JPH0277118A - Diffusion of boron into semiconductor wafer - Google Patents

Diffusion of boron into semiconductor wafer

Info

Publication number
JPH0277118A
JPH0277118A JP22934388A JP22934388A JPH0277118A JP H0277118 A JPH0277118 A JP H0277118A JP 22934388 A JP22934388 A JP 22934388A JP 22934388 A JP22934388 A JP 22934388A JP H0277118 A JPH0277118 A JP H0277118A
Authority
JP
Japan
Prior art keywords
boron
pbn
diffusion
silicon wafer
wafer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22934388A
Other languages
Japanese (ja)
Other versions
JPH0543286B2 (en
Inventor
Yoshiyuki Mori
森 義之
Shigenari Suzuki
鈴木 成就
Yoshiaki Fushiki
芳明 伏木
Sadatoshi Kumai
熊井 貞勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP22934388A priority Critical patent/JPH0277118A/en
Publication of JPH0277118A publication Critical patent/JPH0277118A/en
Publication of JPH0543286B2 publication Critical patent/JPH0543286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To remarkably improve the irregularity of sheet resistance (rhos) of a silicon wafer surface by using thermal decomposition boron nitride (PBN) as a boron diffusion source, and injecting H2 and/or H2O in a diffusion tube. CONSTITUTION:When boron is diffused by using PBN as a diffusion source, HBO2 is formed on a PBN wafer surface by introducing hydrogen and/or water, and boron is diffused in a silicon wafer 8 by said HBO2. As a result, boron is uniformly diffused in the silicon wafer surface with high density by the effect of HBO2 of high vapor pressure. Hence, the irregularity of sheet resistance (rhos) of the silicon wafer surface can be remarkably improved; dislocation and lattice defect of crystal, which are considered to be caused by metal impurity, carbon, etc., can be reduced by using PBN as a diffusion source; since baking binder is not used, the deformation and sagging of dopant are not caused, and further the fusion bonding of a quartz boat maintaining the dopant does not occur.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体ウェーハへ硼素を均一に拡散する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for uniformly diffusing boron into a semiconductor wafer.

(従来の技術) 半導体ウェーハ、例えばシリコンウェーハ中へ硼素を拡
散する方法としては、窒化硼素(BN)の粉末を固化焼
結してウェーハ状の円板に成形加工しこのBN焼結体の
拡散源を酸化してB20゜としく28N+3/202→
Bt03+Nz)、このB!03を用いて半導体ウェー
ハに拡散する方法がよく知られている(特公昭43−2
8722号公報)。窒化硼素の拡散源(ドーパント)は
主原料である窒化硼素粉末中にその製法から由来する燐
酸ナトリウム、酸化ナトリウム、酸化鉄、酸化カルシウ
ム或いは炭素などの不純物が混入している。また、この
窒化硼素粉末を焼結体とする焼結バインダーとして無水
硼酸、酸化カルシウム、酸化アルミニウム、酸化ナトリ
ウム、燐酸アルミニウム、二酸化珪素などが用いられる
ため、窒化硼素ドーパント中にはこれらの焼結バインダ
ーが残存している。この窒化硼素焼結体(BN)に代え
て熱分解窒化硼素(PBN)を拡散源として用いると、
上記した不純物及び焼結バインダーの影響が排除される
という提案は既になされている(特開昭62−1010
26号公報。)一方、窒化硼素を拡散源とする場合に、
水素を導入することによってBNウェーハの表面にHB
O□を形成させ、このHBOzによってシリコンウェー
ハに硼素を拡散させる方法が知られている(ドクター・
ジェイ・スタック等、エレクトロケミカルソサエティ、
第147回ミーティング、カナダ、トロント、1975
年5月16日発表)。
(Prior art) As a method of diffusing boron into a semiconductor wafer, for example, a silicon wafer, boron nitride (BN) powder is solidified and sintered, formed into a wafer-shaped disk, and the BN sintered body is diffused. Oxidize the source to B20° 28N + 3/202 →
Bt03+Nz), this B! A method of diffusing 03 into semiconductor wafers is well known (Japanese Patent Publication No. 43-2
8722). The diffusion source (dopant) of boron nitride is the main raw material, boron nitride powder, mixed with impurities such as sodium phosphate, sodium oxide, iron oxide, calcium oxide, or carbon, which are derived from the manufacturing method. In addition, since boric anhydride, calcium oxide, aluminum oxide, sodium oxide, aluminum phosphate, silicon dioxide, etc. are used as sintered binders for making this boron nitride powder into a sintered body, these sintered binders are used in the boron nitride dopant. remains. If pyrolytic boron nitride (PBN) is used as a diffusion source instead of this boron nitride sintered body (BN),
A proposal has already been made to eliminate the effects of the above-mentioned impurities and sintered binder (Japanese Patent Laid-Open No. 1010-1989
Publication No. 26. ) On the other hand, when boron nitride is used as a diffusion source,
HB on the surface of the BN wafer by introducing hydrogen
A known method is to form O□ and diffuse boron into a silicon wafer using this HBOz (Dr.
Jay Stack et al., Electrochemical Society,
147th Meeting, Toronto, Canada, 1975
(Announced on May 16, 2017).

この方法によれば、蒸気圧がBtusとHBO。According to this method, the vapor pressure is Btus and HBO.

では925 ’Cにおいて1万倍以上の差があり、硼素
拡散方法としてB2O3よりはるかに優れている。蒸気
圧が高いということは同一温度において濃度の高い雰囲
気が得られ、その結果シリコンウェーハ面上に高濃度で
かつ均一に拡散できるという効果がある。さらに、この
IIi向は温度を変化させても同様であるから、特に低
温でも拡散させることが可能となり、その効果は更に大
きい、しかし、この水素を導入する方法においても、通
常の窒化硼素焼結体を用いるならば、この還元性成分の
ために、含有不純物から揮発性の低酸化物が形成され、
このためにシリコンウェーへの?y染が亢進される欠点
があることが実験の結果判明した。
There is a difference of more than 10,000 times at 925'C, and it is far superior to B2O3 as a boron diffusion method. A high vapor pressure means that a highly concentrated atmosphere can be obtained at the same temperature, and as a result, it has the effect of being able to diffuse uniformly at a high concentration on the silicon wafer surface. Furthermore, this IIi direction remains the same even when the temperature is changed, so it is possible to diffuse it even at low temperatures, and the effect is even greater.However, even with this method of introducing hydrogen, ordinary boron nitride sintering If a body is used, volatile low oxides are formed from the contained impurities due to this reducing component,
To silicon way for this? As a result of experiments, it was found that there is a drawback that y staining is enhanced.

(発明が解決しようとする課B) 本発明は、上記した従来技術に鑑みて発明されたもので
、シリコンウェーハ表面のシート抵抗(ρS)のバラツ
キを大幅に改善し、かつ硼素拡散源中の金属不純物や炭
素などに起因する問題点並びに焼結バインダーに起因す
る不都合を解消した半導体ウェーハへの硼素の拡散方法
を提供することを目的とするものである。
(Problem B to be Solved by the Invention) The present invention was invented in view of the above-mentioned prior art, and it significantly improves the variation in sheet resistance (ρS) on the surface of a silicon wafer, and The object of the present invention is to provide a method for diffusing boron into semiconductor wafers that eliminates problems caused by metal impurities, carbon, etc., and inconveniences caused by sintered binders.

(課題を解決するための手段) 上記目的を達成するために、本発明方法では、拡散管内
に多数の半導体ウェーハ及び硼素拡散源を設置し不活性
雰囲気及び高温状態に維持して半導体ウェーハに硼素を
拡散する方法において、硼素拡散源として熱分解窒化硼
素(PBN)を用いるとともに拡散管内にI(□及び/
又はH2Oを注入するようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, in the method of the present invention, a large number of semiconductor wafers and a boron diffusion source are installed in a diffusion tube, maintained in an inert atmosphere and a high temperature state, and boron is applied to the semiconductor wafers. In this method, pyrolytic boron nitride (PBN) is used as a boron diffusion source, and I (□ and/or
Alternatively, H2O is injected.

熱分解窒化硼素(PBN)は、上記した特開昭62−1
01026号公報に記載されるごとく、安価でしかも高
純度の三塩化硼素とアンモニアを用いて気相成長反応に
よって製造されるものを利用するのが経済的で有利であ
る。
Pyrolytic boron nitride (PBN) is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 62-1
As described in Japanese Patent No. 01026, it is economical and advantageous to use a material produced by a vapor phase growth reaction using inexpensive and highly pure boron trichloride and ammonia.

硼素の拡散(ドーピング)方法は、通常、以下の方法に
よる。即ち、PBNを半導体ウェーハとほぼ同一径のウ
ェーハ状に形成したものを酸素又は水蒸気などで表面の
みを酸化した後、石英管内に半導体ウェーハと交互に配
置し、非酸化性ガス、例えば窒素、アルゴン、ヘリウム
と、酸化性ガス、例えば、酸素の混合雰囲気中で、70
0〜1300°C程度の温度で処理し、その処理中に微
量の水素及び/又は水を導入した後、続いて非酸化性ガ
ス(窒素、アルゴン、ヘリウム等)のみの雰囲気中で同
温度で処理する方法がとられる。
The boron diffusion (doping) method is generally as follows. That is, PBN is formed into a wafer shape with approximately the same diameter as a semiconductor wafer, and only the surface is oxidized with oxygen or water vapor, and then placed alternately with the semiconductor wafer in a quartz tube, and then heated with a non-oxidizing gas such as nitrogen or argon. , in a mixed atmosphere of helium and an oxidizing gas, such as oxygen, at 70%
After processing at a temperature of about 0 to 1300°C and introducing a trace amount of hydrogen and/or water during the treatment, it is then heated at the same temperature in an atmosphere containing only non-oxidizing gas (nitrogen, argon, helium, etc.). A method of processing is taken.

(作用) 本発明方法では、PBNを拡散源として硼素を拡散する
にあたり、水素及び/又は水を導入することによってP
BNウェーハの表面にHBO,を形成させ、このHB 
Ozによってシリコンウェーハに硼素を拡散させるもの
である。したがって、本発明方法では、蒸気圧の高いH
BO,によってシリコンウェーハ面上に高濃度でかつ均
一に硼素を拡散するから、シリコンウェーハ表面のシー
ト抵抗(ρS)のバラツキを大幅に改善でき、かつその
上、PBNを拡散源とすることに起因して、金属不純物
や炭素などによって生じると思われる転位や結晶の格子
欠陥を減少させることができ、さらに焼結バインダーを
使用しないため、拡散工程でしばしば問題になる焼結体
ドーパント特有のバインダーの融解によるドーパントの
歪みや、ブレの発生もなくなり、またドーパントを保持
する石英製のボートとの融着を生じないようにすること
ができる。
(Function) In the method of the present invention, when boron is diffused using PBN as a diffusion source, hydrogen and/or water is introduced.
HBO is formed on the surface of the BN wafer, and this HB
Boron is diffused into the silicon wafer using Oz. Therefore, in the method of the present invention, H with high vapor pressure
Since boron is diffused uniformly at a high concentration on the silicon wafer surface using BO, it is possible to significantly improve the variation in sheet resistance (ρS) on the silicon wafer surface. This reduces dislocations and crystal lattice defects that are thought to be caused by metal impurities, carbon, etc. Furthermore, since a sintered binder is not used, it is possible to reduce the binder specific to sintered compact dopants, which is often a problem in the diffusion process. Distortion and blurring of the dopant due to melting can be eliminated, and fusion with the quartz boat holding the dopant can be prevented.

またPBNは、実質的に不純物を含ませない純粋なもの
とすることができるので、水素又は水蒸気を含む雰囲気
の中で使用されるときの還元成分によるボロン以外の好
ましくない不純物の気化とシリコンウェーハ上への析出
と拡散を充分に低く抑えることができる。
In addition, PBN can be made pure and does not contain substantially any impurities, so when it is used in an atmosphere containing hydrogen or water vapor, undesirable impurities other than boron can be vaporized by reducing components and silicon wafers can be heated. Upward precipitation and diffusion can be kept sufficiently low.

更に、従来の窒化硼素焼結体を水素又は水蒸気などの還
元成分を含む雰囲気中で用いた場合、気化した雰囲気中
のボロン濃度はしばしば不安定で、このためバッチ間の
ボロン拡散のレベルが安定しなかったが、PBNを用い
ることによって解決され、シリコンウェーハ表面のシー
ト抵抗のバッチ間のバラツキを10%以下にすることが
可能になった。この理由は、焼結体には大きな間隙の結
晶粒界があり、しかも特にH2又は水蒸気を含む雰囲気
が使用されると、この間隙が大きくなり、バッチ毎の焼
結体の表面酸化が内部に進み、表面積が不安定となる傾
向があるためである。従来の酸化硼素の気化析出工程の
みでは、このような不都合はなかった。
Furthermore, when conventional boron nitride sintered bodies are used in an atmosphere containing reducing components such as hydrogen or water vapor, the boron concentration in the vaporized atmosphere is often unstable, resulting in a stable level of boron diffusion from batch to batch. However, this problem was solved by using PBN, and it became possible to reduce the batch-to-batch variation in sheet resistance on the silicon wafer surface to 10% or less. The reason for this is that sintered bodies have grain boundaries with large gaps, and especially when an atmosphere containing H2 or water vapor is used, these gaps become larger, causing surface oxidation of the sintered bodies from batch to batch to occur internally. This is because the surface area tends to become unstable. Such inconveniences did not arise with only the conventional boron oxide vaporization and precipitation process.

PBNはその窒化硼素の層が緻密であり、極めて均質で
大きな間隙を有する結晶粒界が無いので、安定して本発
明方法を行うことができる。
PBN has a dense boron nitride layer, is extremely homogeneous, and has no grain boundaries with large gaps, so the method of the present invention can be carried out stably.

本発明のボロン拡散におけるH2及び水蒸気の作用効果
を同一と見ることが出来る。H2は拡散炉内部の酸化性
雰囲気で酸化され、水蒸気となって、これがBN表面に
おいてあらかじめ形成された酸化硼素と反応し、揮発性
のHBO,を生じ、HBO□がPBNと対峙するシリコ
ンウェーハ上にボロンを拡散させる。これに対し、Hz
を用いないで水蒸気を用いたときには、その水蒸気が直
接PBN上の酸化硼素と反応し、同時に揮発性のHBO
□を生ずる。ここでPBNとシリコンウェーハは適当の
間隔をおいて対峙されており、生産能率を高めるために
これらの間隔は出来るだけ小さく調節される。このため
PBHの酸化及びそのデボ工程で、酸化の場合は雰囲気
中の酸素のPBN上への供給、デポ工程ではH2又は水
蒸気のPBNへの供給が重要になる。酸化工程では通常
酸素は充分にあり、PBNの酸化はその表面酸化反応が
律速段階になるのでPBN上への酸素の供給は問題にな
らない。しかしデポ工程ではH2又は水蒸気は微量であ
り、PBN上への供給が律速段階になるので、Hよ又は
水蒸気をPBNとシリコンの両ウェーハの限られた空間
内に均一に供給する工夫が重要となる。これはPBNと
シリコンウェーハの間隙を充分に拡げたり、或いは雰囲
気ガスの全流量を増すことによって解決する。水素と水
蒸気を比較すると、その分子量の差によって水素が拡散
しやすく、PBN上への均−拡散従ってシリコンウェー
ハ上へのボロンの平均的デボには若干「利である。
The effects of H2 and water vapor on boron diffusion in the present invention can be viewed as being the same. H2 is oxidized in the oxidizing atmosphere inside the diffusion furnace and becomes water vapor, which reacts with the boron oxide previously formed on the BN surface to produce volatile HBO, which is then deposited on the silicon wafer facing the PBN. Diffuse boron into. On the other hand, Hz
When water vapor is used without using water vapor, the water vapor directly reacts with the boron oxide on the PBN, and at the same time, the volatile HBO
Produces □. Here, the PBN and the silicon wafer are opposed to each other with an appropriate interval, and in order to increase production efficiency, these intervals are adjusted to be as small as possible. For this reason, in the oxidation of PBH and its devoting process, it is important to supply oxygen in the atmosphere onto the PBN in the oxidation process, and to supply H2 or water vapor onto the PBN in the deposition process. In the oxidation process, there is usually sufficient oxygen, and the rate-determining step in the oxidation of PBN is the surface oxidation reaction, so the supply of oxygen onto the PBN is not a problem. However, in the deposition process, the amount of H2 or water vapor is small, and the supply onto the PBN is the rate-determining step, so it is important to devise ways to uniformly supply H2 or water vapor within the limited space of both the PBN and silicon wafers. Become. This can be solved by sufficiently widening the gap between the PBN and the silicon wafer, or by increasing the total flow rate of the atmospheric gas. Comparing hydrogen and water vapor, hydrogen is more easily diffused due to the difference in their molecular weights, and has a slight advantage in uniform diffusion onto PBN and therefore average deposition of boron onto silicon wafers.

(発明の効果) 以上のように、本発明は、シリコンウェーハ表面のシー
ト抵抗(ρS)のバラツキを大幅に改善することができ
る上、硼素拡散源中の金属不純物や炭素などに起因する
問題点並びに焼結バインダーに起因する不都合も完全に
解消することができるという大きな効果を奏する。
(Effects of the Invention) As described above, the present invention can significantly improve the variation in sheet resistance (ρS) on the surface of a silicon wafer, and also solve problems caused by metal impurities, carbon, etc. in the boron diffusion source. In addition, it has the great effect of completely eliminating the inconveniences caused by the sintered binder.

(実施例) 以下に本発明方法の実施例を挙げて説明するが、その前
に本発明方法の実施にあたって用いた装置の概略を添付
図面に基づいて説明しておく。
(Example) Examples of the method of the present invention will be described below, but before that, an outline of the apparatus used in implementing the method of the present invention will be explained based on the accompanying drawings.

第1図は実施例1において用いた装z(NZ、0□%H
2を供給することができる)の概略説明図である。同図
において、2は石英チューブ、4は該石英チューブ2内
に設置された石英製ボート、6は該石英製ボート4に!
!置されたPBNドーパント、8は該PBNドーパント
に対面しかつ該石英製ボート4に載置されたシリコンウ
ェーハである。Rは減圧弁、Fは流量計、■はバルブ、
Mはミキサーである。窒素(Nり、酸素(0□)及び水
素(Hよ)の各ガスの導入は窒素ガス導入路IO1酸素
ガス導入路12及び水素ガス導入路14によってそれぞ
れ行われる。
Figure 1 shows the equipment used in Example 1 (NZ, 0□%H).
FIG. In the figure, 2 is a quartz tube, 4 is a quartz boat installed in the quartz tube 2, and 6 is a quartz boat 4!
! The placed PBN dopant 8 is a silicon wafer facing the PBN dopant and placed on the quartz boat 4 . R is a pressure reducing valve, F is a flow meter, ■ is a valve,
M is a mixer. The introduction of nitrogen (N), oxygen (0□), and hydrogen (H) gases is performed through a nitrogen gas introduction path IO1, an oxygen gas introduction path 12, and a hydrogen gas introduction path 14, respectively.

第2図は実施例2において用いた装R(Nz、Oz 、
 H! O(水蒸気)を供給することができる)の概略
説明図であり、第1図の装置とほぼ同様であるが、水素
ガス導入路を省略するとともに窒素ガス導入路10を二
股状に分岐し、一方の供給ラインにバブラー16を設け
た点において異なるものである。該バブラー16は純水
Wを内部に封入しており、供給される窒素ガスに水分を
供給する作用を行うものである。
Figure 2 shows the equipment R (Nz, Oz,
H! 2 is a schematic explanatory diagram of a device (which can supply O (water vapor)), which is almost the same as the device shown in FIG. 1, but the hydrogen gas introduction path is omitted, and the nitrogen gas introduction path 10 is branched into two, The difference is that a bubbler 16 is provided on one of the supply lines. The bubbler 16 has pure water W sealed therein, and functions to supply moisture to the supplied nitrogen gas.

なお、第1図と第2図とを合体した装置(NZ、0□、
H2及び/又H2O(水蒸気)を供給することができる
ものであるが、図示は省略する)を用いれば、同一の装
置で実施例1及び2を実施することができる。
In addition, the device (NZ, 0□,
If H2 and/or H2O (water vapor) can be supplied (not shown), Examples 1 and 2 can be carried out with the same apparatus.

また、本発明方法の実施が図示した装置の使用に限定さ
れるものでないことはいうまでもない。
Furthermore, it goes without saying that the implementation of the method of the present invention is not limited to the use of the apparatus shown in the drawings.

実施例1 シックス・ナインの高純度三塩化硼素とファイブ・ナイ
ンの高純度アンモニアを2,000°Cで10トールの
減圧下に高純度グラファイト上で気相成長させて直径1
00mm、厚さ1.3amの熱分解窒化硼素(PBN)
 ドーパントを40枚作成した。このドーパント中の金
属不純物は合計でlOppm以下であった。このドーパ
ントを1,050°Cの酸素中で表面を酸化した後、シ
リコンの半導体ウェーハ(直径100薗、厚さ525μ
m)と石英製ボートの上に交互に51W+の距離に配置
し、前記ボートを窒素:酸素が1:1の雰囲気にある石
英管内に挿入し、900°Cで水素5Qcc/分、窒素
2.51/分を1分間導入した後、窒素雰囲気中で同温
度で40分間硼素の拡散を行った。その結果、拡散後の
シリコンウェーハのシート抵抗は55オーム乃で、その
バラツキはウェーハ内のバラツキ、ウェーハ間のバラツ
キ、ロフト間のバラツキも共に5%に収めることができ
た。また、格子欠陥は10ケ/c++1であった。
Example 1 Six nines of high purity boron trichloride and five nines of high purity ammonia were grown in a vapor phase on high purity graphite at 2,000°C under a reduced pressure of 10 Torr to form a material with a diameter of 1.
00mm, 1.3am thick pyrolytic boron nitride (PBN)
Forty sheets of dopant were prepared. The total amount of metal impurities in this dopant was less than 1Oppm. After oxidizing the surface of this dopant in oxygen at 1,050°C, a silicon semiconductor wafer (diameter 100mm, thickness 525μ
m) and quartz boats are placed alternately at a distance of 51 W+, and the boats are inserted into a quartz tube in a nitrogen:oxygen atmosphere of 1:1, hydrogen 5Qcc/min, nitrogen 2.m) at 900°C. 51/min for 1 minute, boron was diffused for 40 minutes at the same temperature in a nitrogen atmosphere. As a result, the sheet resistance of the silicon wafer after diffusion was 55 ohms, and the variations within the wafer, between the wafers, and between the lofts were all within 5%. Further, the number of lattice defects was 10/c++1.

比較例1 従来の窒化硼素焼結体のドーパントを実施例1と同一条
件で用いた場合は、拡散後のシリコンウェーハのシート
抵抗は60オ一ム/口、バラツキ20%、格子欠陥30
0ケ/ calであった。
Comparative Example 1 When a conventional boron nitride sintered dopant was used under the same conditions as in Example 1, the sheet resistance of the silicon wafer after diffusion was 60 ohms/unit, a variation of 20%, and 30 lattice defects.
It was 0 ke/cal.

窒化硼素焼結体のドーパントはダレかつ石英製のボート
に融着し拡散工程のハンドリングは困難であった。これ
は石英ボートと焼結体中の焼結バインダーの反応による
ものと考えられる。
The dopant in the boron nitride sintered body sagged and fused to the quartz boat, making it difficult to handle during the diffusion process. This is thought to be due to the reaction between the quartz boat and the sintered binder in the sintered body.

これに対し、実施例1及び2で用いたPBNドーパント
はボートに融着せず、ダレも無く極めてハンドリングが
容易であった。
In contrast, the PBN dopant used in Examples 1 and 2 did not fuse to the boat, did not sag, and was extremely easy to handle.

実施例2 実施例1における水素(H□+0□)の代わりに水蒸気
H2Oを用いた場合について述べる。
Example 2 A case will be described in which water vapor H2O is used instead of hydrogen (H□+0□) in Example 1.

窒素雰囲気下900°Cで窒素により希釈された水蒸気
(窒素96%、水蒸気4%)を1分間導入したのち、硼
素の拡散を行った。この結果、得られたシリコンウェー
ハのシート抵抗は65オ一ム/口、バラツキは7%であ
った。
After introducing water vapor diluted with nitrogen (96% nitrogen, 4% water vapor) at 900°C in a nitrogen atmosphere for 1 minute, boron was diffused. As a result, the sheet resistance of the silicon wafer obtained was 65 ohms/unit, with a variation of 7%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1に示す方法を実施する装置の一例を示
す概略説明図及び第2図は実施例2に示す方法を実施す
る装置の一例を示す概略説明図である。 2・・・石英チューブ、4−・石英製ボート、6・・・
・PBN、8・・・シリコンウェーハ、10−・−窒素
ガス導入路、12−・−酸素ガス導入路、14・・−水
素ガス導入路、16・−バブラー。 特許出願人  信越半導体株式会社 第1図
FIG. 1 is a schematic explanatory diagram showing an example of an apparatus for implementing the method shown in Example 1, and FIG. 2 is a schematic explanatory diagram showing an example of an apparatus for implementing the method shown in Example 2. 2...Quartz tube, 4--Quartz boat, 6...
- PBN, 8...Silicon wafer, 10--Nitrogen gas introduction path, 12--Oxygen gas introduction path, 14--Hydrogen gas introduction path, 16--Bubbler. Patent applicant Shin-Etsu Semiconductor Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)拡散管内に多数の半導体ウェーハ及び硼素拡散源
を設置し不活性雰囲気及び高温状態に維持して半導体ウ
ェーハに硼素を拡散する方法において、硼素拡散源とし
て熱分解窒化硼素(PBN)を用いるとともに拡散管内
にH_2及び/又はH_2Oを注入することを特徴とす
る半導体ウェーハへの硼素拡散方法。
(1) Pyrolytic boron nitride (PBN) is used as the boron diffusion source in a method of installing a large number of semiconductor wafers and boron diffusion sources in a diffusion tube and maintaining them in an inert atmosphere and high temperature condition to diffuse boron into the semiconductor wafers. A method for diffusing boron into a semiconductor wafer, comprising simultaneously injecting H_2 and/or H_2O into a diffusion tube.
JP22934388A 1988-09-13 1988-09-13 Diffusion of boron into semiconductor wafer Granted JPH0277118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22934388A JPH0277118A (en) 1988-09-13 1988-09-13 Diffusion of boron into semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22934388A JPH0277118A (en) 1988-09-13 1988-09-13 Diffusion of boron into semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH0277118A true JPH0277118A (en) 1990-03-16
JPH0543286B2 JPH0543286B2 (en) 1993-07-01

Family

ID=16890674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22934388A Granted JPH0277118A (en) 1988-09-13 1988-09-13 Diffusion of boron into semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH0277118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504857A2 (en) * 1991-03-20 1992-09-23 Shin-Etsu Handotai Company Limited Process of diffusing boron into semiconductor wafers
JPH04354165A (en) * 1991-05-31 1992-12-08 Hitachi Ltd Manufacture of solar battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926748A (en) * 1972-07-07 1974-03-09
JPS62101026A (en) * 1985-10-26 1987-05-11 Shin Etsu Chem Co Ltd Impurity diffusion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926748A (en) * 1972-07-07 1974-03-09
JPS62101026A (en) * 1985-10-26 1987-05-11 Shin Etsu Chem Co Ltd Impurity diffusion source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504857A2 (en) * 1991-03-20 1992-09-23 Shin-Etsu Handotai Company Limited Process of diffusing boron into semiconductor wafers
JPH0574727A (en) * 1991-03-20 1993-03-26 Shin Etsu Handotai Co Ltd Boron diffusing method in semiconductor wafer
EP0504857A3 (en) * 1991-03-20 1995-04-12 Shinetsu Handotai Kk Process of diffusing boron into semiconductor wafers
JPH04354165A (en) * 1991-05-31 1992-12-08 Hitachi Ltd Manufacture of solar battery

Also Published As

Publication number Publication date
JPH0543286B2 (en) 1993-07-01

Similar Documents

Publication Publication Date Title
US8512471B2 (en) Halosilane assisted PVT growth of SiC
USRE48378E1 (en) Vanadium compensated, SI SiC single crystals of NU and PI type and the crystal growth process thereof
JPH01162326A (en) Manufacture of beta-silicon carbide layer
EP3626865A1 (en) Susceptor and method for manufacturing the same
US4235650A (en) Open tube aluminum diffusion
US4137108A (en) Process for producing a semiconductor device by vapor growth of single crystal Al2 O3
JP3312553B2 (en) Method for producing silicon single crystal and silicon single crystal thin film
JP2583681B2 (en) Method for boron diffusion into semiconductor wafer
KR101031407B1 (en) Formation of single-crystal silicon carbide
JPS62101026A (en) Impurity diffusion source
JPH0277118A (en) Diffusion of boron into semiconductor wafer
JPS5884111A (en) Improved plasma deposition for silicon
JP3344205B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPH0245326B2 (en)
EP0746011B1 (en) Method of producing single crystal thin film
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JPH0411722A (en) Forming method of semiconductor crystallized film
JPH1116903A (en) Forming method of thin oxide film using wet oxidation
JPS6226569B2 (en)
JPH08217592A (en) Quartz crucible for production of silicon single crystal
WO2024034512A1 (en) METHOD FOR GROWING β-GA2O3-BASED SINGLE CRYSTAL FILM
JPS6242517A (en) Semiconductor vapor processing
JPH0770496B2 (en) Semiconductor device manufacturing method
JPH09266175A (en) Semiconductor wafer manufacturing method and semiconductor wafer
JPH06219835A (en) Graphite-silicon carbide composite excellent in oxidation resistance and its production