、 −OH、−0C4H5、−0C4H,。
The triazinethiol of the present invention has at least one
A triazine compound having thiol groups, preferably (where M is a hydrogen atom or an alkali metal, and X is, for example, -8H, -8M, -OH, -OR, -NH2゜-NR2, -NHR (R is a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms.) This is a triazine compound having at least two thiol groups in the molecule. Specific examples of the 6-position substituted 1,3.5-triazine-2,4-dithiol represented by the above general formula include -8H, -8Na, etc. as the 6-position substituent.
, -OH, -0C4H5, -0C4H,.

−NH2,−NH−CH,、−NHC2H5,−NHC
4H,、−NHC12H25゜−NHC1sHs y 
I −NHC6H11t −NHC6H5r −Nl(
CH2C6H51−洲・03H6・N(CH,)2.−
NHC8H,6CH=CI(C8H,、。
-NH2, -NH-CH,, -NHC2H5, -NHC
4H,, -NHC12H25゜-NHC1sHs y
I -NHC6H11t -NHC6H5r -Nl(
CH2C6H51-zu・03H6・N(CH,)2. −
NHC8H,6CH=CI(C8H,,.

−N(CH5)2.−N(C2H5)2.−N(04H
,)2.−N(C8H1,)2゜−N(C10H21)
2、−N(C12H25)2 ’  NCCH2CH2
)2 ’−N(CH2CH=CH2)2 、−N(CH
2CH2)20 、−N(CH2CH20H)2などを
有するもの、更にこれら置換基を有する6−位置換1.
.3.5−トリアジン−2,4−ジチオールの一アルカ
リ金属塩(アルカリ金属の代表例としてNa 、 K 
、 Li )が含まれる。
-N(CH5)2. -N(C2H5)2. -N(04H
,)2. -N(C8H1,)2゜-N(C10H21)
2, -N(C12H25)2' NCCH2CH2
)2'-N(CH2CH=CH2)2,-N(CH
2CH2)20, -N(CH2CH20H)2, etc., and 6-position substitutions having these substituents 1.
.. 3. Monoalkali metal salt of 5-triazine-2,4-dithiol (typical examples of alkali metals include Na, K)
, Li) are included.

該トリアジンチオール全′成子部品とポリアリーレンス
ルフィド樹脂の界面に介在させるには、該電子部品の表
面にトリアジンチオール処理を施したあとポリアリーレ
ンスルフィド樹脂で封止するか、トリアジンチオールを
含有せしめたポリアリーレンスルフィド樹脂で電子部品
を封止するかのいずれかの方法がある。効果の点では前
者の方法が好ましいが、操作の点では後者の方法が簡便
である。具体的に述べると、前者の方法はトリアジンチ
オールを例えば0.01〜3%の濃度として、有機溶剤
又は水で希釈後、該希釈液に電子部品を浸漬あるいは該
希釈液をスプレー、ハケ塗りした後、希釈媒体を蒸発さ
せることで電子部品の表面をトリアノンチオール処理す
ることができる。−万後者の方法ではトリアノンチオー
ルを0.01〜10重量%含むポリアリーレンスルフィ
ド樹脂組成物を用意することで達成される。
In order to intervene at the interface between the triazine thiol-containing component and the polyarylene sulfide resin, the surface of the electronic component is treated with triazine thiol and then sealed with a polyarylene sulfide resin, or a polyester containing triazine thiol is There is one method of sealing electronic components with arylene sulfide resin. The former method is preferable in terms of effectiveness, but the latter method is simpler in terms of operation. Specifically, the former method involves diluting triazinethiol with an organic solvent or water to a concentration of, for example, 0.01 to 3%, and then immersing electronic components in the diluted solution, or spraying or brushing the diluted solution. Thereafter, the surface of the electronic component can be treated with trianonethiol by evaporating the diluting medium. - The latter method is achieved by preparing a polyarylene sulfide resin composition containing 0.01 to 10% by weight of trianonethiol.

本発明で使用する電子部品は通常リード部を有している
。該リード部の金属としてとくに制限はないが、最も好
ましいのは銅、銅合金、鉛、鉛合金であり、ニッケル、
亜鉛、鉄、銀、アルミニウム及びこれらの合金類等も含
まれる。
The electronic component used in the present invention usually has a lead portion. The metal of the lead part is not particularly limited, but the most preferred are copper, copper alloy, lead, and lead alloy, and nickel,
Also included are zinc, iron, silver, aluminum, and alloys thereof.

本発明では公知の無機又は有機の充填材を用いることが
でき、特に制限はないが、具体例を挙げれは次の通りで
ある。
In the present invention, known inorganic or organic fillers can be used, and although there are no particular limitations, specific examples are as follows.

無機充填材の例ではシリカ、ケイ藻土、アルミナ、酸化
チタン、酸化鉄、酸化亜鉛、酸化マグネシワム、酸化ア
ンチモン、ノマリタムフエライト。
Examples of inorganic fillers are silica, diatomaceous earth, alumina, titanium oxide, iron oxide, zinc oxide, magnesium oxide, antimony oxide, and nomaritum ferrite.

ストロ/チタムフェライト、酸化ベリリウム、軽石、軽
石バルーン、アルミナ繊維、シリカ繊維。
Sutro/titanium ferrite, beryllium oxide, pumice, pumice balloon, alumina fiber, silica fiber.

シリカピーズなどの酸化物;水散化アルミニウム。Oxides such as silica peas; water-dispersed aluminum.

水酸化マグネシウム、塩基性炭酸マグネシウムなどの水
酸化物;炭酸カルシウム、炭酸マグネシウム、ドロマイ
ト、ドーソナイトなどの炭酸塩;硫酸カルシウム、硫酸
バリウム、硫酸アンモニウム。
Hydroxides such as magnesium hydroxide and basic magnesium carbonate; carbonates such as calcium carbonate, magnesium carbonate, dolomite, and dawsonite; calcium sulfate, barium sulfate, and ammonium sulfate.

亜硫酸カルシウムなどの(亜)硫酸塩;タルク。()Sulfites such as calcium sulfite; talc.

クレー、マイカ、アスベスト、ガラス繊維、ガラスバル
ーン、ガラスピーズ、ケイ酸カルシウム。
Clay, mica, asbestos, glass fiber, glass balloon, glass beads, calcium silicate.

モンモリロナイト、ベントナイトなどのケイ酸塩tカー
メンブラック、グラファイト、炭素繊維、炭素中空球な
どの炭素;及び鉄粉、銅粉、鉛粉、アルミニウム粉、硫
化モリブデン、ボロン繊維、炭化ケイ素繊維、黄銅繊維
、チタン酸カリウム、チタン酸ジルコン酸鉛、ホウ酸亜
鉛、メタホ’7酸ノ#リウム、ホウ酸カルシウム、ホウ
酸ナトリ9ムなどがある。
Silicates such as montmorillonite and bentonite, carbon such as carmen black, graphite, carbon fiber, and carbon hollow spheres; and iron powder, copper powder, lead powder, aluminum powder, molybdenum sulfide, boron fiber, silicon carbide fiber, brass fiber, Potassium titanate, lead zirconate titanate, zinc borate, nitrium metapho'7ate, calcium borate, sodium borate, etc.

有機充填材の例では、芳香族ポリアミド繊維。An example of an organic filler is aromatic polyamide fibers.

芳香族ポリエステル繊維などがある。Examples include aromatic polyester fibers.

充填材の添加量は通常、ポリアリーレンスルフィド樹脂
100重量部に対しO〜i o o o、重量部が使用
される。好適な範囲は用途に応じて選択できる。
The amount of the filler added is usually 0 to 100 parts by weight per 100 parts by weight of the polyarylene sulfide resin. A suitable range can be selected depending on the application.

本発明で用いるポリアリーレンスルフィド樹脂はポリア
リーレンスルフィド樹脂と場合により所定量の充填材お
よびトリアジンチオールを混合し、押出機やバンバリー
ミキサ−等の公知混練機で溶融混練して得ることができ
る。更に、本発明の目的を、逸脱しない範囲で他の重合
体例えばポリオレフィン、ポリカーデネート、ポリエス
テル、ポリエーテルサルホン、ポリサルホン、液晶ポリ
マー、ポリエーテルエーテルケトン、ポリイミド。
The polyarylene sulfide resin used in the present invention can be obtained by mixing the polyarylene sulfide resin with optionally a predetermined amount of filler and triazinethiol, and melting and kneading the mixture using a known kneader such as an extruder or a Banbury mixer. Additionally, other polymers such as polyolefins, polycarbonates, polyesters, polyethersulfones, polysulfones, liquid crystal polymers, polyetheretherketones, polyimides may be used without departing from the scope of the invention.

ポリアミドイミド、エポキシ、ポリフェニレンエーテル
、yteリアミド、未水添もしくは水添スチレンブタジ
ェンゴム、 EPDMゴム、ポリブテンボリイソプチレ
ン、ポリイソプレン、シリコンゴムなと全添加すること
ができる。
Polyamideimide, epoxy, polyphenylene ether, ytelyamide, unhydrogenated or hydrogenated styrene butadiene rubber, EPDM rubber, polybutene polyisoptylene, polyisoprene, silicone rubber, etc. can all be added.

又1本発明組成物は、公知の添加剤例えばカップリング
剤(7ラン、チタネート等)、酸化防止剤、熱安定剤、
腐食防止剤、滑剤2着色剤、結晶核剤を添加することが
できる。
In addition, the composition of the present invention may contain known additives such as coupling agents (7ran, titanate, etc.), antioxidants, heat stabilizers,
Corrosion inhibitors, lubricants, colorants, and crystal nucleating agents can be added.

ポリアリーレンスルフィド樹脂による電子部品の封止は
、プレス、トランスファー成形機、肘用成形機などの樹
脂封止用成形機を用いて、樹脂温度260〜400℃、
金型温度20〜220℃の、 温度で行うことができる
Electronic components are encapsulated with polyarylene sulfide resin using a resin encapsulation molding machine such as a press, a transfer molding machine, or an elbow molding machine, at a resin temperature of 260 to 400°C.
It can be carried out at a mold temperature of 20 to 220°C.

(発明の効果) 本発明の電子部品の封止方法によれば、電子部品トポリ
アリーレンスルフィド樹脂との密着性が改善され、高め
られた信頼性を有する電子部品を得ることができる。
(Effects of the Invention) According to the method for sealing an electronic component of the present invention, the adhesion between the electronic component and the polyarylene sulfide resin is improved, and an electronic component having increased reliability can be obtained.

(実施例) 以下、本発明を実施例および比較例により説明する。(Example) The present invention will be explained below with reference to Examples and Comparative Examples.

実施例1 図1に示す16 pin I Cリードフレーム(調合
金製)を1%6−ノメチルアミノー1.3.5− トリ
アジン−2,4−ジチオールの一ナトリクム塩のメタノ
ール溶液に60℃で30分間浸漬したのち、該リードフ
レームを引き上げ、メタノールを蒸発させてトリアジン
チオール処理を行った。一方、ポリアリーレンスルフィ
ド樹脂は、メルトフローレイト8000 、F/10分
のポリアリーレンスルフ42100重量部に対し、ガラ
ス繊維40重量部、シリカ110重量部を混合後、50
m押出機を用いて300℃で溶融混練し、ベレット化し
た。該ポリアリーレンスルフィド樹脂を用いて、上記で
用意したトリアゾンチオール処理されたリードフレーム
を封止し、赤インク侵入試しを行い、リードとポリアリ
ーレンスルフィド樹脂との密着性を調べたところ、赤イ
ンク侵入度は5%以下であった。
Example 1 A 16 pin IC lead frame (made of prepared alloy) shown in Fig. 1 was placed in a methanol solution of 1% monosodium salt of 6-nomethylamino-1.3.5-triazine-2,4-dithiol at 60°C for 30 minutes. After immersion, the lead frame was pulled up, methanol was evaporated, and triazinethiol treatment was performed. On the other hand, the polyarylene sulfide resin was prepared by mixing 40 parts by weight of glass fiber and 110 parts by weight of silica with 42,100 parts by weight of polyarylene sulfide having a melt flow rate of 8,000 and F/10 minutes.
The mixture was melt-kneaded at 300° C. using an M extruder to form pellets. The polyarylene sulfide resin was used to seal the triazone thiol-treated lead frame prepared above, and a red ink penetration test was conducted to examine the adhesion between the lead and the polyarylene sulfide resin. The degree of penetration was less than 5%.

赤インク侵入試験 リードヲ有スる1 6 pin I Cリードフレーム
の封止成形物を120℃、48時間赤インク中で煮沸し
、樹脂組成物で封止された最長のリード部分について赤
インク侵入割合を(イ)で評価した。
Red ink penetration test A sealed molded product of the lead 16 pin IC lead frame was boiled in red ink at 120°C for 48 hours, and the percentage of red ink penetration was determined for the longest lead portion sealed with the resin composition. was evaluated in (a).

100チ:すべて侵入 0%:全く侵入せず 比較例1 トリアジンチオール処理をしないリードフレムを用いた
ほかは実施例1と同様にして赤インク侵入試験をし丸。
100 inches: All intrusion 0%: No intrusion at all Comparative Example 1 A red ink penetration test was carried out in the same manner as in Example 1 except that a lead frame not treated with triazinethiol was used.

赤インク侵入度は100チであった。The degree of red ink penetration was 100 inches.

実施例2 実施例1の銅合金製リードフレームをPb/8n=p6
組成のハンダメツキを施した4 2 ALLOY製リー
ドフレームとした場合、赤インク侵入度は5%以下であ
った。
Example 2 The copper alloy lead frame of Example 1 was Pb/8n=p6
In the case of a lead frame manufactured by 42 ALLOY which was subjected to solder plating of the composition, the degree of red ink penetration was 5% or less.

比較例2 トリアジンチオール処理をしないリードフレームを用い
たほかは、実施例2と同様に行った。赤インク侵入度は
100チであった。
Comparative Example 2 The same procedure as in Example 2 was carried out except that a lead frame not treated with triazinethiol was used. The degree of red ink penetration was 100 inches.

実施例3 実施例1において、ポリアリーレンスルフィドmi’t
−、ポリアリーレンスルフィド(メルトフローレイト5
00.9/10分)100重量部、ガラス繊維30重量
部の組成にした場合、赤インク侵入度は5%であった。
Example 3 In Example 1, polyarylene sulfide m't
-, polyarylene sulfide (melt flow rate 5
When the composition was 100 parts by weight (00.9/10 minutes) and 30 parts by weight of glass fiber, the degree of red ink penetration was 5%.

実施例4 実施例1におけるポリアリーレンスルフィド樹脂組成に
エポキシシラン0.2重量%を加えた場合、赤インク侵
入度は5%以下であった。
Example 4 When 0.2% by weight of epoxysilane was added to the polyarylene sulfide resin composition in Example 1, the degree of red ink penetration was 5% or less.

実施例5〜9 実施例1のトリアジンチオールを他のものに変えて同様
に実験を行った結果を、表−1に示す。
Examples 5 to 9 Table 1 shows the results of experiments conducted in the same manner as in Example 1, except for using other triazinethiols.

表−1 実施例10 ポリアリーレンスルフィド(メルトフローレイ) 15
000.9/10分)100重量部、ガラスピーズ50
i量部、フォラストナイト50重量部、6−シメチルア
ミンー1.3.5− )リアジン−2,4−ジチオール
の一ナトリウム塩3重量%を混合し、50w押出機を用
いて、290℃で溶融混練し一レット化した。該ポリア
リーレンスルフィド樹脂を用いて処理されていない銅合
金製リードフレームを封止し、リードとポリアリーレン
スルフィド樹脂との密着性を調べたところ、赤インク侵
入度は20チであった。
Table-1 Example 10 Polyarylene sulfide (Melt Flow Ray) 15
000.9/10 minutes) 100 parts by weight, 50 glass peas
i parts by weight, 50 parts by weight of follastonite, 3% by weight of monosodium salt of 6-dimethylamine-1.3.5-) riazine-2,4-dithiol were mixed and melted at 290°C using a 50W extruder. It was kneaded and made into one let. When an untreated copper alloy lead frame was sealed using the polyarylene sulfide resin and the adhesion between the lead and the polyarylene sulfide resin was examined, the degree of red ink penetration was 20 inches.

比較例3 実施例10のポリアリーレンスルフィド樹脂において6
−ジメチル−アミノー1,3#5−)リアノン−2,4
−ジチオールの一ナトリウム塩を除いて、同様の実験を
行った場合、赤インク侵入度は100チであった◎ 代理人 弁理士  高 橋 勝 利
Comparative Example 3 In the polyarylene sulfide resin of Example 10, 6
-dimethyl-amino1,3#5-)rianone-2,4
- When the same experiment was conducted except for the monosodium salt of dithiol, the degree of penetration of red ink was 100%◎ Patent attorney Katsutoshi Takahashi

Claims (1)

【特許請求の範囲】[Claims]  電子部品とポリアリーレンスルフィド樹脂との界面に
トリアジンチオールを介在させることを特徴とする電子
部品の封止方法。
A method for sealing an electronic component, characterized by interposing triazinethiol at the interface between the electronic component and a polyarylene sulfide resin.
JP63228586A 1988-09-14 1988-09-14 Sealing method for electronic part Pending JPH0278238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228586A JPH0278238A (en) 1988-09-14 1988-09-14 Sealing method for electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228586A JPH0278238A (en) 1988-09-14 1988-09-14 Sealing method for electronic part

Publications (1)

Publication Number Publication Date
JPH0278238A true JPH0278238A (en) 1990-03-19

Family

ID=16878686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228586A Pending JPH0278238A (en) 1988-09-14 1988-09-14 Sealing method for electronic part

Country Status (1)

Country Link
JP (1) JPH0278238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577907U (en) * 1992-03-24 1993-10-22 ミツミ電機株式会社 Electronic parts
JP2004165647A (en) * 2002-10-18 2004-06-10 Natl Starch & Chem Investment Holding Corp Reactive groups: curable compound containing triazine/isocyanurates, cyanate esters and blocked isocyanates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577907U (en) * 1992-03-24 1993-10-22 ミツミ電機株式会社 Electronic parts
JP2004165647A (en) * 2002-10-18 2004-06-10 Natl Starch & Chem Investment Holding Corp Reactive groups: curable compound containing triazine/isocyanurates, cyanate esters and blocked isocyanates

Similar Documents

Publication Publication Date Title
US4327369A (en) Encapsulating moisture-proof coating
KR0144007B1 (en) Epoxy resin composition for simiconductor sealing
JPH0278238A (en) Sealing method for electronic part
JP2952980B2 (en) Polyarylene sulfide resin composition for sealing electronic parts and electronic parts
CA2026994A1 (en) Imidazole compound-containing hardening agent composition, method of preparing the same and thermosetting epoxy resin composition
JP3120429B2 (en) Polyarylene sulfide resin composition
JPS61101522A (en) Sealing resin composition
JPH01105562A (en) Resin-sealed semiconductor device
JPS60226147A (en) Electronic part
JP3044746B2 (en) Resin composition for covering or sealing electronic components, electronic components, insert molded products, or outsert molded products
JPS59105018A (en) Sealing resin composition
JPS6289721A (en) Sealing resin composition
JPH10287731A (en) Epoxy resin composition containing polyalkylphenol resin and/or polyalkylphenol-epoxy resin
JPH05262961A (en) Thermosetting resin composition and cured product
KR920001441B1 (en) Epoxy resin composition for encapsulating semiconductor parts
JPS63280725A (en) Resin composition for sealing
JPH0222322A (en) Resin compound for sealing
JP2701362B2 (en) Resin composition for sealing electronic parts
JPH05186688A (en) Production of resin composition
US5252639A (en) Molding resin composition and molded electronic component
JPS59210933A (en) Sealing resin composition
JPS61143464A (en) Epoxy resin composition for semiconductor sealing use
JPS6053526A (en) Epoxy resin composition for sealing semiconductor
JPH04248830A (en) Sealing resin composition and sealed semiconductor device
JPS63142024A (en) Resin composition for sealing use