JPH0277547A - Al-sn-pb bearing alloy - Google Patents

Al-sn-pb bearing alloy

Info

Publication number
JPH0277547A
JPH0277547A JP15990989A JP15990989A JPH0277547A JP H0277547 A JPH0277547 A JP H0277547A JP 15990989 A JP15990989 A JP 15990989A JP 15990989 A JP15990989 A JP 15990989A JP H0277547 A JPH0277547 A JP H0277547A
Authority
JP
Japan
Prior art keywords
alloy
bearing
particles
matrix
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15990989A
Other languages
Japanese (ja)
Inventor
Masahito Fujita
正仁 藤田
Akira Ogawara
大河原 章
Takeshi Sakai
坂井 武志
Toshihisa Ogaki
大垣 俊久
Takeshi Osaki
剛 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP15990989A priority Critical patent/JPH0277547A/en
Publication of JPH0277547A publication Critical patent/JPH0277547A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To regulate the shape of hard Si grains dispersed and precipitated in the title alloy to the roundish one and to improve its fatigue resistance, seizure resistance and wear resistance in the range of high temp. by adding specific amounts of Sr to an Al-Sn-Pb bearing alloy contg. Si and matrix metal- strengthening elements. CONSTITUTION:To an Al-Sn-Pb bearing alloy contg., by weight, 3 to 35% Sn, >6 to 11% Si, 0.1 to 10% Pb, total 0.1 to 4% of Cu and Ti and the balance Al, 0.01 to 0.3% Sr is added. The shape of hard Si grains 2 dispersed and precipitated by the addition of Sr into an Al matrix 1 hardened and strengthened by Cu and Ti is converted into the spherical one, elliptic one or roundish one in the tip and Sn-Pb alloy grains 3 are furthermore precipitated adjacently to the Si grains 2 to drastically improve the lubricity, by which the Al-Sn-Pb bearing alloy having excellent fatigue resistance and other characteristics at a high temp. can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はAl−Sn−Pb系軸受合金に係り、詳しくは
、マトリックス中に、球状、だ円状若しくは先端が丸味
をおびた形状のSi粒子が分散、析出され、しかも、高
速・高負荷運転時にすぐれ、なかでも、高温領域におい
て耐疲労性、耐焼付性ならびに耐摩耗性を有するAl 
−Sn−Pb系軸受合金に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an Al-Sn-Pb bearing alloy, and more specifically, the present invention relates to an Al-Sn-Pb bearing alloy. Al is dispersed and precipitated, and has excellent fatigue resistance, seizure resistance, and wear resistance in high-temperature ranges, and is excellent during high-speed and high-load operation.
-Relating to Sn-Pb bearing alloy.

従  来  の  技  術 最近の自動車用エンジンは、小型化、省燃費、高出力の
ものとなり、これにともなって軸受にかかる荷重が増力
口すると共に、潤滑油の温度が上昇し、軸受の使用条件
は苛酷化の一途をたどっている。従来例の多元系やAl
系軸受のほとんどは、軸受台金部分の表面にオーバーレ
イメツキ等によりPb −Sn系等の表面■を形成した
ものである。しかし、この構造の軸受では、潤滑面の高
温化により疲労や焼付現象にみまわれ、上記の苛酷な使
用条件に耐えられなくなっている。
Conventional technology Recently, automobile engines have become smaller, more fuel efficient, and have higher output.As a result, the load on the bearings has increased, the temperature of the lubricating oil has increased, and the operating conditions for the bearings have increased. is becoming increasingly severe. Conventional multi-component systems and Al
Most of the type bearings have a Pb-Sn type surface (2) formed on the surface of the bearing base metal part by overlay plating or the like. However, bearings with this structure suffer from fatigue and seizure phenomena due to high temperatures on the lubricated surfaces, making them unable to withstand the above-mentioned severe operating conditions.

そこで最近は、オーバーレイメツキ等によって表面箇が
形成されない軸受が求められている。
Therefore, recently there has been a demand for bearings in which surface areas are not formed by overlay plating or the like.

しかしながら、この種の軸受でも、上記の苛酷な使用条
件では、必ずしも安定した性能を元厚できないのが現状
である。
However, even with this type of bearing, the current situation is that stable performance cannot necessarily be achieved under the above-mentioned severe usage conditions.

すなわち、表面にオーバーレイメツキ磨を有する軸受は
、−膜内には、JIS H5402、Al−1(10%
sn、0.75%C1l、 0,5%Ni、Aj!Ba
1)や、JIS  H5402、Al−2(6%Sn、
2,5%Cu、1,0%N15AlBa/)等の月S規
格、SAE 780(6%sn、2%Si、1%Cu、
0,5%Ni、 0.1%丁1、Aj!Bajり等のS
AE規格に示される通り、その軸受台金部分はSn含有
盟が比較的少ない低りn−、1合金から成っているが、
これら軸受合金部分の表面には更にpb−sn系合金の
オーバーレイメツキによって表面台が形成され、この表
面台が軸受面を構成している。しかし、これら軸受は、
近年の高貴荷、高温の使用条件下では表面のオーバーレ
イメツキによる表面位がIl滅して焼付きに至り、使用
に耐えられなくなっている。これに対し、表面にオーバ
ーレイメツキによって表面層を形成しない軸受は、SA
E 783(20%Sn、 0,5%Si、 1.0%
Cu。
That is, a bearing with an overlay plating on the surface has - JIS H5402, Al-1 (10%
sn, 0.75% C1l, 0.5% Ni, Aj! Ba
1), JIS H5402, Al-2 (6%Sn,
2.5%Cu, 1.0%N15AlBa/) etc., SAE 780 (6%sn, 2%Si, 1%Cu,
0.5%Ni, 0.1%Ni1, Aj! S of Bajri et al.
As shown in the AE standard, the bearing base metal part is made of a low n-1 alloy with relatively low Sn content.
A surface pedestal is further formed on the surface of these bearing alloy parts by overlay plating of a pb-sn alloy, and this surface pedestal constitutes a bearing surface. However, these bearings
In recent years, high-quality products have become unusable under high-temperature usage conditions, as the surface layer due to overlay plating on the surface deteriorates, leading to seizure. On the other hand, bearings that do not have a surface layer formed by overlay plating on the surface have SA
E 783 (20%Sn, 0.5%Si, 1.0%
Cu.

0.1%T1、AA’Bal1lに示される通り、その
軸受台金部分がSn含有盟が多い高5n−A1合金から
成っている。しかし、このようにSnが20%程度の如
く多く含まれる合金は、硬度が低く、Alマトリックス
が弱くなるため、高負荷に耐えられない。
As shown in 0.1%T1 and AA'Bal1l, the bearing base metal part is made of a high 5n-A1 alloy containing a large amount of Sn. However, such an alloy containing as much as 20% Sn has low hardness and weakens the Al matrix, so it cannot withstand high loads.

また、SO含有楽の多少に拘らず、Al −Sn系合金
中にpbを添加して潤滑性を増進させ、耐焼付性をもた
せた軸受台金が、例えば、水野昂−箸昭和29年日刊工
業新聞社発行r軸受台金J第139頁に記載され、この
軸受台金は10%Sn、1.5%Cu、0.5%S1を
含むとともに3%Ilbを添加して成るAl −Sn−
Pb系合金である。
In addition, regardless of the degree of SO content, bearing base metals made by adding PB to Al-Sn alloys to improve lubricity and provide seizure resistance have been developed, for example, by Takashi Mizuno - Hashi Nikkan in 1952. It is described in page 139 of r Bearing Base Metal J published by Kogyo Shimbunsha, and this bearing base metal is made of Al-Sn containing 10% Sn, 1.5% Cu, 0.5% S1 and adding 3% Ilb. −
It is a Pb-based alloy.

更に、八l −Sn−Pb系合金中のpbはAIとはほ
とんど固溶しないため、このpHの分散性の向上のため
に、sbを添加したA I −Sn −Pb −Sb系
合金が特公昭52−12131号に記載され、この上に
、Alマトリックス強化のためにCrを添加した八!−
Sn −Pt+ −Sb −Or系合金が特公昭58−
18985号に記載されている。しかし、これらのAl
1−Sn−pb系合金は通常運転時のrA潤滑性向上を
目的として開発されたもので、高負荷運転条件では十分
な耐疲労性を示さない欠点がある。この理由は、通常の
運転下に比べると、高負荷運転下の軸と軸受との潤滑機
構は根本的に相違するからである。
Furthermore, since pb in the 8l-Sn-Pb alloy hardly forms a solid solution with AI, an AI-Sn-Pb-Sb alloy with sb added is specially used to improve the pH dispersibility. It is described in Publication No. 52-12131, and Cr is added thereto to strengthen the Al matrix. −
Sn -Pt+ -Sb -Or system alloy was published in 1988-
No. 18985. However, these Al
The 1-Sn-pb alloy was developed for the purpose of improving rA lubricity during normal operation, but has the drawback of not exhibiting sufficient fatigue resistance under high-load operating conditions. The reason for this is that the lubrication mechanism between the shaft and bearing under high load operation is fundamentally different from that under normal operation.

このところから、高負荷運転下の潤滑機構と通常運転下
のそれとの相違点について基本的な検討が行なわれ、そ
の検討結果の一つとしてAl −Sn系合金中に粗大な
Siを分散析出させた軸受が特開昭58−64336号
によって提案されている。
From this point on, basic studies were conducted on the differences between the lubrication mechanism under high-load operation and that under normal operation, and one of the results of the study was the dispersion and precipitation of coarse Si in the Al-Sn alloy. A similar bearing has been proposed in Japanese Patent Application Laid-Open No. 58-64336.

この軸受は硬いSi析出物により切削力を持たせたもの
であって、切削力を持つが故に、相手軸の表面凹凸部が
削られて平坦化し、軸受性能を向上させるものである。
This bearing has a cutting force made of hard Si precipitates, and because it has the cutting force, the unevenness on the surface of the mating shaft is shaved off and flattened, improving the bearing performance.

更に詳しく説明すると、球状若しくは片状の黒鉛を析出
させた黒鉛鋳鉄から成る相手軸の表面には、研摩加工時
に脱落した黒鉛粒子のあとに凹部が残り、この凹部周囲
には硬く加工硬化したパリやエツジ等の凸部が生成して
いる。従って、上記の如きAl−5n系、Al −Sn
−Pb系等の軸受台金では、これら凹凸部により高負荷
運転時には異常摩耗が発生し易い。これに対し、上記の
粗大なSiを分散析出させた軸受台金では、硬いSiの
析出物により切削力が付与されているために、相手軸の
凹凸部分は機械的に切削されて平坦化され、これ故に、
異常摩耗や焼付きが起らない。
To explain in more detail, on the surface of the mating shaft made of graphite cast iron on which spherical or flaky graphite has been precipitated, a recess remains after the graphite particles that fell off during polishing, and around this recess there is hard work-hardened paris. Convex portions such as edges and edges are generated. Therefore, as mentioned above, Al-5n system, Al-Sn
- In a bearing base metal made of Pb or the like, abnormal wear is likely to occur during high-load operation due to these uneven portions. On the other hand, in the bearing base metal in which the coarse Si is dispersed and precipitated, the cutting force is applied by the hard Si precipitates, so the uneven parts of the mating shaft are mechanically cut and flattened. , therefore,
No abnormal wear or seizure occurs.

しかしながら、相手軸が黒鉛鋳鉄以外の場合には、高負
荷運転のときに、かえって粗大なSi析出物によって相
手軸の表面が不規則にけずられ、焼付きが発生し、大き
な障害が生じる。
However, when the mating shaft is made of a material other than graphite cast iron, during high-load operation, the surface of the mating shaft is scratched irregularly by coarse Si precipitates, causing seizure and causing major problems.

発明が解決しようとする課題 本発明は上記欠点の解決を目的とするが、具体的には、
AX−Sロールb系軸受合金において、潤滑性向上のた
めにSnやpb等の含有金を高め、Alマトリックスの
強化のためにOr、 Sb、 Mn、N1等の元素を添
加し、これらの元素によってAlマトリックスの硬度を
増加させるが、逆に、これら手段によってかえってAt
合金が脆弱になり、高負荷運転時には殆んど高温下(1
00〜250℃)での耐疲労性を示さないことになる。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks, and specifically,
In the AX-S roll b series bearing alloy, we increase the content of gold such as Sn and PB to improve lubricity, and add elements such as Or, Sb, Mn, and N1 to strengthen the Al matrix. The hardness of the Al matrix is increased by these methods, but on the contrary, these methods actually increase the hardness of the Al matrix.
The alloy becomes brittle, and during high-load operation, it is difficult to operate at high temperatures (1
00 to 250°C).

このところを本発明においては、Alマトリックス中に
、だ円状、球状若しくは先端が丸味をおびた形状のSi
粒子を析出させることにより解決は、このようにして耐
焼付性、耐摩耗性を向上させる。
However, in the present invention, Si having an oval, spherical, or rounded tip is placed in the Al matrix.
The solution by precipitating particles thus improves seizure resistance and wear resistance.

課題を解決するための 手段ならびにその作用 すなわち、本発明に係る軸受台金は、1街%で、3〜3
5%Sn、 6%超11%以下S1ならびに0.1〜1
0%Pbを含むほが、Cuと目を合量で0.1〜4%含
有し、残余が実質的にAIがら成るAI−Sn系軸受合
金において、0.01〜0.3%のSrを添加して、A
lマトリックス中に、球状、だ円状若しくは先端が丸味
をおびた形状の31粒子を分散、析出させることを特徴
とする。
Means for solving the problem and its effect, that is, the bearing base metal according to the present invention has a ratio of 1% to 3 to 3%.
5% Sn, over 6% up to 11% S1 and 0.1 to 1
In an AI-Sn bearing alloy containing 0% Pb, the total content of Cu and metal is 0.1 to 4%, and the remainder is substantially AI, while 0.01 to 0.3% Sr is Add A
It is characterized by dispersing and precipitating 31 particles in a spherical, elliptical, or rounded tip shape in a matrix.

そこで、これら手段たる構成ならびにその作用について
更に詳しく説明すると、次の通りである。
A more detailed explanation of the configuration of these means and their operation will be as follows.

まず、本発明は高温状態における耐疲労性を高めるため
に成されたちのである。
First, the present invention was made to improve fatigue resistance under high temperature conditions.

すなわら、従来例においては、単に高融点元素であるO
r、 Go、Ni等を添加し、高温強度を高め、高温下
で硬さが急激に低下することを防止すると共に、耐摩耗
性を高めている。しかし、このように、Al−Sn−P
b系合金の高温状態における耐疲労性を高めるためには
、単に高融点元素を添加して硬さを増加させることによ
っては達成できず、かえって、合金が脆弱になって引張
強度、伸びならびに衝撃値が低下する。
In other words, in the conventional example, O, which is simply a high melting point element,
Addition of R, Go, Ni, etc. increases high-temperature strength, prevents sudden decrease in hardness at high temperatures, and improves wear resistance. However, in this way, Al-Sn-P
Increasing the fatigue resistance of B-series alloys at high temperatures cannot be achieved simply by adding high-melting-point elements to increase hardness; instead, the alloys become brittle, resulting in lower tensile strength, elongation, and impact resistance. value decreases.

この点について、本発明では、高温、高荷重下の苛酷な
条件に好適な軸受台金を提供するために、Srを必須成
分として添加し、口のsrを鋳造時点で31に作用させ
てSi結晶粒子の球状化若しくはSi結晶粒子の一部の
球状化、つまり、Si結晶粒子の先端の丸味化を計り、
更に、通常の条件の熱処理によりこのS1結晶粒子の球
状化若しくは丸味化を高め、これにより、Al−Sn−
pb金合金引張強度、伸びならびに衝撃強さを高める。
Regarding this point, in the present invention, in order to provide a bearing base metal suitable for severe conditions under high temperature and high load, Sr is added as an essential component, and the sr of the mouth is made to act on 31 at the time of casting. Spheroidizing the crystal particles or partially spheroidizing the Si crystal particles, that is, rounding the tips of the Si crystal particles,
Furthermore, heat treatment under normal conditions enhances the spheroidization or roundness of the S1 crystal particles, thereby making the Al-Sn-
PB gold alloy increases tensile strength, elongation and impact strength.

すなわち、−殻内に云って、1l14疲労強さは材料の
引張強さ、伸び、衝撃強さ、組織的構造等起因するもの
であって、単に軸受成分の添加によっては解決できない
とされているが、本発明ではSrによって鋳造時に31
結晶粒子の球状化をはかり、この球状化をSrによって
熱処理時に更に高めるのである。
In other words, 1l14 fatigue strength is caused by the material's tensile strength, elongation, impact strength, organizational structure, etc., and cannot be solved simply by adding bearing components. However, in the present invention, 31
The aim is to make the crystal grains spheroidal, and this spheroidization is further enhanced by Sr during heat treatment.

なお、本発明は、Srの添加によってR’4!i的特性
の低特性防止することができるので、添加元素として上
記の如く高融点元素をAI−Sn−Pb系合金に添加し
ても、高温下での様減的特性を急激に低下させることが
ない。このような本発明の特徴は高温、高荷重下で疲労
試験を行なった結果、疲労強度の向上が認められたごと
でも裏付けることができる。
In addition, in the present invention, by adding Sr, R'4! Since it is possible to prevent the deterioration of i-characteristics, even if high-melting-point elements are added to the AI-Sn-Pb alloy as mentioned above, the deterioration of i-characteristics at high temperatures can be prevented from rapidly decreasing. There is no. These features of the present invention can be supported by the fact that fatigue strength was improved as a result of fatigue tests conducted at high temperatures and under high loads.

次に、以上の如くAlマトリックス中に、球状若しくは
先端が丸味をおびた形状のSi粒子を析出させると、高
温、高負荷条件に適合し表面性能が著しく高められた軸
受面が得られる。
Next, when Si particles having a spherical shape or a rounded tip are precipitated in the Al matrix as described above, a bearing surface that is suitable for high temperature and high load conditions and has significantly improved surface performance can be obtained.

−殻内に、焼付現象はそれに達する過程が複雑で多くの
条件が相乗的に作用して達するため、〜義的に把握する
ことは困難であると云われている。しかし、表面にPb
−Sn合金のオーバルレイメツキにより表面層を具える
Cu −Pb系合金の軸受は高荷重運転下ではこのメツ
キの表面層が摩滅し焼f=jきに至る。これに対し、S
l、Cuを含むAt −Sn−Pb系合金から成って、
表面にオーバーレイメツキによる表面層が形成されてい
ない軸受においては焼付きに至らない。
- It is said that it is difficult to understand the phenomenon of seizure in the shell because the process of reaching it is complex and many conditions interact synergistically. However, Pb on the surface
In a bearing made of a Cu--Pb alloy that has a surface layer formed by oval plating of a -Sn alloy, the surface layer of this plating wears away under high load operation, leading to burning f=j. On the other hand, S
Consisting of an At-Sn-Pb alloy containing l, Cu,
Seizing does not occur in bearings that do not have a surface layer formed by overlay plating on the surface.

このところを本発明者等は着目し、両軸受を構造的に比
較検討した。すなわち、第3図は表面にオーバーレイメ
ツキによる表面層(以下、単にオーバーレイメツキ台と
いう。)を有する軸受の一部の拡大断面図であり、第4
図はAI−Sn −Pb合金であって、表面にオーバー
レイメツキ層がな(、しがも、Sl、Cu等を含む軸受
の一部の拡大断面図である。第3図から明らかな如く、
この軸受は表面のオーバーレイメツキ層4、合金層5な
らびに裏金6から成って、このオーバーレイメツキ層4
の全表面によって軸荷重が支持される。これに対し、第
4図に示す如<、Al−Sn −Pb系合金でSi、C
u等を含む軸受は合金層5と裏金6とから成って、この
合金層5のマトリックス中に棒状や片状の31粒子2が
析出している。
The present inventors paid attention to this point and conducted a structural comparative study of both bearings. That is, FIG. 3 is an enlarged sectional view of a part of a bearing having a surface layer formed by overlay plating (hereinafter simply referred to as an overlay plating base) on the surface, and FIG.
The figure is an enlarged cross-sectional view of a part of a bearing made of an AI-Sn-Pb alloy, which does not have an overlay plating layer on its surface (but also contains Sl, Cu, etc.).
This bearing consists of an overlay plating layer 4 on the surface, an alloy layer 5 and a backing metal 6.
The axial load is supported by the entire surface of the On the other hand, as shown in Fig. 4, in the Al-Sn-Pb alloy, Si, C
The bearing including u, etc. consists of an alloy layer 5 and a back metal 6, and 31 rod-shaped or flake-shaped particles 2 are precipitated in the matrix of this alloy layer 5.

従って、この軸受では相手軸の荷重は硬いSi粒子2支
えられ、しかも、Si粒子が上記の如く切削力な持って
いる。
Therefore, in this bearing, the load of the mating shaft is supported by the hard Si particles 2, and moreover, the Si particles have a cutting force as described above.

要するに、両者の差は面接触と点接触であり、この差に
よって潤滑、摩擦面の温度上昇において決定的な相違と
なっている。つまり、第3図に示す軸受のように、面接
触では、高速、高負荷条件下で摩擦面の温度は急速に上
昇するのに対し、第4図に示す軸受のように点接触では
、合金層5の表面と相手軸表面との間に間隙が形成され
、この間隙の油膜には壱まり大きな荷重がかからないた
め、十分な潤滑が保持され、摩擦面の温度上昇はおさえ
られる。
In short, the difference between the two is surface contact and point contact, and this difference makes a decisive difference in lubrication and temperature rise of the friction surface. In other words, in surface contact, as in the bearing shown in Figure 3, the temperature of the friction surface rises rapidly under high speed and high load conditions, whereas in point contact, as in the bearing shown in Figure 4, the temperature of the friction surface increases rapidly under high speed and high load conditions. A gap is formed between the surface of layer 5 and the surface of the mating shaft, and since no large load is applied to the oil film in this gap, sufficient lubrication is maintained and temperature rise on the friction surface is suppressed.

更に進んで、本発明者等は、第4図に示す如き点接触に
よる軸荷重の支持が高荷重下の潤滑にきわめて有効であ
るという基本的見地に立って、その効果を最大限に生か
すための組成ならびに構造について研究し、本発明に係
る軸受台金を完成するに至ったのである。
Proceeding further, the present inventors based on the basic viewpoint that supporting shaft loads through point contact as shown in Fig. 4 is extremely effective for lubrication under high loads, and in order to make the most of the effect. Through research on the composition and structure of the bearing base metal according to the present invention, they completed research on the composition and structure of the bearing base metal.

具体的に示すと、本発明者等はAI −Sn−Pb系合
金であって、5ifICu等を含む軸受台金におけるS
lの析出形態に着目し、その形態の潤滑面におよぼす効
果について調査研究を進めたところ、 第1に、Siは融点1f高い安定物質であり、かつ、非
金属的性質が強く、相手軸の主成分のFeに200℃〜
500℃程度の高温状態で接触しても、全く拡散若しく
は溶解を起さないことから、軸荷重の点支持手段はSl
がきわめて好適であることがわかった。
Specifically, the present inventors have discovered that S in a bearing base metal containing an AI-Sn-Pb alloy such as 5ifICu
Focusing on the precipitation form of l, we conducted research on the effect of this form on the lubricating surface. First, we found that Si is a stable substance with a melting point of 1f, and has strong nonmetallic properties, making it difficult for the mating shaft to 200℃~ for main component Fe
The point support means for the axial load is Sl
was found to be extremely suitable.

第2に相手材を油膜を介し点支持する場合、31粒子は
そのビッカース硬さが599にも達するほど硬く、しか
も、81粒子は化合物でないためもろさがなく、弾性に
冨み、急激な変動荷重に耐えられることがわかった。
Second, when supporting the mating material at a point via an oil film, the 31 particles are so hard that their Vickers hardness reaches 599, and the 81 particles are not a compound, so they are not brittle, have high elasticity, and can withstand rapid fluctuations in load. It was found that it can withstand

しかしながら、Siは上記の如き性質を持っているのに
も拘らず、結晶性が強(、Alとの共晶析出形態でも、
板状若しくは棒状を呈し、その後の圧延や熱処理を経て
も、その形状はわずか変化する程度である。このため、
Si粒子の析出形態の制御を鋳造時から行なわない場合
は、第5図に示す如く、合金層でマトリックス1中に5
i−Pb合金粒子とともに析出する81粒子2は板状若
しくは棒状化する一方、これらSi粒子2から離れて5
n−Pb合金粒子3が存在することになる。この状態で
あると、硬いSi粒子2のエツジによって相手軸が削ら
れできずつけられ易く、かえって、潤滑性が低下し、焼
付きが起こる。
However, despite having the above-mentioned properties, Si has strong crystallinity (even in the form of eutectic precipitation with Al,
It has a plate-like or rod-like shape, and its shape changes only slightly even after subsequent rolling and heat treatment. For this reason,
If the precipitation form of Si particles is not controlled from the time of casting, as shown in FIG.
The 81 particles 2 precipitated together with the i-Pb alloy particles become plate-shaped or rod-shaped, while the 81 particles 2 separated from these Si particles 2 form 5
n-Pb alloy particles 3 will be present. In this state, the edges of the hard Si particles 2 cannot scrape the mating shaft and are likely to attach, and on the contrary, the lubricity is reduced and seizure occurs.

この点から、本発明において潤滑性の飛躍的向上のため
に、31粒子から切削力を除去する上から、球状化の如
くエツジ部に丸味をおびさせるような形態に制御する。
From this point of view, in the present invention, in order to dramatically improve the lubricity, the cutting force is removed from the 31 particles, and the edges are controlled to have a rounded shape, such as spherical shape.

すなわち、第1図は本発明の一つの寅施例に係る軸受台
金の一部の拡大断面図であって、第1図に示す如く、合
金層において、そのマトリックス1中に分散析出する3
1粒子2は球状化し、この球状81粒子2によって点接
触の理想に近づけ、より潤滑性を高め且つ耐摩耗性を高
めることができる。また、高速かつ急激な高荷重がかけ
られても、相手軸をきずつけることがない。また、Sl
が球状化しているため、マトリックス中の切欠効果がな
く、強度的にも安定したマトリックスを1qることがで
き、耐摩耗性にも優れる。
That is, FIG. 1 is an enlarged sectional view of a part of a bearing base metal according to one embodiment of the present invention, and as shown in FIG.
1 particles 2 are spherical, and the spherical 81 particles 2 bring the ideal point contact closer to the ideal point contact, further increasing lubricity and wear resistance. Furthermore, even if a high load is suddenly applied at high speed, the mating shaft will not be damaged. Also, Sl
Since it is spherical, there is no notch effect in the matrix, making it possible to create a 1q matrix that is stable in terms of strength and has excellent wear resistance.

この81粒子の球状化は、Srの添加によって81が析
出する共晶点のA1合金液相の性質を改善することによ
って達成でき、更に、その後の熱処理において、その条
件が通常条件であってもS「によって球状化が高められ
る。
This spheroidization of 81 particles can be achieved by improving the properties of the A1 alloy liquid phase at the eutectic point where 81 precipitates by adding Sr, and furthermore, even if the conditions are normal in the subsequent heat treatment, The spheroidization is enhanced by S.

更に、Srの添加によって5n−Pb合金粒子3の析出
形態が変化し、第1図に示すように81の球状化粒子2
に5n−Pb合金3がより隣接して存在するようになる
。この構造は、従来例のもの(例えば、第5図参照)に
比して、潤滑性能を飛躍的に向上させる。
Furthermore, the addition of Sr changes the precipitation form of the 5n-Pb alloy particles 3, and as shown in FIG.
The 5n-Pb alloy 3 is present more closely adjacent to the 5n-Pb alloy 3. This structure dramatically improves the lubrication performance compared to the conventional structure (see, for example, FIG. 5).

また、以上のように表面性能を構造的に解決するほか、
AIは熱に対して感受性が強(,150℃をすぎると、
)lv 10以下まで軟化して強度が失なわれるため、
マトリックスの高温での強化をはかるg+要があり、こ
のところから、Cu、 ■iを添加する。
In addition to solving the surface performance structurally as described above,
AI is highly sensitive to heat (if it exceeds 150℃,
)lv 10 or less and loses its strength,
There is a need for g+ to strengthen the matrix at high temperatures, and Cu and i are added from this point.

すなわら、これら添加元素のうちで、CuはAlと固溶
してAlマトリックスを硬化させる。
That is, among these additive elements, Cu forms a solid solution with Al and hardens the Al matrix.

これらが0.1〜4%の範囲であると、一部が固溶し残
部が析出し、そのバランスによってAlマトリックスが
強化され、とくに、 Cuを単味では0.1〜4%添加
が適量である。
When these are in the range of 0.1 to 4%, part of them dissolves in solid solution and the rest precipitates, and the balance strengthens the Al matrix. In particular, adding 0.1 to 4% of Cu alone is appropriate. It is.

また、■1は析出硬化型のマトリックス強化元素であっ
て、この11強化元素によって高温での強度を向上させ
るときには、■1の添加量は0.1〜4%が適量である
Further, (1) is a precipitation hardening type matrix reinforcing element, and when the strength at high temperatures is improved by this 11-strengthening element, the appropriate amount of (1) to be added is 0.1 to 4%.

このように析出硬化型強化元素の丁1を添加し、これら
元素の固溶によって強度を向上させる。
In this way, the precipitation hardening type reinforcing element 1 is added, and the strength is improved by solid solution of these elements.

CUとTiとの添加割合は特に制御はないが、CuはA
Xに固溶するため、■1に比べて多量添加が好ましい。
There is no particular control on the addition ratio of CU and Ti, but Cu is
In order to form a solid solution in X, it is preferable to add a large amount compared to (1).

例えば、Cll13%以下好ましくは2%以下残余がT
iとする。
For example, if the remaining Cl is 13% or less, preferably 2% or less, T
Let it be i.

以上の通り、本発明においては、単に従来のように素地
強化元素を添加するだけでなく、これら強化元素ととも
にS「を添加し、硬さのみでな(、引張強度を従来より
向上させ、耐疲労性を高め、高荷重運転下での軸受性能
の向上をはかるものであるが、その機構とともに各成分
組成について説明すると、次の通りである。
As described above, in the present invention, in addition to simply adding base-strengthening elements as in the past, S'' is added together with these reinforcing elements to improve not only the hardness (but also the tensile strength and durability). The purpose is to increase fatigue resistance and improve bearing performance under high load operation.The mechanism and composition of each component are explained as follows.

第1図に示す構成の軸受では、軸荷重をささえる潤滑面
はマトリックス1の表面から突出するSi粒子2の先端
部であり、しかも、Si粒子と相手軸との間に′all
lが介在し、流体潤滑が保たれている。しかし、忠激な
変動荷重を受け、この油膜が破れ、局部的に境界潤滑に
達し、この時に、Si粒子2の上面に5n−Pb合金の
フィルムが介在すれば、焼付きを防止でき、しかも、正
常に油iが再生されて流体潤滑の状態にすみやかに復帰
することができる。このときにも、第1図に示す構造で
あると、Si粒子2の近傍にsn −11b合金粒子3
が存在し、この合金は溶融状態でも潤滑面と親和性があ
り、このため、油切れを起こしに(い。また、相手軸と
Si粒子とのIfJ[で、81粒子が高温になっても、
5i−Pbの融解熱で熱吸収され、近傍のマトリックス
のAlの合金と相手軸との焼付きが起こりにくくなる。
In the bearing with the configuration shown in FIG. 1, the lubricating surface that supports the shaft load is the tip of the Si particles 2 protruding from the surface of the matrix 1, and there is 'all' between the Si particles and the mating shaft.
l intervenes to maintain fluid lubrication. However, this oil film ruptures under severe fluctuating loads and locally reaches boundary lubrication, and if a 5n-Pb alloy film is interposed on the upper surface of the Si particles 2 at this time, seizure can be prevented. , the oil i can be normally regenerated and the state of fluid lubrication can be quickly restored. Also at this time, if the structure shown in FIG. 1 is used, sn-11b alloy particles 3 are located near the Si particles 2
exists, and this alloy has an affinity for lubricated surfaces even in the molten state, so it does not cause oil depletion. ,
Heat is absorbed by the heat of fusion of 5i-Pb, making it difficult for the adjacent matrix Al alloy to seize with the mating shaft.

又、この時にも第2図に示す如く、81粒子2に隣接す
るSn −Pb合金粒子3の少なくとも一部が液相化し
ており、この液相3aがS+粒子2の突出面に供給され
る。この供給口は温度の上昇とともに、5%えて、31
粒子2の潤滑面には常に5n−Pbの液相3aが介在す
るため、オーバーヒートを未然に防止できる。要するに
、Si粒子2が球状化し、ごれに5n−Pb合金粒子3
が隣接する構造は、境界潤滑状態(抽Rが切れた)で非
常に有効であり、また、普通の流体潤滑状態でも、硬い
Si粒子2が相手軸に適切になじみ、かつ、やわらかい
5n−pblにおおわれ、これがショックアアソーバー
的な働きをする。
Also, at this time, as shown in FIG. 2, at least a portion of the Sn--Pb alloy particles 3 adjacent to the 81 particles 2 are in a liquid phase, and this liquid phase 3a is supplied to the protruding surfaces of the S+ particles 2. . As the temperature increases, this supply port increases by 5% to 31
Since the 5n-Pb liquid phase 3a is always present on the lubricated surface of the particles 2, overheating can be prevented. In short, the Si particles 2 are spheroidized, and the 5n-Pb alloy particles 3 are spheroidized.
The structure in which the two are adjacent to each other is very effective in the boundary lubrication state (the bolt R is broken), and even in the normal fluid lubrication state, the hard Si particles 2 suitably fit into the mating shaft, and the soft 5n-pbl This acts as a shock absorber.

なお、上記の通りの各元素の限定理由を示すと、次の通
りである。
The reasons for limiting each element as described above are as follows.

まず、強靭なAlマトリックスを形成する元素であるC
uと析出硬化型強化元素である■1との添加−を合量で
0.1〜4%とするのは、CUが4%を越える7A加で
あると、析出量が多くなって、かえってもろくなり、ま
た、■1の添加量を0.1〜4%にすると、軸受に耐疲
労性を付与できるが、4%を越える添加では化合物が粗
大化してしまい、かえって、その靭性を劣化させてしま
うため、CUと丁1とを0.1〜4%添加し、CUなら
びにTiの効果を十分に発現させる。
First, C is an element that forms a strong Al matrix.
The reason for setting the total amount of addition of u and precipitation hardening type strengthening element 1 to 0.1 to 4% is that if CU exceeds 4% in 7A addition, the amount of precipitation will increase, which will cause In addition, if the amount added in (1) is 0.1 to 4%, fatigue resistance can be imparted to the bearing, but if it is added in excess of 4%, the compound becomes coarse and its toughness deteriorates. Therefore, 0.1 to 4% of CU and Ti are added to fully express the effects of CU and Ti.

更に、snも3〜35%、pbも0.1〜10%の範囲
で通切な潤滑面が形成できる。また、Slは耐焼付性、
耐摩耗性の向上に有効で6%超11%まで添加すること
で十分この!il構造を維持できる。
Furthermore, a continuous lubricating surface can be formed when the sn content is in the range of 3 to 35% and the pb content is in the range of 0.1 to 10%. In addition, Sl has seizure resistance,
Effective for improving wear resistance, adding more than 6% to 11% is sufficient! il structure can be maintained.

また、SrはSlの形状を球状に制御し、更に、5n−
Pb粒子をS1粒子近傍に析出させるもので、きわめて
有効な元素である。しかし、Srが0.01%以下であ
ると、このような添加効果がなく、0.3%以上の添加
は、鋳造時に巣を発生しやすくなりかえって問題をおこ
す。
In addition, Sr controls the shape of Sl to be spherical, and furthermore, 5n-
It causes Pb particles to precipitate near the S1 particles, and is an extremely effective element. However, if the Sr content is 0.01% or less, there is no such addition effect, and if the Sr content is 0.3% or more, cavities are more likely to occur during casting, causing problems.

実施例 次に、本発明の実施例について説明する。Example Next, examples of the present invention will be described.

実施例1゜ まず、第1図に示す組成のAI −Sn系軸受合金を連
続鋳造により厚さ20mmの板状材として鋳造し、各鋳
造ビレットの上下面を1.0+n+a面削し続いて冷間
圧延により2mmの厚さまで圧下した。
Example 1 First, an AI-Sn bearing alloy having the composition shown in Fig. 1 was cast as a plate material with a thickness of 20 mm by continuous casting, and the upper and lower surfaces of each cast billet were milled by 1.0 + n + a, and then cooled. It was rolled down to a thickness of 2 mm by inter-rolling.

この状態で300〜350℃の熱処理を行なってひずみ
を除去し、その後、純Alの薄い板を介して裏金の鉄板
に圧着させて厚み1.somlの軸受を得た。
In this state, heat treatment is performed at 300 to 350°C to remove strain, and then a thin pure aluminum plate is crimped onto a steel backing plate to a thickness of 1. A soml bearing was obtained.

これらの軸受のうちで、供試材N6.1〜5はSrを含
まない従来例の供試材であり、N16〜10は本発明に
係るものである。
Among these bearings, test materials N6.1 to N6.5 are conventional test materials that do not contain Sr, and N16 to N10 are test materials according to the present invention.

これらの各供試材は、軸受として使用される常温及び2
00℃の機械的性質を見るI;めに、引張強度、伸びな
らびに硬さの試験を行ない、これを第2表に示した。な
お、各供試材は裏当金を機械加工により削除してAt 
−Sn合金部分のみとし、試験片の形状はJIS z 
22旧の5号に示すものとした。
Each of these test materials was used as a bearing at normal temperature and
To examine the mechanical properties at 00°C, tensile strength, elongation and hardness tests were conducted and are shown in Table 2. In addition, the backing metal of each sample material was removed by machining and At
-Only the Sn alloy part, the shape of the test piece is JIS z
22 old No. 5.

これらの結果から、供試材Na6〜10は従来材に比べ
、高温(200℃)における強度低下が少な(、Cu、
Tiの添加効果がうかがえる。すなわち、Siの球状化
及びマトリックス強化が相開されて強度や伸びが改善さ
れたものと考えられる。高;Bでの機械的性質は向上し
たと言える。
From these results, the test materials Na6-10 show less strength loss at high temperatures (200°C) than conventional materials (Cu,
The effect of adding Ti can be seen. In other words, it is considered that the spheroidization of Si and the reinforcement of the matrix were phase-opened and the strength and elongation were improved. It can be said that the mechanical properties at High; B were improved.

次に、供試材の耐焼付性と耐摩耗性を知るために、鈴木
式摩擦摩耗試験機を用いて試験し、その試験条件は次の
通りであった。
Next, in order to find out the seizure resistance and abrasion resistance of the sample materials, a test was conducted using a Suzuki type friction and wear tester, and the test conditions were as follows.

マサツ速度  4m/sec 相手材 345G、硬さHFIC=55面アラサ0.8
〜1.O3 使用オイル  SAE、20w−40 油    温   150±5℃ 焼付荷重 100klJ/Im2から10kg/Cl1
2Siepで焼付きに至るまで15分毎に面圧を上げ てゆき、焼付きをおこした面圧を 焼付vJ重とする。
Massage speed 4m/sec, mating material 345G, hardness HFIC=55 surface roughness 0.8
~1. O3 Oil used: SAE, 20w-40 Oil temperature: 150±5℃ Seizure load: 100klJ/Im2 to 10kg/Cl1
In 2Siep, the surface pressure is increased every 15 minutes until seizure occurs, and the surface pressure that causes seizure is defined as the seizure vJ weight.

耐摩耗性 一方、耐摩耗性をみるために100klJ/
Ii一定で6時間試験し、その後の重重変化をみる。
Abrasion resistance On the other hand, to check the abrasion resistance, 100klJ/
The test was conducted for 6 hours at a constant Ii, and the change in weight was observed thereafter.

この結果を第2表に示す。The results are shown in Table 2.

これによれば、供試材No6〜10の何れも従来材に比
べ良好な耐焼付性、耐摩耗性を示しており、Sr及びマ
トリックス強化元素添カロにより表面性能も向上してい
ることがわかる。すなわら、本発明に係る合金はすぐれ
た潤滑R横を有していることを示している。
According to this, all of sample materials No. 6 to 10 show better seizure resistance and wear resistance than conventional materials, and it can be seen that the surface performance is also improved by adding Sr and matrix-strengthening elements. . This shows that the alloy according to the present invention has an excellent lubrication radius.

次に、実際に、各供試材をベアリング形状に加工し、R
柊的なベアリングの疲労テストを行なったところ、第2
表に示す結果を得た。これは実際のエンジンの条件とほ
ぼ同じようにベアリングをコンロッドに固定し、軸に偏
心荷重をかけて、以下の条件で耐久テストを行ない、焼
付きや破損を起さず、その性能を維持した時間の長さで
評(曲するテストである。
Next, each sample material was actually processed into a bearing shape, and R
When we conducted a fatigue test on the bearing, the second
The results shown in the table were obtained. This test was conducted under the following conditions, with the bearing fixed to the connecting rod and an eccentric load applied to the shaft, almost the same as in an actual engine, and the performance was maintained without seizure or damage. Criticize based on the length of time (this is a song test).

面     圧   600kgr/cf回  転  
数   400Or、p、m相手材料 FCD 70、
アラサ0.8〜1.5S使用オイル  SAE 201
−40 油     温   150℃±5℃ なお、このテスト時間の上限は300時間とし、N=5
の平均値を第2表に示した。この結果、何れも比較例の
従来材に比べ長い耐久時間を示しており、本発明に係る
合金はすぐれた耐疲労性を示している。
Surface pressure 600kgr/cf rotation
Number 400Or, p, m Compatible material FCD 70,
Oil used for roughness 0.8-1.5S SAE 201
-40 Oil temperature 150℃±5℃ The upper limit of this test time is 300 hours, N=5
The average values are shown in Table 2. As a result, all of the alloys exhibited longer durability than the conventional materials of comparative examples, and the alloys according to the present invention exhibited excellent fatigue resistance.

一方、従来例N・2の合金と史にSrを0.03%添加
した場合(供試材No、 6 )におけるSlの形態を
調べるため、それぞれの試料を用いて31粒の形状がわ
かるように深くエツチングし、電子顕微鏡を用いて調べ
たところ、Srの添加によりSiが球状化していること
がわかった。
On the other hand, in order to investigate the morphology of Sl in the case where 0.03% Sr was added to the alloy of conventional example N. When deeply etched and examined using an electron microscope, it was found that the addition of Sr made the Si spheroidal.

実施例2゜ 本発明に係る軸受台金が高融点金属等をAIマトリック
スの強化剤として添加して、合金の脆弱化を改善する効
果があるが否かを確認するため、代用特性として衝撃値
を測定し、Srの添カロ作用により改善効果を実験によ
って求めた。
Example 2 In order to confirm whether the bearing base metal according to the present invention has the effect of improving the brittleness of the alloy by adding a high melting point metal etc. as a reinforcing agent to the AI matrix, impact value was measured as a substitute property. was measured, and the improvement effect due to the addition of Sr was determined through experiments.

実験の供試材として、実施例1の第1表に示す従来材で
あるS「を含まないNo、 5と本発明に係るものであ
る供試材&6にて比較実験を行なった。
A comparative experiment was carried out using the conventional materials No. 5, which do not contain S, shown in Table 1 of Example 1, and the specimen material &6 according to the present invention, as test materials.

実験はJIS z 2242、シャルピー衝撃試験方法
にて3号試験片(n=5)を作成して行なった。
The experiment was conducted using No. 3 test pieces (n=5) prepared according to JIS z 2242 and the Charpy impact test method.

実験の結東従来材は平均[0,84klJ・ri/al
であったが、本発明に係るものは平均値2,90klJ
・Ill/I]2であり、明らかに本発明に係る軸受台
金はSrJ加による改善効果が認められた。
The average value of the Yuto conventional material in the experiment was [0.84 klJ・ri/al
However, the average value of the one according to the present invention was 2,90 klJ.
・Ill/I]2, and it was clear that the bearing base metal according to the present invention had an improvement effect due to the addition of SrJ.

〈発明の効果〉 以上詳しく説明した通り、本発明は、重量%で、3〜3
5%Sn、6%超11%以下S1ならびに0.1〜10
%Pb、 0.01〜0.3%Srを含むとともにCu
と11を含有し、残余が実質的にAIから成って、しが
も、このマトリックス中にSi粒子を、球状、だ円状若
しくは先端が丸味をおびた形状に析出させて成るもので
ある。
<Effects of the Invention> As explained in detail above, the present invention has an effect of 3 to 3% by weight.
5% Sn, more than 6% and less than 11% S1 and 0.1 to 10
Contains %Pb, 0.01-0.3%Sr and Cu
and 11, with the remainder essentially consisting of AI, and Si particles are precipitated in this matrix in the shape of a sphere, an ellipse, or a shape with a rounded tip.

この構成による本発明軸受合金は極めて潤滑性に優れ、
かつ、100〜250℃の高温における機械的性質が極
めて良好であり、高負荷運転による使用条件の苛酷さに
十分に耐える軸受台金である。
The bearing alloy of the present invention with this configuration has extremely excellent lubricity,
In addition, the bearing base metal has extremely good mechanical properties at high temperatures of 100 to 250°C, and can sufficiently withstand severe usage conditions due to high-load operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一つの実施例に係る軸受台金の一部の
拡大断面図、第2図は第1図に示す軸受台金の潤滑機構
の説明図、第3図ならびに第4図は従来例の軸受の一部
の各拡大断面図、第5図は第4図の軸受台金の一部の拡
大断面図である。 符号1・・・・・・マトリックス 2・・・・・・Si
粒子3・・・・・・Sr+−Pb合金粒子 3a−−−−−・5n−Pbi相 4・・・・・・オーバーレイメツキ層 5・・・・・・軸受合金層  6・・・・・・裏金特3
’F出願人 工ヌデーシー株式会社代  理  人  
弁理士  松  下  義  勝弁護士 Dl  島 
文 雄 第1図 3sn−pb佃1÷ 第2図
FIG. 1 is an enlarged sectional view of a part of a bearing base metal according to one embodiment of the present invention, FIG. 2 is an explanatory diagram of the lubrication mechanism of the bearing base metal shown in FIG. 1, and FIGS. 3 and 4. 5 is an enlarged sectional view of a part of the conventional bearing, and FIG. 5 is an enlarged sectional view of a part of the bearing base metal of FIG. 4. Code 1...Matrix 2...Si
Particle 3...Sr+-Pb alloy particle 3a--5n-Pbi phase 4...Overlay plating layer 5...Bearing alloy layer 6...・Secret money special 3
'F Applicant Agent: KoNDC Co., Ltd.
Patent Attorney Yoshikatsu Matsushita Attorney Dl Shima
Text Yu 1st Figure 3 sn-pb Tsukuda 1 ÷ Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)重量%で、3〜35%Sn、6%超11%以下Si
ならびに0.1〜10%Pbを含むほか、CuとTiを
合量で0.1〜4%含有し、残余が実質的にAlから成
るAl−Sn系軸受合金において、0.01〜0.3%
のSrを含有して、Alマトリックス中に、球状、だ円
状若しくは先端が丸味をおびた形状のSi粒子を分散、
析出させることを特徴とするAl−Sn−Pb系軸受合
金。
1) In weight%, 3 to 35% Sn, more than 6% to 11% Si
In addition to containing 0.1 to 10% Pb, an Al-Sn bearing alloy containing Cu and Ti in a total of 0.1 to 4%, with the remainder substantially consisting of Al. 3%
containing Sr and dispersing Si particles in a spherical, oval, or rounded tip shape in an Al matrix,
An Al-Sn-Pb bearing alloy characterized by precipitation.
JP15990989A 1989-06-21 1989-06-21 Al-sn-pb bearing alloy Pending JPH0277547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15990989A JPH0277547A (en) 1989-06-21 1989-06-21 Al-sn-pb bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15990989A JPH0277547A (en) 1989-06-21 1989-06-21 Al-sn-pb bearing alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8844689A Division JPH0257654A (en) 1989-04-07 1989-04-07 Al-sn-pb bearing alloy

Publications (1)

Publication Number Publication Date
JPH0277547A true JPH0277547A (en) 1990-03-16

Family

ID=15703817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15990989A Pending JPH0277547A (en) 1989-06-21 1989-06-21 Al-sn-pb bearing alloy

Country Status (1)

Country Link
JP (1) JPH0277547A (en)

Similar Documents

Publication Publication Date Title
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
GB2367070A (en) An aluminium bearing alloy
JP3472284B2 (en) Aluminum bearing alloy
US5536587A (en) Aluminum alloy bearing
JP2761181B2 (en) Tin-based white metal bearing alloy with excellent heat and fatigue resistance
JP4116166B2 (en) Slide bearing and manufacturing method thereof
JPS6263635A (en) Al-sn-pb bearing alloy
US5912073A (en) Bearing made of abrasion-resistant aluminum alloy
JPS6156305B2 (en)
JPH0277547A (en) Al-sn-pb bearing alloy
JPS61153255A (en) Al-sn bearing alloy
JP4422255B2 (en) Aluminum base bearing alloy
JPH0277546A (en) Al-sn-pb bearing alloy
JPS5867841A (en) Aluminum alloy bearing
JPH0257654A (en) Al-sn-pb bearing alloy
JPH0347934A (en) Al-sn-pb series bearing alloy
JPH0257653A (en) Al-sn bearing alloy
JPH0711046B2 (en) Al-Sn bearing alloy
JPH0277548A (en) Al-sn-pb bearing alloy
JPH0347936A (en) Al-sn-pb series bearing alloy
JPH0277545A (en) Al-sn-pb bearing alloy
JPH0347935A (en) Al-sn-pb series bearing alloy
JPS5864332A (en) Aluminum alloy bearing
JPH0277543A (en) Al-sn-pb bearing alloy
JPH0277549A (en) Al-sn-pb bearing alloy