JPH0277536A - Production of high-carbon cobalt-base alloy member - Google Patents

Production of high-carbon cobalt-base alloy member

Info

Publication number
JPH0277536A
JPH0277536A JP14072488A JP14072488A JPH0277536A JP H0277536 A JPH0277536 A JP H0277536A JP 14072488 A JP14072488 A JP 14072488A JP 14072488 A JP14072488 A JP 14072488A JP H0277536 A JPH0277536 A JP H0277536A
Authority
JP
Japan
Prior art keywords
capsule
powder
alloy
cobalt
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14072488A
Other languages
Japanese (ja)
Other versions
JPH0438829B2 (en
Inventor
Shigehiro Oi
茂博 大井
Genryu Abe
源隆 阿部
Sadamu Matsuda
定 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP14072488A priority Critical patent/JPH0277536A/en
Publication of JPH0277536A publication Critical patent/JPH0277536A/en
Publication of JPH0438829B2 publication Critical patent/JPH0438829B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title alloy member by sealing a powder of high-carbon cobalt-base alloy containing specific percentages of C and Co in a metallic capsule and subjecting the above to presintering and then to plastic working by means of hot extrusion method. CONSTITUTION:A high-carbon cobalt-base alloy having a composition which contains, by weight, 0.5-5.0% C and >=40% Co as principal components and in which proper components, such as Cr, Ni, W, Mo, V, Nb, Ti, and Fe, are added to the above components is pulverized to <= about 1000mu by an atomizing method. A cylindrical metallic capsule 1 made of soft steel, rustless steel, etc., is filled with the resulting alloy powder 2, evacuated and sealed, subjected to cold isostatic pressing to increase filling density to about 65-70%, and then preheated up to >= about 700 deg.C by means of induction heating. When the temp. of the powdery raw material 2 reaches about 1150-1200 deg.C by means of further induction heating, glass lubricant is allowed to adhere rapidly to the whole surface and the above powdered raw material 2 is charged into a hot extruding machine to undergo plastic working, and the metallic layer is removed by means of grinding, etc., by which the desired alloy member can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、高炭素、コバルト基合金よりなる部材の製
造方法にかかり、特に粉末冶金技術を利用して上記合金
により所望形状の部材を成型する方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method of manufacturing a member made of a high carbon, cobalt-based alloy, and in particular, a method of molding a member of a desired shape from the above alloy using powder metallurgy technology. Regarding how to.

〈従来の技術〉 C015〜5.0重量%及びGo40重量%以上を基本
とし、これをCr、 Ni、 W、 Mo、 V、 N
b、 Ti、 Feなどの各種成分を適宜添加してなる
高炭素、コバルト基合金は、高温硬さ、耐摩耗性及び耐
食性か何れも優れているため、苛酷な用途の材料として
注目されてし)る。
<Conventional technology> Based on 15 to 5.0% by weight of CO and 40% by weight or more of Go, which is combined with Cr, Ni, W, Mo, V, N
High-carbon, cobalt-based alloys made by appropriately adding various components such as B, Ti, and Fe are attracting attention as materials for harsh applications because they have excellent high-temperature hardness, wear resistance, and corrosion resistance. ).

しかし、この種の材料は、変形抵抗が大きく靭性に乏し
いので、塑性加工が不可能とされていた。そのため、従
来は、肉盛りや溶射などの溶着方法や、鋳造方法によっ
て所望の部材を製造していた。
However, this type of material has high deformation resistance and poor toughness, so it has been thought that plastic working is impossible. Therefore, conventionally, desired members have been manufactured by welding methods such as overlaying or thermal spraying, or by casting methods.

〈発明が解決しようとする課題〉 一般に、溶着や鋳造による製造方法では、溶融物が凝固
したままの状態のものしか得られないので、凝固時の内
部欠陥か内在したり、組織が不均一になったりして、当
該金属が保有する性質を十分発揮させることができない
、特に高炭素、コバルト基合金は、凝固時に共晶炭化物
が粗大凝集し、かつマトリクス中に不均一に分散するほ
か、空孔等の内部欠陥が混在し易いために、合金の持つ
耐摩耗性、耐食性、高温硬さなどの品質特性か、ともに
非常に低くなる。
<Problems to be Solved by the Invention> Generally, manufacturing methods such as welding or casting can only produce products in a state where the molten material remains solidified, so internal defects may be present during solidification or the structure may be non-uniform. In particular, in high carbon and cobalt-based alloys, eutectic carbides coarsely agglomerate during solidification and are unevenly dispersed in the matrix, making it impossible to fully utilize the properties of the metal. Since internal defects such as holes are likely to be present, the quality characteristics of the alloy, such as wear resistance, corrosion resistance, and high-temperature hardness, are all extremely low.

これに加え、溶着方法では、内径70■l以下の比較的
細い管や長さ1m以上の比較的長い管の内面溶着が極め
て困難なことに加えて、その作業俺率か低く、鋳造法で
は薄肉管の製造かできないなど、製品の形態か厳しく制
約される。
In addition, with the welding method, it is extremely difficult to weld the inner surface of relatively thin pipes with an inner diameter of 70 μl or less or relatively long pipes with a length of 1 m or more, and the work efficiency is low, and the casting method There are severe restrictions on the form of the product, such as being able to only manufacture thin-walled tubes.

この発明は、上述の溶融、凝固による製品の品質上の問
題点を解決し、かつ、製造される製品の形態による制約
を緩和し、生産性を高めようとするものである。
This invention aims to solve the above-mentioned quality problems of products caused by melting and solidification, alleviate constraints imposed by the form of manufactured products, and increase productivity.

く課題を解決するための手段〉 この発明では、先ず、炭素0.5〜5.0重量%及びコ
バルト40重量%以上を基本成分とする合金を粉末化す
る0次いで、この合金粉末を金属カプセルに充填して封
止し、その後に加熱してカプセル内の合金粉末を予備焼
結させる。そして、これを誘導加熱により更に昇温させ
、熱間押出機に装填して押出しによる塑性加工を加える
Means for Solving the Problems> In the present invention, first, an alloy whose basic components are 0.5 to 5.0% by weight of carbon and 40% by weight or more of cobalt is powdered, and then this alloy powder is encapsulated in a metal capsule. The capsule is filled and sealed, and then heated to pre-sinter the alloy powder inside the capsule. Then, this is further heated by induction heating, loaded into a hot extruder, and subjected to plastic working by extrusion.

ここで、炭素0.5〜5.0重量%及びコバルト40重
量%以上の組成は、周知の高炭素、コバルト基合金の組
成に準拠するものであり、やはり周知のようにCr、 
Ni、 W、Mo、 V、Nb、 Ti、 Fe等の成
分を、適宜選択して添加する。
Here, the composition of 0.5 to 5.0% by weight of carbon and 40% by weight or more of cobalt is based on the composition of well-known high carbon, cobalt-based alloys, and as is also well-known, Cr,
Components such as Ni, W, Mo, V, Nb, Ti, and Fe are appropriately selected and added.

粉末化の方法としては、炭化物か微細で均一に分散し、
マトリクスの結晶粒も微細化するように、急冷を伴うア
トマイズ法か適当であり、特にカプセル内ての充填率を
高める上で、球状粉末か得られるガスアトマイズ法が最
適である。その粒径は、カプセル内での充填率を高め、
加熱を容易にするために、約1000g以下の各種のも
のを混在させるのが望ましい。
The method of powdering is to disperse carbide finely and uniformly,
In order to make the crystal grains of the matrix finer, an atomization method that involves rapid cooling is suitable, and in particular, a gas atomization method that produces spherical powder is most suitable in order to increase the filling rate within the capsule. Its particle size increases the filling rate within the capsule,
In order to facilitate heating, it is desirable to mix up to about 1000 g of each type.

カプセルとしては、軟鋼、不錆鋼を始め、加工性が悪く
ない金属であれば使用できる。製品が高炭素、コバルト
基合金のみからなる棒または管の場合は、円筒形または
2重円筒形の薄肉のカプセルを用いる。製品か高炭素、
コバルト基合金と通常の金属とのクラット材である場合
は、カプセル壁の一部または中子に、クラツド材を構成
させるための金属を適当な厚さにして使用する。
As the capsule, any metal that is easy to work with, including mild steel and rust-free steel, can be used. If the product is a rod or tube consisting solely of high carbon, cobalt-based alloys, a cylindrical or double cylindrical thin-walled capsule is used. product or high carbon,
In the case of a cladding material made of a cobalt-based alloy and an ordinary metal, a suitable thickness of the metal used to constitute the cladding material is used for a part of the capsule wall or the core.

粉末原料をカプセルに充填したならば、カプセルを封止
し、必要に応じ内部を排気する。熱間押出は、カプセル
内の粉末原料が1150〜1200℃になるように加熱
した上で実施する。その際に、粉末原料か適温に長時間
置かれると、炭化物や結晶粒か粗大化するので、昇温及
び押出加工は出来るだけ速やかに行わなければならない
Once the powder raw material is filled into the capsule, the capsule is sealed and the inside is evacuated if necessary. Hot extrusion is carried out after heating the powder raw material in the capsule to 1150 to 1200°C. At this time, if the powder raw material is left at an appropriate temperature for a long time, carbides and crystal grains will become coarse, so heating and extrusion must be carried out as quickly as possible.

原料粉末の昇温を助けるため、カプセルへ充填した後に
、冷間静水圧プレスを行うのが望ましい、これを行うこ
とにより、粉末の充填密度は、60〜65%から65〜
70%に上昇し、予備焼結のための熱伝導度が向上する
In order to help raise the temperature of the raw powder, it is desirable to perform cold isostatic pressing after filling it into capsules.By doing this, the packing density of the powder can be increased from 60-65% to 65-65%.
70%, improving thermal conductivity for pre-sintering.

カプセル内の原料粉末を押出温度にまで急速に加熱する
には、誘導加熱が最良である。しかし、粉末原料は、充
填密度が上述のように高められていても、誘導電流が流
れにくい、よって、誘導加熱に先立って、カプセルを7
00℃以上に加熱して、内部の粉末を予備焼結させる必
要がある。
Induction heating is the best way to rapidly heat the raw powder in the capsule to the extrusion temperature. However, even if the packing density of the powder raw material is increased as described above, it is difficult for the induced current to flow through the powder raw material. Therefore, prior to induction heating, the capsules are
It is necessary to pre-sinter the powder inside by heating to 00°C or higher.

カプセルが、誘導加熱によって所定温度に達したら、速
やかに全面にガラス潤滑剤を付着させ、熱間押出機に装
填して加工する。
When the capsule reaches a predetermined temperature by induction heating, glass lubricant is immediately applied to the entire surface of the capsule, and the capsule is loaded into a hot extruder and processed.

〈作用〉 カプセルに充填された粉末原料は、必要に応じ冷間静水
圧プレスにより圧縮されて充填密度か高められ、予備焼
結によって誘導電流が流れ易くなり、誘導加熱により速
やかに加工温度に昇温し、熱間押出加工を受ける。
<Function> The powdered raw material filled in the capsule is compressed by cold isostatic pressing as necessary to increase the packing density, the pre-sintering makes it easier for induced current to flow, and the induction heating quickly raises the processing temperature. Warm and undergo hot extrusion processing.

このように、昇温から熱間押出加工までの過程か極めて
迅速に進行する結果、合金を構成する炭化物やマトリク
スの結晶粒の成長が抑えられる。
As a result of the extremely rapid process from temperature rise to hot extrusion processing, the growth of carbides and matrix grains constituting the alloy is suppressed.

そのために、従来塑性加工か不可能視されていた高炭素
、コバルト基合金でも、熱間押出加工か可能になる。
For this reason, hot extrusion processing is now possible even for high carbon, cobalt-based alloys, which were conventionally considered impossible to be processed by plastic processing.

〈実施例〉 第1図に示すように、円筒状金属カプセルl内に高炭素
、コバルト基合金粉末2を充填し、これを熱間押出加工
するときは、カプセルlに由来する薄い金属層を被った
合金の棒が得られる。金属の被層を研削等によって除去
して使用する。
<Example> As shown in Fig. 1, when a cylindrical metal capsule l is filled with high carbon, cobalt-based alloy powder 2 and hot extruded, a thin metal layer originating from the capsule l is A coated alloy bar is obtained. The metal coating is removed by grinding, etc. before use.

第2図に示すように、外筒3及び内筒4よりなる2重筒
状カプセルの内外筒間に合金粉末5を充填し、これを熱
間押出加工するときは、内外面に薄い金属層を被った合
金管か得られる。必要に応じ、内面、外面または両面の
金属被層を除去して使用する。
As shown in FIG. 2, when filling an alloy powder 5 between the inner and outer cylinders of a double cylindrical capsule consisting of an outer cylinder 3 and an inner cylinder 4 and hot extruding it, a thin metal layer is formed on the inner and outer surfaces. You can get an alloy tube covered with. If necessary, remove the metal coating on the inner, outer, or both surfaces before use.

第3図に示すように、適当な金属よりなる中子6を有す
る円筒状金属カブセルフ内に1合金粉末8を充填し、こ
れを熱間押出加工するときは、外面に薄い金属層を被っ
たクラツド棒か得られる。
As shown in FIG. 3, when a cylindrical metal cuboid having a core 6 made of a suitable metal is filled with 1 alloy powder 8 and hot extruded, the outer surface is covered with a thin metal layer. You can get a cluttered bar.

外面の金属被層を除去して使用するが、内部の金属芯に
よって補強されて、高い機械強度を得ることができる。
Although the outer metal coating is removed, it is reinforced by the inner metal core to provide high mechanical strength.

第4図に示すように、薄肉の外筒9と厚肉の内筒10と
よりなる2重筒状金属カプセルの内外筒間に合金粉末1
1を充填し、これを熱間押出加工するときは、外面に薄
い金属層を被フたクラット管か得られる。外面の金属被
層を除去して使用するか、内筒lOに由来する金属層に
よって補強されて、高い機械強度を得ることができる。
As shown in FIG. 4, an alloy powder 1
1 and hot extrusion process, a clad tube whose outer surface is covered with a thin metal layer is obtained. High mechanical strength can be obtained by removing the metal coating on the outer surface or by reinforcing it with a metal layer originating from the inner cylinder IO.

第5図に示すように、厚肉の外筒12と薄肉の内筒13
とよりなる2重筒状金属カプセルの内外筒間に合金粉末
14を充填し、これを熱間押出加工するときは、内面に
薄い金属層が付着したクラツド管が得られる。内面の金
属被層を除去して使用するか、外筒12に由来する金属
層によって補強されて、高い機械強度を得ることができ
る。
As shown in FIG. 5, a thick outer cylinder 12 and a thin inner cylinder 13
When an alloy powder 14 is filled between the inner and outer cylinders of a double cylindrical metal capsule and hot extruded, a clad tube with a thin metal layer adhered to the inner surface is obtained. High mechanical strength can be obtained by removing the metal coating on the inner surface or by reinforcing it with a metal layer originating from the outer cylinder 12.

第6図に示すように、適当な金属よりなる同径の円柱形
中子15.16を有する厚肉の金属カプセル17内に合
金粉末18を充填し、これを熱間押出加工する。その押
出品の中子15.16に由来する芯を機械加工によって
除去し、生じた孔面を仕上加工するときは、第7図に示
すように1合金部分19にだるま形の孔20を有し、外
側が補強金属円筒21によって包まれた、2軸エクスト
ルーダ用外囲器を得ることかできる。
As shown in FIG. 6, an alloy powder 18 is filled into a thick metal capsule 17 having cylindrical cores 15 and 16 of the same diameter made of a suitable metal, and then hot extruded. When the core originating from the core 15, 16 of the extrusion is removed by machining and the resulting hole surface is finished, a pot-shaped hole 20 is formed in the alloy part 19 as shown in FIG. However, it is possible to obtain an envelope for a twin-shaft extruder whose outer side is surrounded by a reinforced metal cylinder 21.

次に、各種の組成の高炭素、コバルト基合金にこの発明
を実施した実施例の性状を説明する。
Next, the properties of examples in which the present invention was applied to high carbon, cobalt-based alloys of various compositions will be explained.

実施例1及び比較例 カプセルとして第4図示の構造のものを用い。Example 1 and comparative example A capsule having the structure shown in the fourth figure is used.

内部に第1表に示す組成の合金のガスアトマイズ粉末(
平均粒径1504)を充填した。なお、カプセルの諸元
は次の通りである。
Inside is a gas atomized powder of an alloy with the composition shown in Table 1 (
The average particle size was 1504). The specifications of the capsule are as follows.

全長 400麿I 外筒 外径151m5 、内径147mm 、材質32
0C内筒 外径74謹m 、内径40u、材質STB^
24粉末充填率 62% 上記カプセルを冷間静水圧プレスにより圧縮した結果は
1次の通りである。
Total length: 400m Outer cylinder: outer diameter 151m5, inner diameter 147mm, material 32
0C inner cylinder outer diameter 74m, inner diameter 40u, material STB^
24 Powder filling rate 62% The results of compressing the above capsule by cold isostatic press are as follows.

全長 400−層 外筒 外径149■l、内径145m5内筒 外径74
■鳳、内径40m膳 粉末充填率 65% これを、雰囲気炉で800℃に加熱した後1180℃に
誘導加熱し、内径160s■のシリンダを有する熱間押
出機に装填して、押出加工を行った。製品の寸法は、表
面の金属被層込みで、次の通りである。
Total length 400-layer outer cylinder outer diameter 149μl, inner diameter 145m5 inner cylinder outer diameter 74
■Powder filling rate: 65% This was heated in an atmospheric furnace to 800℃, then induction heated to 1180℃, loaded into a hot extruder with a cylinder with an internal diameter of 160s, and extruded. Ta. The dimensions of the product, including the metal coating on the surface, are as follows.

外径58■鵬、境界部径42層■、内径36■。Outer diameter: 58cm, border diameter: 42cm, inner diameter: 36cm.

長さ3.7m 第1表に示すように、実施例1と事実上同組成の合金で
、比較例IA、 IB及びICを製造した。比較例1^
は、平均粒径150μのガスアトマイズ合金粉末を11
50℃、 1000 Kg/c■2で熱間ブレス加工に
より成型し、比較例1Bは鋳造材であり、比較例ICは
溶射材である。
Length: 3.7 m As shown in Table 1, Comparative Examples IA, IB and IC were manufactured from alloys having virtually the same composition as Example 1. Comparative example 1^
11 gas atomized alloy powder with an average particle size of 150μ
Molding was performed by hot pressing at 50° C. and 1000 Kg/c 2, Comparative Example 1B is a cast material, and Comparative Example IC is a thermally sprayed material.

第   1   表 実施例1の製品の焼結合金部分は、第8図に示すように
、炭化物及びマトリクスの結晶粒が、余り成長していな
い。これに対し、同様な原料粉末を焼結したものであっ
ても、比較例IAの製品の場合は、第9図に示すように
、炭化物やマトリクス結晶粒が細長く成長している。更
に、比較例IB及びIcの製品の場合は、それぞれ第1
O図及び第11図に示すように、結晶粒子が著しく粗大
であることが判る。
Table 1 In the sintered alloy part of the product of Example 1, as shown in FIG. 8, carbide and matrix crystal grains did not grow much. On the other hand, in the case of the product of Comparative Example IA, even though the same raw material powder was sintered, carbides and matrix crystal grains grew long and thin, as shown in FIG. Furthermore, in the case of the products of Comparative Examples IB and Ic, the first
As shown in Figure O and Figure 11, it can be seen that the crystal grains are extremely coarse.

次に、その硬さを比較すると、第1表のように、粉末冶
金法を採用している実施例1及び比較例IAの製品が格
段と優れており、中でも実施例1の方が勝っている。そ
して、高温における硬さの変化を調べてみると、第12
図に示すように、実施例1の製品か比較例IA、IB及
びICの製品に勝っている。
Next, when we compare their hardness, as shown in Table 1, the products of Example 1 and Comparative Example IA, which employ the powder metallurgy method, are significantly superior, and among them, Example 1 is superior. There is. When we investigated the change in hardness at high temperatures, we found that the 12th
As shown in the figure, the product of Example 1 is superior to the products of Comparative Examples IA, IB, and IC.

また、耐摩耗性の比較のために、大越式摩耗試験機を用
い、相手材としてSCM420を使用し、摩擦距離40
0層、最終荷重6.3にgで測定した結果は、第13図
に示すように、何れの摩擦速度においても、実施例1の
製品は比較例IA、 1B及びICの製品よりも格段と
摩耗減量か少なかった。
In addition, for comparison of wear resistance, an Okoshi type abrasion tester was used, SCM420 was used as the mating material, and a friction distance of 40
As shown in Figure 13, the results of measurements at layer 0 and final load of 6.3 g show that the product of Example 1 was significantly better than the products of Comparative Examples IA, 1B, and IC at any friction speed. Wear loss was less.

また、#食性の比較のために、50°Cの50%塩酸、
50°Cの30%硫酸及び50℃の10%硝酸に浸漬し
、腐食減量を求めた結果を、それぞれ第14図(a) 
、 (b)及び(C)に示す、この結果から何れの条件
においても、実施例1の製品は比較例IA、IB及びI
Cの製品に較べて腐食による減量か少なかった。
#For comparison of eating habits, 50% hydrochloric acid at 50°C,
Figure 14 (a) shows the results of immersion in 30% sulfuric acid at 50°C and 10% nitric acid at 50°C to determine the corrosion loss.
, (b) and (C), the results show that under any conditions, the product of Example 1 was superior to Comparative Examples IA, IB, and I.
Compared to product C, the weight loss due to corrosion was less.

更に、脆性を比較するためのシャルピー衝撃試験を行っ
た結果でも、第15図に示すように実施例1の製品は比
較例IA、 IB及びICの製品に較べて優れた値を示
しているが、材料の硬度を併せて考慮するときは、実施
例1の価値か極めて高いものであることか判る。なお、
第15図中の符号は、実施例または比較例の番号を示す
Furthermore, as shown in Figure 15, the results of a Charpy impact test to compare brittleness showed that the product of Example 1 had superior values compared to the products of Comparative Examples IA, IB, and IC. When considering the hardness of the material, it can be seen that the value of Example 1 is extremely high. In addition,
The symbols in FIG. 15 indicate the numbers of Examples or Comparative Examples.

実施例2及び比較例 カプセル及び中子として第6図示の構造のものを用い、
内部に第2表に示す合金のガスアトマイズ粉末(平均粒
径150tz)を充填した。カプセルの諸元は次の通り
である。
Example 2 and Comparative Examples Capsules and cores having the structure shown in Figure 6 were used,
The inside was filled with gas atomized powder (average particle size: 150tz) of the alloy shown in Table 2. The specifications of the capsule are as follows.

全長 690層1 外筒 外径207.5Bm 、内径180■■、材質S
O3:104 中子 直径7411111X 2本、材質5US304
粉末充填率 63% 上記カプセルを、冷間静水圧プレスすることなく、その
まま雰囲気炉で800℃に加熱し、これを1180℃に
誘導加熱し、内径215mmのシリンダを有する熱間押
出機に装填して、押出加工を行った。
Total length 690 layers 1 Outer cylinder outer diameter 207.5Bm, inner diameter 180■■, material S
O3:104 Core diameter 7411111X 2 pieces, material 5US304
Powder filling rate 63% The above capsule was heated as it was to 800°C in an atmospheric furnace without cold isostatic pressing, then induction heated to 1180°C, and loaded into a hot extruder having a cylinder with an inner diameter of 215mm. Then, extrusion processing was performed.

押出品の寸法は次の通りである。The dimensions of the extruded product are as follows.

外筒 外径口5龜■、内径90sn、長さ2.5m中子
 直径48s+sx 2本 第2表に示すように、実施例2と事実1同組成の合金で
、比較例2A、 2B及び2Cを製造した。比較例2A
の製法は比較例1Aと同様であり、比較例2Bは鋳造材
、比較例2Cは溶射材である。
Outer cylinder: Outer diameter: 5 mm, inner diameter: 90 sn, length: 2.5 m Core: diameter: 48 s + sx, 2 As shown in Table 2, alloys with the same composition as Example 2 and Fact 1, Comparative Examples 2A, 2B and 2C was manufactured. Comparative example 2A
The manufacturing method is the same as that of Comparative Example 1A, and Comparative Example 2B is a cast material, and Comparative Example 2C is a thermal sprayed material.

第  2  表 硬さは第2表に示すように、実施例2の製品が最も優れ
ていた。また、脆性を示すシャルピー衝撃値も第15図
に示すように実施例2の製品が比較例2八、2B及び2
Cの製品より優れ、硬さを考慮すれば、これら比較例に
較べて実施例2の価値か大きいことが判る。
Table 2 As shown in Table 2, the product of Example 2 had the best hardness. Furthermore, as shown in Figure 15, the Charpy impact value, which indicates brittleness, was the same for the products of Example 2 as for Comparative Examples 28, 2B, and
It is found that the product of Example 2 is superior to the product of C, and if hardness is considered, the value of Example 2 is greater than that of these comparative examples.

更に、WJ微鏡写真(400倍)の所見では、第16図
に示すように、カプセル17に由来する金属部分(上方
)と粉末18に由来する焼結合金部分(下方)とは、完
全に金属間の拡散接合がなされており、優れた接合強度
を有していることが判った。
Furthermore, as shown in Figure 16, the WJ microphotograph (400x magnification) shows that the metal part originating from the capsule 17 (upper part) and the sintered alloy part originating from the powder 18 (lower part) are completely separated. It was found that diffusion bonding between metals was achieved and that the bonding strength was excellent.

実施例3及び比較例 カプセルとして第1図示の構造のものを用い。Example 3 and comparative example A capsule having the structure shown in the first diagram is used.

内部に第3表に示す組成の合金のガスアトマイズ粉末(
平均粒径150p)を充填した。カプセルの諸元は次の
通りである。
Inside is a gas atomized powder of an alloy with the composition shown in Table 3 (
The average particle size was 150 p). The specifications of the capsule are as follows.

全長400mm 、外径149mm 、内径147+s
m材質 5zoc 粉末充填率 65% 上記カプセルを冷間静水圧プレスにより圧縮した結果は
次の通りである。
Total length 400mm, outer diameter 149mm, inner diameter 147+s
m Material: 5zoc Powder filling rate: 65% The above capsule was compressed by cold isostatic press, and the results are as follows.

全長398mm 、外径149層■、内径145mm粉
末充填率68% これを雰囲気炉て800℃に加熱した後、1180’(
:に誘導加熱し、内径1601のシリンダを有する熱間
押出機に装填して、表面の金属被層込みで外径か35g
11.長さか7.2mの合金棒を得た。
The total length is 398mm, the outer diameter is 149 layers, the inner diameter is 145mm, and the powder filling rate is 68%. After heating this in an atmosphere furnace to 800℃,
: Heated by induction and loaded into a hot extruder with a cylinder with an inner diameter of 1601 mm, and the outer diameter including the metal coating on the surface was 35 g.
11. An alloy rod with a length of 7.2 m was obtained.

比較のために、第3表に示すように、実施例3と事実上
同組成の合金て、比較例3Aを作成した。
For comparison, Comparative Example 3A was prepared using an alloy having virtually the same composition as Example 3, as shown in Table 3.

その作成方法は、比較例IAと同しである。The preparation method is the same as that of Comparative Example IA.

第3表 第3表及び第15図から明らかなように、硬さは実施例
3の製品か優れ、脆性も実施例3の製品が僅かに優れて
いるか、両者を綜合して比較すると、実施例3の製品か
格段と優れている。
As is clear from Table 3 and Figure 15, the product of Example 3 is superior in hardness, and the product of Example 3 is slightly superior in brittleness. The product in Example 3 is much better.

実施例4及び比較例 カプセルとして第1図示の構造のものを用い、内部に第
4表に示す組成の合金のガスアトマイズ粉末(平均粒径
tsog)を充填した。カプセルの諸元は次の通りであ
る。
Example 4 and Comparative Examples Capsules having the structure shown in Figure 1 were used, and gas atomized powder (average particle size tsog) of an alloy having the composition shown in Table 4 was filled inside. The specifications of the capsule are as follows.

全長400mm 、外径151mm 、内径147ff
i履材質 5zoc 粉末充填率 65% 上記カプセルを冷間静水圧プレスにより圧縮した結果は
次の通りである。
Total length 400mm, outer diameter 151mm, inner diameter 147ff
i Footwear material: 5zoc Powder filling rate: 65% The above capsule was compressed by cold isostatic press, and the results are as follows.

全長:198mm 、外径149mm 、内径145m
m粉末充填率 69% これを雰囲気炉で800°Cに加熱した後、誘導炉で1
080℃に加熱し、内径160m−のシリンダを有する
熱間押出機によって加工し、外径か60m1、長さか2
.5mの合金棒を得た。
Total length: 198mm, outer diameter 149mm, inner diameter 145m
m Powder filling rate: 69% After heating this to 800°C in an atmosphere furnace, it was heated to 1°C in an induction furnace.
It was heated to 080°C and processed by a hot extruder with a cylinder with an inner diameter of 160 m, and an outer diameter of 60 m and a length of 2
.. A 5 m alloy rod was obtained.

比較のために、第4表に示すように、実施例4と事実上
同組成の合金で比較例4Aを作成した。その作成方法は
、比較例IAと同じである。
For comparison, Comparative Example 4A was prepared using an alloy having virtually the same composition as Example 4, as shown in Table 4. The preparation method is the same as that of Comparative Example IA.

第4表 第4表及び第15図から明らかなように、硬さは実施例
4の製品が優れ、脆性も若干実施例4の製品か勝ってい
るが1両者を綜合して比較すると、実施例4の製品が格
段と優れている。
As is clear from Table 4 and Figure 15, the product of Example 4 is superior in hardness and slightly superior in brittleness to the product of Example 4. The product of Example 4 is much better.

実施例5 カプセルとして第4図示の構造のものを用い、内部に第
5表に示す組成の合金のガスアトマイズ粉末(平均粒径
150p)を充填した。このカプセルの諸元は次の通り
である。
Example 5 A capsule having the structure shown in Figure 4 was used, and the inside was filled with gas atomized powder of an alloy having the composition shown in Table 5 (average particle size: 150p). The specifications of this capsule are as follows.

全長 4(10飄− 外筒 外径151m5、内径147膳l、材質820C
内筒 外径8511111、内径351、材質5US3
29Jl粉末充填率 65% 上記カプセルな冷間静水圧プレスにより圧縮した結果は
、次の通りである。
Total length 4 (10 lengths) Outer cylinder outer diameter 151m5, inner diameter 147mm, material 820C
Inner cylinder outer diameter 8511111, inner diameter 351, material 5US3
29 Jl Powder filling rate 65% The results of compression using the capsule cold isostatic press described above are as follows.

全長 400會m 外筒 外径149■l、内径145m5内筒 外径85
諺■、内径35朧■ 粉末充填率 67% これを雰囲気炉て800°Cに加熱した後、 1180
’cに誘導加熱し、内径160■のシリンダを有する熱
間押出機で加工し、次の寸法の製品を得た。
Total length: 400 m Outer cylinder outer diameter 149 l, inner diameter 145 m5 Inner cylinder outer diameter 85
Proverb: Inner diameter 35mm Powder filling rate 67% After heating this to 800°C in an atmosphere furnace, 1180°C
The product was heated by induction to a temperature of 100 cm and processed in a hot extruder having a cylinder with an inner diameter of 160 mm to obtain a product with the following dimensions.

外径48mm、境界部径38■騰、内径30■1、長さ
6.0m 第5表及び第15図から明らかなように、その硬さは極
めて高く、靭性も非常に優れている。
The outer diameter is 48 mm, the boundary diameter is 38 mm, the inner diameter is 30 mm, and the length is 6.0 m.As is clear from Table 5 and Figure 15, its hardness is extremely high and its toughness is also excellent.

実施例6 カプセルとして第5図示の構造のものを用い、内部に第
5表に示す組成の合金のガスアトマイズ粉末(平均粒径
150終)を充填した。このカプセルの諸元は次の通り
である。
Example 6 A capsule having the structure shown in Figure 5 was used, and gas atomized powder of an alloy having the composition shown in Table 5 (average particle size: 150 mm) was filled inside. The specifications of this capsule are as follows.

全長  50口I鳳 外筒 外径207.5mm 、内径140mm、材賀S
US304 内筒 外径94I、内径90■、材質520C粉末充填
率 65% 上記カプセルな冷間静水圧プレスにより圧縮すると0次
のようになる。
Total length: 50 holes I-hoto outer cylinder, outer diameter 207.5mm, inner diameter 140mm, Saiga S
US304 Inner cylinder Outer diameter 94I, Inner diameter 90mm, Material 520C Powder filling rate 65% When compressed using the capsule cold isostatic press described above, it becomes 0 order.

全長 5001 外筒 外径207.5mm 、内径140am内筒 外
径96■1、内径92■■ 粉末充填率 68% これを雰囲気炉で800℃に加熱した後、1180°C
に誘導加熱し、内径2151■のシリンダを有する熱間
押出機で加工して1次の寸法にする。
Total length 5001 Outer cylinder outer diameter 207.5mm, inner diameter 140am Inner cylinder outer diameter 96cm, inner diameter 92cm Powder filling rate 68% After heating this to 800℃ in an atmosphere furnace, it was heated to 1180℃.
The sample is heated by induction and processed in a hot extruder having a cylinder with an inner diameter of 2151 mm to obtain the primary dimensions.

外径148m5 、境界部径108m5 、内径96厘
膳、長さ2.5m 第5表及び第15図に示すように、極めて高い硬さが得
られる。
Outer diameter: 148 m5, boundary diameter: 108 m5, inner diameter: 96 mm, length: 2.5 m As shown in Table 5 and Figure 15, extremely high hardness can be obtained.

実施例7 カプセルとして第4図に示す構造のものを用い、内部に
第5表に示す組成の合金のガスアトマイズ粉末(平均粒
径150p)を充填した。このカプセルの諸元は次の通
りである。
Example 7 A capsule having the structure shown in FIG. 4 was used, and the inside was filled with gas atomized powder of an alloy having the composition shown in Table 5 (average particle size: 150p). The specifications of this capsule are as follows.

全長 400■ 外筒 外径151au+、内径147m5、材質320
G内筒 外径73+sm、内径40mm、材質SO3:
104粉末充填率 65% 上記カプセルを冷間静水圧プレスて圧縮すると次のよう
になる。
Total length 400■ Outer cylinder outer diameter 151au+, inner diameter 147m5, material 320
G inner cylinder outer diameter 73+sm, inner diameter 40mm, material SO3:
104 Powder filling rate 65% When the above capsule is compressed by cold isostatic pressing, it becomes as follows.

全長  400璽鳳 外筒 外径149■謬、内径14Svm内筒 外径73
■鵬、内径40■■ 粉末充填率 69% これを雰囲気炉で800°Cに加熱した後、1180℃
に誘導加熱し、内径160■■のシリンダを有する熱間
押出機で加工して、次の寸法にする。
Total length 400 Seiho outer cylinder outer diameter 149mm, inner diameter 14Svm inner cylinder outer diameter 73
■Peng, inner diameter 40■■ Powder filling rate 69% After heating this to 800°C in an atmosphere furnace, it was heated to 1180°C.
The sample was heated by induction and processed in a hot extruder having a cylinder with an inner diameter of 160 mm to the following dimensions.

外径60■、境界部径40鳳■、内径コ0■、長さ3.
0m 第5表及び第15図に示すように、極めて高い硬さが得
られ、脆性も十分実用になる程度の値を示した。
Outer diameter 60cm, border diameter 40cm, inner diameter 0cm, length 3.
0 m As shown in Table 5 and FIG. 15, extremely high hardness was obtained, and the brittleness also showed a value that was sufficient for practical use.

第5表 〈発明の効果〉 以上のように、従来技術では、高炭素、コバルト基合金
は、熱間塑性加工が不可部で、鋳造法や溶着法でしか利
用することができなかったが、この発明によるときは、
熱間押出による塑性加工が可ス艶になり、かつ合金の各
種特性も向上した。よって、従来は得られなかった高炭
素、コバルト基合金の細径長尺棒や細径長尺管が得られ
るばかりでなく、各種鉄合金や非鉄合金とのクラ・井ト
材も経済的に生産することができる。
Table 5 <Effects of the Invention> As described above, in the prior art, high carbon, cobalt-based alloys cannot be subjected to hot plastic working and can only be used by casting or welding methods. According to this invention,
Plastic processing by hot extrusion became smooth and glossy, and various properties of the alloy were also improved. Therefore, it is not only possible to obtain small-diameter long rods and small-diameter long pipes made of high carbon and cobalt-based alloys, which were previously unobtainable, but also to economically produce steel and steel materials made from various ferrous and non-ferrous alloys. can be produced.

特に、第7図に示したような耐食、耐摩耗を必要とする
プラスチックの押出機や射出成形機のシリンダとして、
内周が高炭素、コバルト基合金で形成され、外周に不銹
鋼を用いたクラット材による製品は、極めて長寿命でか
つ経済的に製造することができる。
In particular, it is used as a cylinder for plastic extruders and injection molding machines that require corrosion and wear resistance as shown in Figure 7.
Products made of crat material with an inner periphery made of a high carbon, cobalt-based alloy and an outer periphery made of stainless steel have an extremely long life and can be manufactured economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に使用するカプセルの第1の例のM断
面図及び横断面図、第2図はカプセルの第2の例の縦断
面図及び横断面図、第3図はカプセルの第3の例の縦断
面図及び横断面図、第4図はカプセルの第4の例の縦断
面図及び横断面図、第5図はカプセルの第5の例の縦断
面図及び横断面図、第6図はカプセルの第6の例の縦断
面図及び横断面図、第7図は第6図のカプセルを用いた
この発明による製品の横断面図、第8図は第1の実施例
による焼結合金部分の3000倍拡大組織図、第9図は
比較例合金の合金の3000倍拡大組織図。 第1O図は別の比較例合金の金属組織を示す400倍顕
微鏡写真、第11図は更に別の比較例合金の金属組織を
示す400倍顕微鏡写真、第12図はこの発明の第1の
実施例による焼結合金及び比較例の温度−硬さ特性線図
、第13図はこの発明の第1の実施例による焼結合金及
び比較例の庁耗特性線図、第14uはこの発明の第1の
実施例による焼結合金及び比較例の腐食特性線図、第1
5図は各実施例及び各比較例の焼結合金の硬さ一衝撃値
特性線図、第16図はこの発明の第2の実施例によるク
ラット材の金属と焼結合金の境界の組織を示す400倍
顕微鏡写真である。 特許出願人  山陽特殊製鋼株式会社 代  理  人   清  水     哲  ほか2
多糖10 舅2回 菖30 菖4図 舅5回 葛6ブ 第7図 第812] 第7 口 竿/60 第1O圓 第11図 )X争I−Iυ 舅12回 RT   200  400  600  800  
1000神1星度(°C) 菖13回 0    1.0   2.0   3.OH通度(m
/ S e C) 第14回 +a) 302≦&酸(5σCンラ(トメ1虻0間(hγ)第1
4図 (C)
FIG. 1 is an M cross-sectional view and a cross-sectional view of a first example of a capsule used in the present invention, FIG. 2 is a vertical cross-sectional view and a cross-sectional view of a second example of a capsule, and FIG. FIG. 4 is a vertical cross-sectional view and a cross-sectional view of the fourth example of the capsule, FIG. 5 is a vertical cross-sectional view and a cross-sectional view of the fifth example of the capsule, FIG. 6 is a longitudinal and cross-sectional view of a sixth example of a capsule, FIG. 7 is a cross-sectional view of a product according to the invention using the capsule of FIG. 6, and FIG. 8 is a first embodiment of the product. Fig. 9 is a 3000 times enlarged structure diagram of the sintered alloy part, and FIG. 9 is a 3000 times enlarged structure diagram of the comparative example alloy. Fig. 1O is a 400x microphotograph showing the metallographic structure of another comparative example alloy, Fig. 11 is a 400x photomicrograph showing the metallographic structure of yet another comparative example alloy, and Fig. 12 is a photomicrograph showing the metallographic structure of another comparative example alloy. FIG. 13 is a temperature-hardness characteristic diagram of the sintered alloy according to the first embodiment of the present invention and a comparative example. FIG. 14u is a wear characteristic diagram of the sintered alloy according to the first embodiment of the present invention and the comparative example. Corrosion characteristic diagram of sintered alloy according to Example 1 and comparative example, 1st
Fig. 5 is a hardness-impact value characteristic diagram of the sintered alloys of each example and each comparative example, and Fig. 16 shows the structure of the boundary between the metal and sintered alloy of the crut material according to the second embodiment of the present invention. This is a 400x micrograph shown. Patent applicant Sanyo Special Steel Co., Ltd. Agent Tetsu Shimizu and 2 others
Polysaccharide 10 Calories 2 times Calendar 30 Calories 4 times Calendar 5 times Kudzu 6 Bu Figure 7 812] 7th mouth rod / 60 1st O circle Figure 11)
1000 gods 1 star degree (°C) Iris 13 times 0 1.0 2.0 3. OH familiarity (m
/ S e C) 14th+a) 302≦&acid (5σCnra (tome 1 0 (hγ) 1st
Figure 4 (C)

Claims (1)

【特許請求の範囲】[Claims] (1)炭素0.5〜5.0重量%及びコバルト40重量
%以上を基本としこれに適宜の成分を添加してなる高炭
素、コバルト基合金を粉末化し、この粉末を金属カプセ
ルに封入し、その後にこれを加熱してカプセル内の粉末
を予備焼結させた上で、押出加工温度に誘導加熱して熱
間押出法により塑性加工を加えることを特徴とする高炭
素、コバルト基合金部材の製造方法。
(1) Powder a high carbon, cobalt-based alloy consisting essentially of 0.5 to 5.0% by weight of carbon and 40% by weight or more of cobalt with the addition of appropriate components, and encapsulate this powder in a metal capsule. A high-carbon, cobalt-based alloy member characterized in that the powder is heated to pre-sinter the powder in the capsule, and then induction heated to an extrusion temperature and plastic worked by hot extrusion. manufacturing method.
JP14072488A 1988-06-08 1988-06-08 Production of high-carbon cobalt-base alloy member Granted JPH0277536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14072488A JPH0277536A (en) 1988-06-08 1988-06-08 Production of high-carbon cobalt-base alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14072488A JPH0277536A (en) 1988-06-08 1988-06-08 Production of high-carbon cobalt-base alloy member

Publications (2)

Publication Number Publication Date
JPH0277536A true JPH0277536A (en) 1990-03-16
JPH0438829B2 JPH0438829B2 (en) 1992-06-25

Family

ID=15275232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14072488A Granted JPH0277536A (en) 1988-06-08 1988-06-08 Production of high-carbon cobalt-base alloy member

Country Status (1)

Country Link
JP (1) JPH0277536A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741612A (en) * 2014-11-26 2015-07-01 内蒙古北方重工业集团有限公司 Powder high temperature alloy bar extrusion method
CN104874802A (en) * 2015-05-15 2015-09-02 安泰科技股份有限公司 Powder metallurgy anti-wear anti-corrosion alloy bar material
CN104889399A (en) * 2015-05-15 2015-09-09 安泰科技股份有限公司 Anti-abrasion anti-etching alloy tube production method through powder metallurgy process
CN104889400A (en) * 2015-05-15 2015-09-09 安泰科技股份有限公司 Powder metallurgy anti-abrasion anti-etching alloy tube
CN109365824A (en) * 2018-10-25 2019-02-22 西安石油大学 A kind of preparation method of 6.5wt% high-silicon electrical steel thin-walled hollow tubing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741612A (en) * 2014-11-26 2015-07-01 内蒙古北方重工业集团有限公司 Powder high temperature alloy bar extrusion method
CN104874802A (en) * 2015-05-15 2015-09-02 安泰科技股份有限公司 Powder metallurgy anti-wear anti-corrosion alloy bar material
CN104889399A (en) * 2015-05-15 2015-09-09 安泰科技股份有限公司 Anti-abrasion anti-etching alloy tube production method through powder metallurgy process
CN104889400A (en) * 2015-05-15 2015-09-09 安泰科技股份有限公司 Powder metallurgy anti-abrasion anti-etching alloy tube
CN109365824A (en) * 2018-10-25 2019-02-22 西安石油大学 A kind of preparation method of 6.5wt% high-silicon electrical steel thin-walled hollow tubing

Also Published As

Publication number Publication date
JPH0438829B2 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
US3753704A (en) Production of clad metal articles
US5897830A (en) P/M titanium composite casting
US6660225B2 (en) Method to form multi-material components
CN107760897A (en) To hydrogenate method of the titanium sponge as raw material manufacture titanium and titanium alloy and its parts
JPS63162801A (en) Manufacture of screw for resin processing machine
US3652235A (en) Composite metal articles
US3678567A (en) Production of clad metal articles
JPH0277536A (en) Production of high-carbon cobalt-base alloy member
US4323186A (en) Manufacture of high performance alloy in elongated form
JPH02185904A (en) Hot pressing of powder and granule
CN101422814A (en) Preparation method of local composite abrasion resistance material
JP4133078B2 (en) Method for producing fiber reinforced metal
FI81283B (en) SAETT VIDEO FRAMSTAELLNING AV EN FORMKROPP AV EN JAERNLEGERING.
JP3017794B2 (en) Composite cylinder with lining layer made of corrosion resistant and wear resistant sintered alloy
JP4178070B2 (en) Method for canning sintered preform and method for producing sintered material thereby
JPH04341508A (en) Production of coupling formed body for different kinds of materials
JP2006342374A (en) Method for manufacturing metal sintered compact and alloy sintered compact
JPS61201706A (en) Seamless sintered steel pipe and its production
CN101239396B (en) Preparation technique for alloy powder core tube thread in situ generating of abrasion-proof composite material
JPS6036857B2 (en) Cylindrical, cylindrical wear-resistant castings and their manufacturing method
JPS62273820A (en) Composite cylinder for plastic molding apparatus
US20030099854A1 (en) Method for producing a clad metal product
CN117127090A (en) Process for preparing ceramic particle reinforced steel-based composite material
CN113000817A (en) Squeeze casting aluminum alloy infiltration mold based on silicon carbide composite material and method thereof
JPH03264607A (en) Manufacture of complex cylinder and screw for injection and extrusion compacting machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term