JPH0277519A - Method for annealing ms-based stainless steel and cr-mo steel - Google Patents

Method for annealing ms-based stainless steel and cr-mo steel

Info

Publication number
JPH0277519A
JPH0277519A JP22796088A JP22796088A JPH0277519A JP H0277519 A JPH0277519 A JP H0277519A JP 22796088 A JP22796088 A JP 22796088A JP 22796088 A JP22796088 A JP 22796088A JP H0277519 A JPH0277519 A JP H0277519A
Authority
JP
Japan
Prior art keywords
steel
ferrite
temperature
stainless steel
based stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22796088A
Other languages
Japanese (ja)
Inventor
Koichi Ikeda
耕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22796088A priority Critical patent/JPH0277519A/en
Publication of JPH0277519A publication Critical patent/JPH0277519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To effectively reduce delta-ferrite in a short time by soaking an Ms-based stainless steel and a Cr-Mo steel at a precified temp., transiently cooling the steel, then again soaking the steel at a specified temp., and annealing the steel. CONSTITUTION:The bloom or billet of an Ma-based stainless steel and a Cr-Mo steel is soaked at >=1200 deg.C preferably at about 1200-1300 deg.C. The steel is then cooled until the surface or center of the steel is cooled to <=1200 deg.C, or preferably to about 1100 deg.C. In this case, the steel is preferably cooled at a rate of >= about 10 deg.C/min. The steel is then again soaked at 1000-1200 deg.C, or preferably at about 1100 deg.C. The delta-ferrite in the steel is effectively reduced by this soaking and diffusion annealing method. When the steel is formed into pipe by the Mannesmann process, the cracking of the inner surface of the pipe due to the delta-ferrite at the center of the material is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はMs系ステンレス鋼およびCr  Mo鋼ビ
レットよりマンネスマン製管する際、材料中心部のδフ
ェライトが原因で発生するパイプ内部疵を防止するため
のブルームあるいはビレットの焼鈍方法に関する。
[Detailed Description of the Invention] Industrial Application Field This invention is a method for preventing internal defects in the pipe caused by δ ferrite in the center of the material when manufacturing Mannesmann pipes from Ms stainless steel and CrMo steel billets. This invention relates to a bloom or billet annealing method.

従来の技術 Ms系ステンレス鋼およびCr−Mo1ilビレツトよ
りマンネスマン製管する際、材料中心部のδフェライト
が原因してパイプ内部疵が発生する場合がある。このパ
イプ内部疵を防止するためにはδフェライトを低減する
方法が有効である。
BACKGROUND OF THE INVENTION When manufacturing Mannesmann pipes from Ms stainless steel and Cr-Moil billet, internal defects may occur due to δ ferrite in the center of the material. In order to prevent this pipe internal flaw, a method of reducing δ ferrite is effective.

このδフェライトの低減方法としては、従来下記2つの
方法が知られている。
The following two methods are conventionally known as methods for reducing this δ ferrite.

(A)1100℃前後における長時間均熱拡散焼鈍(8
)Cr量の低減 しかし、この2つの方法には次に記載する欠点があった
(A) Long-time soaking diffusion annealing at around 1100℃ (8
) Reduction of Cr content However, these two methods had the following drawbacks.

(A>は第1図に示すδフエライト付近におけるCr分
布に見られるように、γ中のCr拡散速度が律速となり
、δフエライト量を製品品質が良好となるレベルまで低
減するには、第2図に示す加熱時間と、δフエライト量
の関係より明らかなように長時間加熱する必要がある。
(As shown in the Cr distribution near δ ferrite shown in Figure 1, A> is determined by the Cr diffusion rate in γ, and in order to reduce the amount of δ ferrite to a level where the product quality is good, it is necessary to As is clear from the relationship between the heating time and the amount of δ ferrite shown in the figure, it is necessary to heat for a long time.

すなわち、1100℃、1200℃加熱ではδフエライ
ト量は時間の経過とともに減少していくが長時間を費す
That is, in heating at 1100° C. and 1200° C., the amount of δ ferrite decreases with the passage of time, but it takes a long time.

(B)はステンレス本来の優れた特質でおる防錆効果を
低減させることになり、好ましくない。
(B) is undesirable because it reduces the rust prevention effect, which is an excellent characteristic of stainless steel.

発明が解決しようとする課題 この発明は前に述べたような実情よりみて、Cr量を低
減させることなく、均熱拡散焼鈍方法により短時間にし
かも効果的にδフェライトを低減させることができる方
法を提案しようとするものである。
Problems to be Solved by the Invention In view of the above-mentioned actual situation, the present invention has been developed to provide a method for effectively reducing δ ferrite in a short time using a soaked diffusion annealing method without reducing the Cr content. This is what we are trying to propose.

課題を解決するための手段 この発明者らは、均熱拡散焼鈍方法によってMs系ステ
ンレス鋼およびCr  Mo鋼のδフエライト低減方法
について種々検討した結果、次のようなことを児い出し
た。
Means for Solving the Problems The inventors have conducted various studies on methods for reducing δ ferrite in Ms-based stainless steel and CrMo steel using a soaked diffusion annealing method, and have come up with the following findings.

Ms系ステンレスuAおよびCr  h:=鋼の場合は
、第3図に示すごとり1200℃以上に加熱するとδフ
エライト量が短時間に増加し、12%程度に達するが、
第4図に示すごとくフェライト中の(、r14度はかな
り低くくなる。
In the case of Ms-based stainless uA and Cr h:= steel, as shown in Figure 3, when heated above 1200°C, the amount of δ ferrite increases in a short time and reaches about 12%, but
As shown in FIG. 4, the (, r14 degrees) in ferrite is considerably low.

すなわち、δフエライト量は多くても原子の拡散という
観点からは温度が高く、しかも拡散速度が速いδフェラ
イト相を多く付する1200’C以上での加熱が有効で
おると言える。
That is, even if the amount of δ ferrite is large, the temperature is high from the viewpoint of atomic diffusion, and it can be said that heating at 1200'C or higher is effective because it adds a large amount of δ ferrite phase, which has a high diffusion rate.

しかしながら、1200’C以上の加熱だけでは δフ
ェライト量が多く存在したままであるためパイプ内部疵
を引き起こす。
However, heating to 1200'C or higher alone causes a large amount of δ ferrite to remain, causing internal cracks in the pipe.

そこで、1200’C以上に加熱保持した後1200℃
以下まで冷却すれば、δ→γ変態を進行させることが可
能となりδフエライト量を低減できることを見い出した
のでおる。
Therefore, after heating and holding at 1200'C or higher,
We have discovered that if the steel is cooled to a temperature below, the δ→γ transformation can proceed and the amount of δ ferrite can be reduced.

すなわち、この発明の要旨は、Ms系ステンレス鋼およ
びCr  hoWAを、まず第1段階で1200’C以
上の温度に加熱保持した債、表面あるいは中心部が12
00℃以下の温度になるまで冷却し、第2段階で再び1
000℃以上1200℃以下の温度に加熱保持すること
を要旨とするものである。
That is, the gist of the present invention is to first heat and hold Ms stainless steel and Cr hoWA at a temperature of 1200'C or higher in the first step, and then bond the surface or center of the
Cool down to a temperature below 00°C, and then heat again at 1°C in the second stage.
The gist is to heat and maintain the temperature at a temperature of 000°C or more and 1200°C or less.

ここで、この発明の対象とするMs系ステンレス鋼およ
びCr−市鋼の成分としては、C0,50wt%以下、
  hn 2.00wt%以下。
Here, the components of the Ms-based stainless steel and Cr-city steel targeted by this invention include C0.50 wt% or less,
hn 2.00wt% or less.

si 1.OOW[%以下、  P 0.20wt%以
下。
si 1. OOW[% or less, P 0.20wt% or less.

S 0.20wt%以下、  Cr 4.0〜20.0
wt%。
S 0.20wt% or less, Cr 4.0-20.0
wt%.

を含有する。Contains.

作   用 Ms系ステンレス鋼およびCr  Mo14におけるδ
フェライトの挙動は、Crの拡散が支配的となる。
Effect δ in Ms stainless steel and Cr Mo14
The behavior of ferrite is dominated by Cr diffusion.

したがって、温度の設定はC,挙動によって設定する必
要がある。
Therefore, the temperature needs to be set according to C and behavior.

第5図はCr濃度と温度の関係を示す図である。FIG. 5 is a diagram showing the relationship between Cr concentration and temperature.

すなわち、高温加熱時のδフエライト中のCTa度が低
温(ここでは1100℃)加熱時に完全にオーステナイ
ト−相域になっていなければならない。
That is, the degree of CTa in the δ ferrite when heated at a high temperature must be completely in the austenite-phase region when heated at a low temperature (here, 1100° C.).

そこで、この発明では第1段階での加熱保持温度を12
00℃以上とし、その後1200℃以下の温度に冷却し
、第2段階で1000℃以上1200℃以下の温度に加
熱保持することとした。
Therefore, in this invention, the heating holding temperature in the first stage is set to 12
00° C. or higher, then cooled to a temperature of 1200° C. or lower, and then heated and maintained at a temperature of 1000° C. or higher and 1200° C. or lower in the second stage.

すなわち、第1段階での加熱保持温度を1200℃以上
に限定したのは、δ−フェライト中のCr濃度を十分に
低く保ち第2段階の低温(1000℃〜1200℃)加
熱時にδ→γ変態を起こしつる状態にしておくためでお
る。
In other words, the reason why the heating holding temperature in the first stage was limited to 1200°C or higher was to keep the Cr concentration in the δ-ferrite sufficiently low to prevent the δ→γ transformation during the low temperature (1000°C to 1200°C) heating in the second stage. It is used to raise the vine and keep it in a vine state.

また、1200℃以上の温度に加熱保持した後、表面あ
るいは中心部が1200℃以下の温度になるまで冷却し
、冷却後の第2段階で1000℃以上1200’C以下
の温度に加熱保持する。これは第1段階でδ中のCr量
!度を十分に低下させたところで、δ→γ変態を進行さ
ぜるためである。
Further, after being heated and maintained at a temperature of 1200° C. or higher, the surface or center portion is cooled to a temperature of 1200° C. or lower, and in a second stage after cooling, it is heated and maintained at a temperature of 1000° C. or higher and 1200° C. or lower. This is the amount of Cr in δ in the first stage! This is to allow the δ→γ transformation to proceed once the degree of oxidation is sufficiently lowered.

なお、冷却速度が小さい場合、Cr分布は各温度の平衡
にしたがって変化することになるので、1100℃にお
いて再びCrの濃化が起こりδフエライト量の低減効果
は小さい。このため、冷却速度は高温加熱によって低く
したCr11度を保持できる速度とする。
Note that when the cooling rate is low, the Cr distribution changes according to the equilibrium of each temperature, so that Cr concentration occurs again at 1100° C., and the effect of reducing the amount of δ ferrite is small. Therefore, the cooling rate is set to a rate that can maintain the Cr of 11 degrees lowered by high-temperature heating.

第6図は冷却速度とδフエライト量の関係を示す図であ
り、製品良好な領域までδフェライトを減少させるため
には、少なくとも10″C/m i n以上の冷却速度
で冷却する必要がある。
Figure 6 is a diagram showing the relationship between the cooling rate and the amount of δ ferrite, and in order to reduce the δ ferrite to a level where the product is good, it is necessary to cool at a cooling rate of at least 10"C/min or more. .

この発明のプロセス例を第7図に示す。An example of the process of this invention is shown in FIG.

すなわち、この発明方法はMs系ステンレス鋼およびC
r  MalMのビレット、ブルームを均熱炉(1)で
1200℃以上、好ましくは1300℃まで加熱保持し
、抽出後材料の表面もしくは中心部が1200℃以下、
好ましくは1100℃になるまで冷却する。その後、再
び均熱炉(2)に装入し、1000’C以上1200’
C以下の温度、好ましくは1100’Cに加熱し、抽出
復製管ラインに送る。
That is, the method of this invention can be applied to Ms stainless steel and C
r MalM billet or bloom is heated and maintained at 1200°C or higher, preferably 1300°C in a soaking furnace (1), and after extraction, the surface or center of the material is 1200°C or lower,
Preferably, it is cooled to 1100°C. After that, it is charged again into the soaking furnace (2) and heated to 1000'C or more and 1200'
It is heated to a temperature below 1,100'C, preferably 1100'C, and sent to the extraction and recovery pipe line.

なお、この均熱拡散焼鈍処理はビレット圧延前のブルー
ムの段階で実施することも可能であるが、可及的に冷却
速度を十分に保ち易い小径のビレットの段階で実施する
のが好ましい。
Although this soaking diffusion annealing treatment can be carried out at the blooming stage before billet rolling, it is preferably carried out at the stage of small-diameter billets where it is easy to maintain a sufficient cooling rate as much as possible.

実  施  例 第1表に示す成分を有するMs系ステンレス鋼の小径ビ
レットを1300°CX2時間加熱後、空冷により冷却
速度30’(::/minにてビレット中心部が110
0℃になるまで冷却し、続いて再び1100℃×1時間
加熱した後、製管して得たパイプの内面疵の発生率を、
従来の1100’CX10時間加熱処理のものと比較し
て第8図に示す。
Example A small-diameter billet of Ms-based stainless steel having the components shown in Table 1 was heated at 1300°C for 2 hours, and then air-cooled at a cooling rate of 30' (::/min) until the billet center became 110°C.
After cooling to 0°C and then heating again at 1100°C for 1 hour, the incidence of internal flaws in the pipe produced was calculated as follows:
A comparison is shown in FIG. 8 with a conventional 1100'CX 10 hour heat treatment.

第8図より明らかなごとく、パイプ内面疵の発生率は従
来法と同等あるいはそれ以下であることから、短時間の
均熱拡散焼鈍処理で従来の長時間焼鈍処理と同等あるい
はそれ以上の品質を得ることができた。
As is clear from Figure 8, the incidence of internal pipe flaws is the same or lower than that of the conventional method, so short-time soaked diffusion annealing treatment can achieve quality equivalent to or better than conventional long-time annealing treatment. I was able to get it.

発明の詳細 な説明したごとく、この発明方法によれば、従来Ms系
ステンレス鋼およびCr  Mo鋼のδフェライトを低
減させるのに10時間以上の長時間加熱処理を必要とし
ていたのが、3時間程度の短時間でδフェライトを効果
的に低減することができ、品質並びに生産性の向上に大
なる効果を秦するものである。
As described in detail, according to the method of the present invention, the long-term heat treatment that conventionally required 10 hours or more to reduce δ ferrite in Ms-based stainless steel and Cr-Mo steel can be reduced to about 3 hours. It is possible to effectively reduce δ ferrite in a short period of time, which has a great effect on improving quality and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法(A)によるビレット中Cr濃度分布を
示す図、第2図および第3図はごレットの加熱温度、加
熱時間とδフエライト量の関係を示す図、第4図はこの
発明法によるどレット中Cr9度分布を示す図、第5図
は同じくビレット中Cr濃度と温度の関係を示す図、第
6図は同じくビレットの冷却速度とδフエライト量の関
係を示す図、第7図はこの発明方法を実施するためのプ
ロセスの一例を示すブロック図、第8図はこの発明の実
施例におけるCr量とパイプ内部疵発生率の関係を示す
図である。 1.2・・・均熱炉 出願人  住友金属工業株式会社 代理人  弁理士 押田良久[( 1[・ 第1図 第2因 加軌時間(min) 第3困 加熱時間(m1n) 第4図 第5図 第6図 冷却速度(°c、先、。)
Figure 1 is a diagram showing the Cr concentration distribution in the billet according to the conventional method (A), Figures 2 and 3 are diagrams showing the relationship between the heating temperature and heating time of the billet, and the amount of δ ferrite, and Figure 4 is the diagram according to the invention. Figure 5 is a diagram showing the relationship between the Cr concentration in the billet and temperature, Figure 6 is a diagram showing the relationship between the cooling rate of the billet and the amount of δ ferrite, and Figure 7 is a diagram showing the relationship between the billet cooling rate and the amount of δ ferrite. FIG. 8 is a block diagram showing an example of a process for carrying out the method of this invention, and FIG. 8 is a diagram showing the relationship between the amount of Cr and the rate of occurrence of internal defects in a pipe in an embodiment of the invention. 1.2 Soaking furnace Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Yoshihisa Oshida Fig. 5 Fig. 6 Cooling rate (°c, forward,.)

Claims (1)

【特許請求の範囲】[Claims] Ms系ステンレス鋼およびCr−Mo鋼を、1200℃
以上の温度に加熱保持した後、表面あるいは中心部が1
200℃以下になるまで冷却し、再び1000℃以上1
200℃以下の温度に加熱保持することにより、δフェ
ライトを低減することを特徴とするMs系ステンレス鋼
およびCr−Mo鋼の焼鈍方法。
Ms stainless steel and Cr-Mo steel at 1200℃
After heating and holding at a temperature above, the surface or center becomes 1
Cool it down to 200℃ or less, then cool it again to 1000℃ or higher1.
A method for annealing Ms-based stainless steel and Cr-Mo steel, characterized in that δ ferrite is reduced by heating and holding at a temperature of 200° C. or lower.
JP22796088A 1988-09-12 1988-09-12 Method for annealing ms-based stainless steel and cr-mo steel Pending JPH0277519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22796088A JPH0277519A (en) 1988-09-12 1988-09-12 Method for annealing ms-based stainless steel and cr-mo steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22796088A JPH0277519A (en) 1988-09-12 1988-09-12 Method for annealing ms-based stainless steel and cr-mo steel

Publications (1)

Publication Number Publication Date
JPH0277519A true JPH0277519A (en) 1990-03-16

Family

ID=16868954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22796088A Pending JPH0277519A (en) 1988-09-12 1988-09-12 Method for annealing ms-based stainless steel and cr-mo steel

Country Status (1)

Country Link
JP (1) JPH0277519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000938A1 (en) * 2001-06-21 2003-01-03 Sumitomo Metal Industries, Ltd. Method of producing high cr-based seamless steel tube
CN110157867A (en) * 2019-04-29 2019-08-23 中国科学院金属研究所 The control method of white abnormal structure in a kind of large scale CrMo steel member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000938A1 (en) * 2001-06-21 2003-01-03 Sumitomo Metal Industries, Ltd. Method of producing high cr-based seamless steel tube
US6692592B2 (en) 2001-06-21 2004-02-17 Sumitomo Metal Industries, Ltd. Method for manufacturing high chromium system seamless steel pipe
CN110157867A (en) * 2019-04-29 2019-08-23 中国科学院金属研究所 The control method of white abnormal structure in a kind of large scale CrMo steel member
CN110157867B (en) * 2019-04-29 2020-09-18 中国科学院金属研究所 Control method for white abnormal structure in large-size CrMo steel member

Similar Documents

Publication Publication Date Title
JPH0277519A (en) Method for annealing ms-based stainless steel and cr-mo steel
JP3453990B2 (en) Cooling method for continuous casting bloom
JPS6159377B2 (en)
JPH0576524B2 (en)
JPH07251265A (en) Method for scarfing cast steel slab
JP7320512B2 (en) Method for softening high-strength Q&amp;P steel hot-rolled coil
JP3149763B2 (en) Prevention method of placing cracks in continuous cast slabs of bearing steel
JPS601926B2 (en) Method for producing steel material with uniform internal quality
JPH06145793A (en) Method for preventing decarburization of seamless steel tube
JPS6151611B2 (en)
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
JPS60262915A (en) Method for preventing surface cracking of continuous cast billet
JPS63168260A (en) Hot working method for continuously cast billet
JP2001001001A (en) Hot rolling method by which decarburization is suppressed
JPS59136422A (en) Preparation of rod steel and wire material having spheroidal structure
JPS6186008A (en) Manufacture of martensitic stainless steel
JPH0369967B2 (en)
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JP2693327B2 (en) Method for producing standard high silicon low carbon grain oriented silicon steel
JPH02236218A (en) Method for diffusing and removing hydrogen in steel in on-line
JP2002285233A (en) Method for producing forged ring material for cold rolling forming
CN114247750A (en) Process for improving stress cracks of medium-carbon alloy cold forging steel hot rolled blank
CN114733920A (en) Method for controlling iron scale of hot-rolled wire rod of welding wire steel ER70S-6
JP2001081516A (en) METHOD FOR HOT-ROLLING Ni-CONTAINING STEEL EXCELLENT IN SURFACE CHARACTERISTIC
JPH05117752A (en) Manufacture of grain-oriented silicon steel having excellent repeated bending characteristic