JPH027645Y2 - - Google Patents

Info

Publication number
JPH027645Y2
JPH027645Y2 JP4795884U JP4795884U JPH027645Y2 JP H027645 Y2 JPH027645 Y2 JP H027645Y2 JP 4795884 U JP4795884 U JP 4795884U JP 4795884 U JP4795884 U JP 4795884U JP H027645 Y2 JPH027645 Y2 JP H027645Y2
Authority
JP
Japan
Prior art keywords
metal
injection port
compressed gas
nozzle
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4795884U
Other languages
Japanese (ja)
Other versions
JPS60161454U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4795884U priority Critical patent/JPS60161454U/en
Publication of JPS60161454U publication Critical patent/JPS60161454U/en
Application granted granted Critical
Publication of JPH027645Y2 publication Critical patent/JPH027645Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[産業上の利用分野] 本考案は、例えば少量生産に適する低コストの
プレス型を製造する際に、型本体を安価な比較的
軟質の金属材料または合成樹脂によつて形成し、
型表面部は必要な硬度を確保すべく硬質の金属被
膜層を形成するために使用する金属溶射装置にお
けるノズル構造に関する。 [従来技術] この種の金属溶射装置のノズル20は従来、第
3図に示すように、一対の溶射用金属線14,1
4′先端がV字状に集合するように送通させる案
内管13,13′を設け、該金属線14,14′の
集合位置よりも前方で集中するように圧縮気体な
どを噴射させる圧縮気体噴射口11を設けたもの
が一般的に用いられており、かかる金属溶射装置
によれば、圧縮気体噴射口11から噴射する気体
流によつて形成される円錐形の低気圧(すなわち
半真空)圏A内で一対の溶射用金属線14,1
4′がV字形に集合してアーク放電を行ない、こ
れによつて溶けた球状の金属粒体は前方の噴射気
体流が最も大きい集合部へ移動し、多数の樹枝状
を有する微粒子となり、表面積を拡大することに
より冷却力が生じて固体粒子となつて飛散し、溶
射対象物の被着面で絡み合いかつ圧縮が連鎖的に
生じて被膜層を形成する。 ところで、近時、とくに硬質の被膜層を得るた
め溶射用金属として高融点材料であるクロム系、
ステンレス系等の金属を用いることが試験、検討
されているが、この種の金属を用いて従来の金属
溶射装置によつて溶射を行なつた場合、低気圧圏
Aの真空度が充分ではないため金属線先端部が十
分溶融せず溶融粒子の粗大化によつて被膜層に未
溶融滓が付着しかつ気泡による小孔が生じる問題
があつた。 [考案の目的] 本考案は、従来の金属溶射装置の有する前記問
題点を解消するため、元来の圧縮気体噴射口より
も前方にさらに別の圧縮気体噴射口を設けたノズ
ル構造を得ることを目的とする。 [考案の構成] 本考案は前記目的を達成するためになされたも
のであつて、連続的に供給される複数の溶射用金
属線を、電源から供給される電力によつて、該金
属線の先端集合部でアーク放電させて溶融粒体化
させるとともに、前記放電位置の前方で集中する
ように圧縮気体を噴射させるべく前方に向けて中
心に近づくテーパ状断面の隙間による圧縮気体噴
射口を設け、該噴射口から噴射する気体によつて
溶融金属を微細化して飛散させて溶射対象物に付
着させるようにした金属溶射装置において、前記
圧縮空気の集中位置よりもさらに前方で集中する
ように圧縮気体を噴射するテーパ状断面の隙間に
よる別の圧縮気体噴射口を設けたことを特徴とす
る金属溶射装置におけるノズル構造である。 [実施例] 以下、図面に基づき本考案の実施例について説
明する。 第1図において、1は本考案の金属溶射装置の
実施例としての金属溶射ガンであつて、その本体
1aの前端にはノズル3が突設され、該本体1a
の後端には溶射用金属線14,14′(以下、金
属線14,14′という)を送通する可撓ホース
2,2′が接続されるとともに、該本体1aの後
端下面には握持部5が垂下突設され、該下面の前
方寄りには電源に通じるケーブル4が接続されて
いる。 次に、ノズル3の構造について説明する。 第2図において、ノズル3は中間ノズル9の
前、後端にそれぞれ前ノズル10の後端、後ノズ
ル8の前端をそれぞれ螺着し一体化している。後
ノズル8は円筒状に形成されその前端部の内部に
は、前端の所定径の開口から後方に向けて拡大す
るテーパ穴8bを形成すべき壁8cを一体形成し
ている。該テーパ穴8bの内面に沿つて、一対の
金属線14,14′を内部で案内送通する案内管
13,13′が設けられ、該案内管13,13′と
テーパ孔8bから突出した金属線14,14′の
両先端はV字状をなして案内管13,13′の先
端よりも前方で集中するようになつている。 前記案内管13,13′は後ノズル8、溶射ガ
ン本体1aの内部を貫通延在するとともに本体1
aの後端において前記した可撓ホース2,2′が
接続され、案内管13,13′、可撓ホース2,
2′の内部を送通される金属線14,14′は図示
しない巻き付けリールに至る。 前記中間ノズル9は中心に穴9bを設け、該穴
9bは後端部が前記後ノズル8の壁8cの先端部
外面とわずかな隙間11を有するようにテーパ状
断面をなしている。該隙間11の前端が第1の圧
縮気体噴射口11a(以下、第1の噴射口11a
という)となり、該第1の噴射口11aの後部に
は、後ノズル8と中間ノズル9とで空間8dが形
成され、後ノズル8の外壁に設けた取入口8aに
第1図に示す気体ホース6を接続する。 次に、本考案の特徴として前記第1の噴射口1
1aの前方にさらに別に、該第1の噴射口11a
とほぼ平行な第2の圧縮気体噴射口(以下、第2
の噴射口という)12aを設けている。すなわ
ち、前記中間ノズル9の前端外周部を削除するご
とく前記後ノズル8の壁8cのテーパ状断面部8
c′とほぼ平行なテーパ状断面部9cを形成する。 さらに、前記前ノズル10は中心に穴10bを
設け、該穴10bの中央部は前記中間ノズル9の
テーパ状断面部9cとわずかな隙間12を有する
ようにテーパ状断面部10c′を形成して、該隙間
12の前端が第2の噴射口12aとなる。前記穴
10bの該第2の噴射口12aよりも前方はテー
パ状に拡開している。 前記金属線14,14′は本体1a内に設けた
図示しない駆動装置によつて案内ホース2,2′、
案内管13,13′に案内されて前方へ送給され、
かつ本体1a内で金属線14,14′は常時前記
ケーブル4が接触集電して所定の直流電圧を印加
されている。 [作用] 以上のように構成した本考案の金属溶射ガンに
よつて金属溶射を行なつた場合の作用について具
体的実施例により説明する。 13クロム鋼材よりなる線径1.1mmの金属線14,
14′を連続的に200mm/minの速さで送給すると
ともに、第1の噴射口11aから噴射する気体流
によつて形成する低気圧圏Aの真空度は第2の噴
射口12aからの気体流によつて著しく向上し該
低気圧圏A内において両金属線14,14′の集
合点で両金属14,14′の集合点に印加された
20ボルトの直流電圧によりアークを発生させるこ
とにより、溶けた球状の金属粒体は第1の噴射口
11aから噴射する気体流の集合部へ移動し、多
数の樹枝状を有する微粒子となり、該微粒子とな
ることによつて表面積が拡大して冷却され溶融金
属微粒子は固体化し、飛散してプレス型本体に付
[Industrial Application Field] The present invention is applicable to, for example, when manufacturing a low-cost press mold suitable for small-volume production, the mold body is formed of an inexpensive and relatively soft metal material or synthetic resin,
The mold surface part relates to a nozzle structure in a metal spraying device used to form a hard metal coating layer to ensure the required hardness. [Prior Art] Conventionally, the nozzle 20 of this type of metal spraying apparatus has a pair of thermal spraying metal wires 14 and
4' A guide tube 13, 13' is provided so that the tips of the metal wires 14, 14' are gathered in a V-shape, and compressed gas is injected so as to be concentrated in front of the gathering position of the metal wires 14, 14'. A metal spraying device equipped with an injection port 11 is generally used, and according to such a metal spraying device, a conical low pressure (that is, a semi-vacuum) is formed by the gas flow injected from the compressed gas injection port 11. A pair of thermal spraying metal wires 14, 1 within area A
4' gather in a V-shape and generate an arc discharge, whereby the molten spherical metal particles move to the gathering part where the forward jetted gas flow is largest, and become fine particles with many dendritic shapes, increasing the surface area. By enlarging the solid particles, a cooling force is generated, which causes them to scatter as solid particles, become entangled with each other on the adhering surface of the sprayed object, and undergo a chain reaction of compression to form a coating layer. By the way, in recent years, chromium-based materials, which are high melting point materials, have been used as thermal spray metals to obtain particularly hard coating layers.
The use of metals such as stainless steel has been tested and considered, but when this type of metal is used for thermal spraying using conventional metal spraying equipment, the degree of vacuum in cyclone A is not sufficient. Therefore, there was a problem in that the tip of the metal wire was not sufficiently melted and the molten particles became coarse, resulting in unmelted slag adhering to the coating layer and small pores caused by air bubbles. [Purpose of the invention] In order to solve the above-mentioned problems of conventional metal thermal spraying equipment, the present invention provides a nozzle structure in which another compressed gas injection port is provided in front of the original compressed gas injection port. With the goal. [Structure of the invention] The present invention has been made to achieve the above-mentioned object. A compressed gas injection port is provided with a gap having a tapered cross section that approaches the center toward the front in order to cause an arc discharge at the tip gathering part to form molten granules, and to inject compressed gas so as to concentrate in front of the discharge position. , in a metal spraying apparatus in which the gas injected from the injection port atomizes and scatters molten metal and attaches it to the object to be sprayed; This is a nozzle structure in a metal thermal spraying apparatus characterized by providing another compressed gas injection port formed by a gap in a tapered cross section for injecting gas. [Example] Hereinafter, an example of the present invention will be described based on the drawings. In FIG. 1, reference numeral 1 denotes a metal thermal spray gun as an embodiment of the metal thermal spraying apparatus of the present invention, and a nozzle 3 is protruded from the front end of the main body 1a.
Flexible hoses 2, 2' for passing metal wires 14, 14' for thermal spraying (hereinafter referred to as metal wires 14, 14') are connected to the rear end, and a lower surface of the rear end of the main body 1a is connected to A grip portion 5 is provided in a downwardly protruding manner, and a cable 4 leading to a power source is connected to the front side of the lower surface. Next, the structure of the nozzle 3 will be explained. In FIG. 2, the nozzle 3 is integrated by screwing the rear end of the front nozzle 10 and the front end of the rear nozzle 8 onto the front and rear ends of the intermediate nozzle 9, respectively. The rear nozzle 8 is formed in a cylindrical shape, and a wall 8c is integrally formed inside the front end portion thereof, in which a tapered hole 8b that expands rearward from an opening of a predetermined diameter at the front end is formed. Along the inner surface of the tapered hole 8b, guide tubes 13, 13' are provided for guiding a pair of metal wires 14, 14' inside, and the metal wires protruding from the guide tubes 13, 13' and the tapered hole 8b are provided. Both ends of the wires 14, 14' are V-shaped and concentrated in front of the ends of the guide tubes 13, 13'. The guide tubes 13, 13' extend through the rear nozzle 8 and the inside of the thermal spray gun body 1a, and also extend through the interior of the spray gun body 1a.
The flexible hoses 2, 2' described above are connected to the rear end of a, and the guide tubes 13, 13', the flexible hoses 2,
The metal wires 14, 14' passed through the interior of the metal wires 2' reach a winding reel (not shown). The intermediate nozzle 9 is provided with a hole 9b in the center, and the hole 9b has a tapered cross section such that its rear end has a slight gap 11 with the outer surface of the tip of the wall 8c of the rear nozzle 8. The front end of the gap 11 is the first compressed gas injection port 11a (hereinafter referred to as the first injection port 11a).
At the rear of the first injection port 11a, a space 8d is formed by the rear nozzle 8 and the intermediate nozzle 9, and a gas hose shown in FIG. Connect 6. Next, as a feature of the present invention, the first injection port 1
Furthermore, in front of 1a, the first injection port 11a
The second compressed gas injection port (hereinafter referred to as the second
12a (referred to as an injection port) 12a is provided. That is, the tapered cross section 8 of the wall 8c of the rear nozzle 8 is removed so that the front end outer peripheral portion of the intermediate nozzle 9 is removed.
A tapered cross section 9c is formed substantially parallel to c'. Further, the front nozzle 10 has a hole 10b in the center, and the center of the hole 10b forms a tapered cross-section 10c' with a slight gap 12 between it and the tapered cross-section 9c of the intermediate nozzle 9. , the front end of the gap 12 becomes the second injection port 12a. The hole 10b widens in a tapered manner in front of the second injection port 12a. The metal wires 14, 14' are connected to the guide hoses 2, 2' by a drive device (not shown) provided in the main body 1a.
It is guided by guide tubes 13, 13' and fed forward,
In the main body 1a, the metal wires 14, 14' are always in contact with the cable 4 to collect current, and a predetermined DC voltage is applied thereto. [Operation] The operation when metal spraying is performed using the metal spray gun of the present invention configured as described above will be explained using specific examples. 13 Metal wire 14 made of chromium steel with a wire diameter of 1.1 mm,
14' is continuously fed at a speed of 200 mm/min, and the degree of vacuum in the cyclone A formed by the gas flow injected from the first injection port 11a is equal to that of the gas flow from the second injection port 12a. It was significantly improved by the gas flow and was applied to the gathering point of both metal wires 14, 14' within the low pressure area A.
By generating an arc with a DC voltage of 20 volts, the molten spherical metal particles move to the collecting part of the gas flow injected from the first injection port 11a, and become fine particles having a large number of dendritic shapes. As a result, the surface area expands and the molten metal particles are solidified, scattered, and attached to the press mold body.

【表】 [効果] 本考案の溶射ガンのノズル構造によれば、従来
の問題点が解消されて、比較的軟質の金属または
合成樹脂で形成したプレス型本体の型面を硬質の
高融点金属材料によつて被膜層が良好に形成され
るため少量生産用のプレス型に適用することによ
り支障なく低コスト化をはかることができる。
[Table] [Effects] According to the nozzle structure of the thermal spray gun of the present invention, the conventional problems are solved, and the mold surface of the press mold body formed of relatively soft metal or synthetic resin is replaced with a hard high-melting point metal. Since the coating layer can be formed well depending on the material, cost reduction can be achieved without any problem by applying it to a press mold for small quantity production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の溶射ガンの全体斜視図、第2
図は第1図の−線に沿う拡大断面図、第3図
は従来例を示す第2図と同様な断面図である。 1……金属溶射ガン、3……ノズル、8……後
ノズル、8b……テーパ穴、8c′……テーパ状断
面部、9……中間ノズル、9b……穴、9c……
テーパ状断面部、10……前ノズル、10b……
穴、10c′……テーパ状断面部、11a……第1
の圧縮気体噴射口、12a……第2の圧縮気体噴
射口。
Figure 1 is an overall perspective view of the thermal spray gun of the present invention;
The figure is an enlarged sectional view taken along the line - in FIG. 1, and FIG. 3 is a sectional view similar to FIG. 2 showing a conventional example. 1... Metal spray gun, 3... Nozzle, 8... Rear nozzle, 8b... Tapered hole, 8c'... Tapered cross section, 9... Intermediate nozzle, 9b... Hole, 9c...
Tapered cross section, 10... Front nozzle, 10b...
Hole, 10c'...Tapered cross section, 11a...First
Compressed gas injection port, 12a...second compressed gas injection port.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 連続的に供給される複数の溶射用金属線を、電
源から供給される電力によつて、該金属線の先端
集合部でアーク放電させて溶融粒体化させるとと
もに、前記放電位置の前方で集中するように圧縮
気体を噴射させるべく前方に向けて中心に近づく
テーパ状断面の隙間による圧縮気体噴射口を設
け、該噴射口から噴射する気体によつて溶融金属
を微細化して飛散させて溶射対象物に付着させる
ようにした金属溶射装置において、前記圧縮空気
の集中位置よりもさらに前方で集中するように圧
縮気体を噴射するテーパ状断面の隙間による別の
圧縮気体噴射口を設けたことを特徴とする金属溶
射装置におけるノズル構造。
A plurality of metal wires for thermal spraying that are continuously supplied are arc-discharged at the tip gathering part of the metal wires by electric power supplied from a power source to form molten granules, and concentrated in front of the discharge position. In order to inject compressed gas, a compressed gas injection port is provided with a gap of a tapered cross section that approaches the center toward the front, and the gas injected from the injection port atomizes the molten metal and scatters it to the spray target. A metal thermal spraying device that is attached to an object, characterized in that another compressed gas injection port is provided with a gap of a tapered cross section that injects compressed gas so that the compressed gas is concentrated further forward than the concentrated position of the compressed air. Nozzle structure for metal spraying equipment.
JP4795884U 1984-03-30 1984-03-30 Nozzle structure in metal spray equipment Granted JPS60161454U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4795884U JPS60161454U (en) 1984-03-30 1984-03-30 Nozzle structure in metal spray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4795884U JPS60161454U (en) 1984-03-30 1984-03-30 Nozzle structure in metal spray equipment

Publications (2)

Publication Number Publication Date
JPS60161454U JPS60161454U (en) 1985-10-26
JPH027645Y2 true JPH027645Y2 (en) 1990-02-23

Family

ID=30563758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4795884U Granted JPS60161454U (en) 1984-03-30 1984-03-30 Nozzle structure in metal spray equipment

Country Status (1)

Country Link
JP (1) JPS60161454U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964405A (en) * 1998-02-20 1999-10-12 Sulzer Metco (Us) Inc. Arc thermal spray gun and gas cap therefor
JP4596642B2 (en) * 2000-12-28 2010-12-08 株式会社ダイヘン Arc spraying method and apparatus

Also Published As

Publication number Publication date
JPS60161454U (en) 1985-10-26

Similar Documents

Publication Publication Date Title
JP4541460B2 (en) Arc spraying device and gas cap for arc spraying device
US4668852A (en) Arc spray system
US5687906A (en) Atomization method and atomizer
EP0949036A3 (en) Arc thermal spray gun extension and gas jet member therefor
US5843210A (en) Method and apparatus for removing particulates from a gas stream
CA2343753C (en) Spray gun for coating objects
WO1991012183A1 (en) Inside diameter arc spray gun
CA1314944C (en) Arc spray gun for coating confined areas
JPH027645Y2 (en)
JP6473629B2 (en) Electrostatic spraying equipment
US6663013B1 (en) Arc thermal spray gun apparatus
CN112828429B (en) Welding slag cleaning device and cleaning method thereof
JP4064712B2 (en) Arc spraying torch head
JPH07256462A (en) Structure of welding part in gas shield arc welding equipment
JP2742536B2 (en) Thermal spray equipment
JPH0673150U (en) Arc spray gun
JP2799718B2 (en) Arc spraying method and apparatus
SU990322A1 (en) Electric metallizer spraying head
CN211490047U (en) Anti-adhesion welding gun protection nozzle
JPH0216107Y2 (en)
JP4504062B2 (en) Thermal spray contact tips
JPH10113581A (en) Arc flame spray coating device
JP3030442B2 (en) Arc spraying equipment for remote spraying
RU2004132666A (en) METHOD OF PLASMA SPRAYING OF COATINGS
JP4596642B2 (en) Arc spraying method and apparatus