JPH027581A - Semiconductor light emitting device and manufacture thereof - Google Patents

Semiconductor light emitting device and manufacture thereof

Info

Publication number
JPH027581A
JPH027581A JP63158653A JP15865388A JPH027581A JP H027581 A JPH027581 A JP H027581A JP 63158653 A JP63158653 A JP 63158653A JP 15865388 A JP15865388 A JP 15865388A JP H027581 A JPH027581 A JP H027581A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
semiconductor
emitting device
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63158653A
Other languages
Japanese (ja)
Inventor
Akira Furuya
章 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63158653A priority Critical patent/JPH027581A/en
Publication of JPH027581A publication Critical patent/JPH027581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To transmit an optical signal of many wavelengths through only one fiber with a simplified structure by arranging two or more of stripe-shaped semiconductor light emitting sections of different emission wavelengths on a straight line along a stripe axis so as to have a function of combining those wavelengths. CONSTITUTION:Semiconductor light emitting devices (semiconductor laser or semicon ductor light emitting diode) 2, 3, 4 including stripe-shaped semiconductor light emitting section on a common ground electrode 1 are aligned on a straight line and excited to emit light with two or more different wavelengths located on a straight line when viewed from the side of the laser having wider forbidden band. Hereby, a semiconduc tor light emitting device is constructed which emits an optical signal of a plurality of wavelengths and has a function of synthesizing of those wavelengths. Each semicon ductor light emitting device 2, 3, 4 includes a semiconductor active layer 6, that emits light, formed on an n-type, for example, one conductivity type semiconductor region 5, a p-type, for example, opposite conductivity type semiconductor region 7 formed on the layer 6, and an electrode 8 formed on the region 7. The semiconductor light emitting devices 2, 3, 4 have energy gaps E1, E2, E3, which satisfy the relation, E1<E2<E3, and emit the light of photon energies hnu1, hnu2, hnu3.

Description

【発明の詳細な説明】 [IR要] 多波長の発光を行うことのできる半導体発光装置に間し
、 簡単な構成で一本のファイバに多波長の光信号を伝送で
きる半導体発光装置を提供することを目的とし、 発光波長の異なる2つ以上のストライプ状半導体発光部
をストライプ軸に沿って直線上に並べ、かつ、前記半導
体発光部は禁制帯幅の小さなものから大きなものへ順に
並べ、禁制帯幅の大きい側から光を取り出すように構成
する。
[Detailed description of the invention] [IR required] To provide a semiconductor light emitting device capable of emitting light of multiple wavelengths, and capable of transmitting optical signals of multiple wavelengths to a single fiber with a simple configuration. For the purpose of the present invention, two or more striped semiconductor light emitting parts having different emission wavelengths are arranged in a straight line along the stripe axis, and the semiconductor light emitting parts are arranged in order from the narrowest forbidden band width to the largest forbidden band width. The configuration is such that light is extracted from the side with the larger band width.

[産業上の利用分野] 本発明は、発光装置に関し、特に多波長の発光を行うこ
とのできる半導体発光装置およびその製造方法に関する
[Industrial Field of Application] The present invention relates to a light emitting device, and particularly to a semiconductor light emitting device capable of emitting light with multiple wavelengths and a method for manufacturing the same.

[従来の技術] 光通信において、−本の光フアイバ中に波長の異なる光
信号を伝送し、通信路の容量を拡大する試みが行われて
いる。この場合、複数の光信号源からの多波長の光を合
波器を用いて一本のファイバに導入する。
[Prior Art] In optical communications, attempts have been made to expand the capacity of a communication path by transmitting optical signals of different wavelengths through one optical fiber. In this case, multiple wavelength lights from multiple optical signal sources are introduced into a single fiber using a multiplexer.

[発明が解決しようとする課題] 一本のファイバに多波長の光信号を伝送しようとすると
、光信号源、合波器の構造が複雑になる。
[Problems to be Solved by the Invention] When attempting to transmit optical signals of multiple wavelengths through a single fiber, the structures of the optical signal source and the multiplexer become complicated.

本発明の目的は、簡単な構成で一本のファイバに多波長
の光信号を伝送できる半導体発光装置を提供することで
ある。
An object of the present invention is to provide a semiconductor light emitting device that can transmit optical signals of multiple wavelengths through a single fiber with a simple configuration.

本発明の他の目的は、多波長の光信号を発することので
きる集積化された半導体発光装置を提供することである
Another object of the present invention is to provide an integrated semiconductor light emitting device capable of emitting optical signals of multiple wavelengths.

さらに、これらの半導体発光装置は製造が困雌であって
は、利用しにくい。
Furthermore, these semiconductor light emitting devices are difficult to manufacture and therefore difficult to use.

本発明の他の目的は、簡単な方法で製造できる多波長の
光信号を伝送できる半導体発光装置およびその製造方法
を提供することである。
Another object of the present invention is to provide a semiconductor light emitting device capable of transmitting multi-wavelength optical signals, which can be manufactured by a simple method, and a method of manufacturing the same.

[課題を解決するための手段] 発光装置その物に合波機能を与えれば、合波器の規模が
小さくて済む。
[Means for Solving the Problem] If the light emitting device itself is provided with a multiplexing function, the scale of the multiplexer can be reduced.

そこで、発光波長の異なるなる2つ以上のストライプ状
半導体発光部をストライプ軸に沿って直線上に並べ、合
波機能を内在させた半導体発光装置を構成する。
Therefore, two or more striped semiconductor light emitting parts having different emission wavelengths are arranged in a straight line along the stripe axis to form a semiconductor light emitting device having a multiplexing function.

さらに、1つの半導体基板上に複数の光信号源を集積化
した半導体発光装置を構成することができる。
Furthermore, it is possible to configure a semiconductor light emitting device in which a plurality of optical signal sources are integrated on one semiconductor substrate.

また、単一または多重量子井戸構造を構成する超格子構
造を選択的に異なる条件で雰囲気熱処理すると、複数の
波長で発光する半導体発光装置を構成できる。
Further, by selectively subjecting a superlattice structure constituting a single or multiple quantum well structure to atmospheric heat treatment under different conditions, a semiconductor light-emitting device that emits light at a plurality of wavelengths can be constructed.

を集積化すると、光軸合わせ等の工程を省略できる。さ
らに、装置の小形化が容易になる。
When integrated, processes such as optical axis alignment can be omitted. Furthermore, it becomes easy to downsize the device.

単一または多重量子井戸構造を構成する超格子構造を選
択的に異なる条件で雰囲気熱処理すると、複数の波長で
発光する半導体発光部を容易に製造できる。
By selectively subjecting a superlattice structure constituting a single or multiple quantum well structure to atmospheric heat treatment under different conditions, it is possible to easily manufacture a semiconductor light emitting section that emits light at a plurality of wavelengths.

[作用コ 半導体発光素子の発光波長は、半導体の禁制帯幅により
決定される。この禁制帯幅より小さなエネルギーの光が
入射しても半導体はこの光を吸収しない。
[Operation] The emission wavelength of a semiconductor light emitting device is determined by the forbidden band width of the semiconductor. Even if light with energy smaller than this forbidden band width is incident, the semiconductor will not absorb this light.

2つ以上のストライプ状半導体発光部をストライプ軸に
沿って直線上に並べであるので、同一光軸上に2つ以上
の発光ビームが発生する。
Since two or more striped semiconductor light emitting parts are arranged in a straight line along the stripe axis, two or more light emitting beams are generated on the same optical axis.

該半導体発光部は禁制帯幅の小さなものから大きなもの
へ順に並べ、禁制帯幅の大きな側から光を取り出すので
、複数の波長の光信号を実質的に減衰させることなく取
り出すことができる。
The semiconductor light emitting parts are arranged in order from the smallest forbidden band width to the largest forbidden band width, and light is extracted from the side with the larger forbidden band width, so that optical signals of a plurality of wavelengths can be extracted without substantially attenuating.

1つの半導体基板上に2つ以上の半導体発光部[実施例
コ 禁制帯幅の異なる半導体を、禁制帯幅が単調に変化する
ように(たとえば小さい順に)直線上に並べ、これを発
光させ、禁制帯幅の大きい側から見ると、−直線上に2
つ以上の異なる光の波長が得られる。これにより、複数
の波長で光信号を発し、かつ合波機能を有した半導体発
光装置が得られる。 第1図(A>、(B)を参照して
、本発明の基本実施例を説明する。
Two or more semiconductor light emitting parts [Embodiment 1] Semiconductors with different forbidden band widths are arranged on a straight line so that the forbidden band widths change monotonically (for example, in ascending order), and the semiconductor light emitting parts are caused to emit light, When viewed from the side with the larger forbidden band width, -2 on the straight line
More than two different wavelengths of light are available. As a result, a semiconductor light emitting device that emits optical signals at a plurality of wavelengths and has a multiplexing function can be obtained. A basic embodiment of the present invention will be described with reference to FIGS. 1A and 1B.

第1図(A)に示すように、共通接地電極1の上にスト
ライプ状半導体発光部を有する半導体発光装置(たとえ
ば半導体レーザまたは半導体発光ダイオード)2.3.
4が一直線上に並べて配置されている、各半導体発光部
!2.3.4は、たとえばn型である1導電型半導体領
域5の上に発光を行う半導体活性層6が形成され、その
上にたとえばp型である反対導電型半導体領域7が形成
され、その上にt’sが形成されている。
As shown in FIG. 1(A), a semiconductor light emitting device (for example, a semiconductor laser or a semiconductor light emitting diode) having a striped semiconductor light emitting section on a common ground electrode 1 2.3.
4 are arranged in a straight line, each semiconductor light emitting part! In 2.3.4, a semiconductor active layer 6 that emits light is formed on a semiconductor region 5 of one conductivity type, which is, for example, an n-type, and a semiconductor region 7 of an opposite conductivity type, which is, for example, a p-type, is formed thereon. T's are formed above it.

半導体発光装置2.3.4は、第1図(B)に示すよう
にE 1 <E 2 <E 3の関係を満たすエネルギ
ギャッ1E 1 、E 2 、E 3を有しており、そ
れに対応したフォトンエネルギhν1、hν2、hν3
の光を発生する。半導体発光装置3.4のエネルギギャ
ップE2、E3は半導体発光装置2のエネルギギャップ
ブE1よりも大きいので、半導体発光部′f13.4は
hν1の光に対しては透明である。また、半導体発光装
置!f4のエネルギギャップE3は半導体発光装置3の
エネルギギャッ1E2よりも大きいので、半導体発光装
置4はhν2の光に対しても透明である。従って、半導
体発光部W4に設けた出射部からはhν1、hν2、h
ν3の光が出射する。
The semiconductor light emitting device 2.3.4 has energy gaps 1E 1 , E 2 , and E 3 that satisfy the relationship E 1 <E 2 <E 3 as shown in FIG. 1(B). The photon energies hν1, hν2, hν3
generates light. Since the energy gaps E2 and E3 of the semiconductor light emitting device 3.4 are larger than the energy gap E1 of the semiconductor light emitting device 2, the semiconductor light emitting section 'f13.4 is transparent to the light hv1. Also, a semiconductor light emitting device! Since the energy gap E3 of f4 is larger than the energy gap 1E2 of the semiconductor light emitting device 3, the semiconductor light emitting device 4 is transparent even to the light of hv2. Therefore, hν1, hν2, h
Light of ν3 is emitted.

このように2つ以上の半導体発光部を、個別の半導体発
光装置を並べることによって構成できる。
In this way, two or more semiconductor light emitting sections can be constructed by arranging individual semiconductor light emitting devices.

この場合は半導体発光装置は半導体レーザでも半導体発
光ダイオードでも又は他の半導体発光装置でもよい。
In this case, the semiconductor light emitting device may be a semiconductor laser, a semiconductor light emitting diode, or another semiconductor light emitting device.

2つ以上の半導体発光装置を1つの半導体基板上にモノ
リシックに集積すれば、マスクパターンにより正確に直
線上に2つ以上の半導体発光部を配置でき、その後の光
軸合せは不要とできる。また装置の小型化がはかれる。
If two or more semiconductor light-emitting devices are monolithically integrated on one semiconductor substrate, two or more semiconductor light-emitting parts can be precisely arranged on a straight line using a mask pattern, and subsequent optical axis alignment can be made unnecessary. Furthermore, the device can be made smaller.

この場合、光軸上の半導体の端面は1対となるので、最
長波長の発光部以外はキャビティを要しない発光ti#
4にするのがよい。
In this case, since there is one pair of end faces of the semiconductor on the optical axis, the light emitting part other than the longest wavelength light emitting part does not require a cavity.
It is better to set it to 4.

第2図に1つの半導体基板上に2つの半導体発光ダイオ
ードを形成した例を示す。
FIG. 2 shows an example in which two semiconductor light emitting diodes are formed on one semiconductor substrate.

半導体基板10上にモノリシックに2つの発光ダイオー
ドを集積する。MOCVD、LPE等を用いた選択成長
、選択エツチング等を行うことによって、1つの基板上
に禁制帯幅のことなる2つの半導体発光ダイオードを形
成する0図中、n型基板10の左側表面上に形成したn
型層11、活性層13、P型層15が左側の発光ダイオ
ードを構成し、n型基板10の右側表面上のn型層12
、活性層14、p型層16が右側のダイオードを形成す
る。p型層15.16の上にはpffll電f!17.
18が形成されている。基板10の下表面にはn側電極
19が形成されている。このような構造は、たとえば、
右側部分をマスクして左側部分を選択成長し、次に左側
部分をマスクして、右側部分を選択成長することによっ
て製造する。初め、全面に成長し、左半分を選択エツチ
ングで除去し、次に左側部分を選択成長しても良い、そ
れぞれの発光ダイオードは発光波長が異なり、格子定数
が近いものを選ぶ、たとえば、基板としてInP基板を
用い、その上に組成の異なるInGaAsPのダイオー
ドを形成する。
Two light emitting diodes are monolithically integrated on a semiconductor substrate 10. By performing selective growth using MOCVD, LPE, etc., selective etching, etc., two semiconductor light emitting diodes with different forbidden band widths are formed on one substrate. formed n
The type layer 11, the active layer 13, and the P-type layer 15 constitute the left-hand light emitting diode, and the n-type layer 12 on the right surface of the n-type substrate 10
, active layer 14, and p-type layer 16 form the diode on the right. Above the p-type layer 15.16 is a pffll electric f! 17.
18 are formed. An n-side electrode 19 is formed on the lower surface of the substrate 10. Such a structure is, for example,
It is manufactured by masking the right part and selectively growing the left part, then masking the left part and selectively growing the right part. First, the entire surface is grown, the left half is removed by selective etching, and then the left side can be selectively grown.Each light emitting diode has a different emission wavelength, and one with a similar lattice constant is selected.For example, as a substrate. An InP substrate is used, and InGaAsP diodes having different compositions are formed on the substrate.

つぎに製造プロセスのより簡単な実施例を第3図(A)
、(B)、(C)を参照して示す。
Next, a simpler example of the manufacturing process is shown in Figure 3 (A).
, (B) and (C).

第3図(A)を参照して、n型基板20上にn型層 I
   G a 6.5 A s層21、多fIL量子井
戸横0.5 造22、p型AI   Ga   As層25、p型0
.5    0.5 GaAs層26を成長する。多重量子井戸構造22は、
たとえば厚さ80人の5層のGaAs層23と厚さ12
0人の4層のAI   Ga   AsO,30,7 層24の交互積層超格子構造で構成する。多重量子井戸
構造を構成する超格子構造に選択的に異なる条件の熱処
理を行うことにより異なる発光波長の発光層を形成する
Referring to FIG. 3(A), an n-type layer I is formed on an n-type substrate 20.
Ga 6.5 As layer 21, multi-fIL quantum well horizontal 0.5 structure 22, p-type AI Ga As layer 25, p-type 0
.. 5 0.5 GaAs layer 26 is grown. The multiple quantum well structure 22 is
For example, 5 layers of GaAs 23 with a thickness of 80 and a thickness of 12
It is composed of an alternately laminated superlattice structure of 24 4-layer AI GaAsO, 30,7 layers. By selectively performing heat treatment under different conditions on the superlattice structure constituting the multi-quantum well structure, light-emitting layers with different emission wavelengths are formed.

第4図にGaAs/AlGaAs多重量子井戸の熱処理
条件による発光波長の変化の例を示す。
FIG. 4 shows an example of a change in emission wavelength depending on heat treatment conditions of a GaAs/AlGaAs multiple quantum well.

横軸がAs4圧力を示し、縦軸が発光波長を示す。The horizontal axis shows the As4 pressure, and the vertical axis shows the emission wavelength.

熱処理温度は850℃で処理時間は2.5時間である。The heat treatment temperature is 850° C. and the treatment time is 2.5 hours.

As4圧力を上げていくと、発光波長は次第に長波長(
低エネルギ)に変化していき、約100To r rで
最も長波長となる。さらにAs圧力を上げていくと、発
光波長は再び短くなっていく。
As As4 pressure is increased, the emission wavelength gradually becomes longer (
(low energy), and reaches its longest wavelength at approximately 100 Torr. When the As pressure is further increased, the emission wavelength becomes shorter again.

発光波長は表面に設けるマスクにも依存して変化する。The emission wavelength changes depending on the mask provided on the surface.

マスクとして5i02、Si3N4、Al3N4を選択
的に用いることによって発光波長が選択的に変化する。
By selectively using 5i02, Si3N4, and Al3N4 as a mask, the emission wavelength is selectively changed.

GaAs/AlGaAs多重1子井戸梢造の場合、発光
波長はたとえば760〜835 n rnの範囲で変化
させることができる6選択的にマスクを用いることによ
って、発光波長を選択的に変化・させることができる。
In the case of a GaAs/AlGaAs multiple single-well structure, the emission wavelength can be varied, for example, in the range of 760 to 835 nm.6 By selectively using a mask, the emission wavelength can be selectively changed/changed. can.

第3図(A)においては、構造の表面に選択的に5i0
2マスクを設けている。すなわち、上の面を領域工、■
に分け、領域■にS i O2M!Aを形成しである。
In FIG. 3(A), 5i0 is selectively added to the surface of the structure.
We have 2 masks. In other words, the upper surface is area-engineered, ■
S i O2M! A is formed.

この構造体に約100TorrのAs4圧を印加しなが
ら、約850℃で約2.5時間の雰囲気熱処理を行う。
This structure is subjected to atmospheric heat treatment at about 850° C. for about 2.5 hours while applying an As4 pressure of about 100 Torr.

この雰囲気熱処理後、領域Iの発光波長は83oni程
度なのに対し、領域■の発光波長は750n1程度まで
変化する。その後、第3図(B)に示すように表面にZ
nを拡散し、Zn拡散領域28を作って、発光部ストラ
イプを形成する。さらに領域1.IIの境界にプロトン
を打ち込み、分離領域29を形成して領域■、■間の電
気的絶縁を行う。
After this atmospheric heat treatment, the emission wavelength of region I is approximately 83 oni, while the emission wavelength of region (3) changes to approximately 750 n1. After that, as shown in Fig. 3(B), Z
Zn is diffused to form a Zn diffusion region 28 to form light emitting stripes. Furthermore, area 1. Protons are implanted into the boundary of II to form an isolation region 29 to provide electrical insulation between regions (1) and (2).

さらに第3図(C)に示すように、ウェハ裏面にA u
 G e / A uのn側電極30を、領域1.I[
にそれぞれA u / Z n / A uのpl!I
!I電i31.32を形成する。これにより、図中装置
の前面側から830nmと750nmの多波長発光を得
ることができる。この発光ビームは同一光軸上に合波さ
れており、別個に制御できる。
Furthermore, as shown in FIG. 3(C), A u
The n-side electrode 30 of G e / A u is placed in region 1. I[
pl of A u / Z n / A u respectively! I
! Form I electric i31.32. As a result, multi-wavelength light emission of 830 nm and 750 nm can be obtained from the front side of the device in the figure. These emitted beams are combined on the same optical axis and can be controlled separately.

このように半導体表面を複数の領域に分け、領域ごとに
マスク構造(マスクなしを含む)を変え、熱処理を行う
方法により、選択成長等に比べてはるかに簡易に複数の
波長で発光する集積半導体発光装置が実現できる。
In this way, by dividing the semiconductor surface into multiple regions, changing the mask structure (including no mask) for each region, and performing heat treatment, it is much easier to create integrated semiconductors that emit light at multiple wavelengths than by selective growth. A light emitting device can be realized.

[効果] 合波機能を持った多波長発光の半導体発光装置を得るこ
とができる。
[Effect] A multi-wavelength light emitting semiconductor light emitting device having a multiplexing function can be obtained.

単一基板上に集積した場合は、さらに小形化が容易であ
り、光軸合わせがマスクパターンによって行える。
When integrated on a single substrate, further miniaturization is possible, and optical axis alignment can be performed using a mask pattern.

条件の異なる熱処理によって発光波長を選択的に制御し
た単一または多重量子井戸構造を用いる場合は、製造プ
ロセスも簡単である。
When using a single or multiple quantum well structure in which the emission wavelength is selectively controlled by heat treatment under different conditions, the manufacturing process is also simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)は本発明の基本実施例を示す概略
斜視図と概略バンドダイアダラム、第2図は本発明のモ
ノリシック構造の実施例を示す断面図、 第3図(A)、(B)、(C)は本発明の他の実施例を
説明するための断面図、 第4図は第3図(A)の構造に行う熱処理を説明するた
めのグラフである。 図において、 2.3.4 共通電極 半導体発光部 1導電型領域 活性層 他導電型領域 11、 12 13.14 15、 16 17、 18 31、 32 電極 n型基板 n型領域 活性層 p型頭域 電極 n型GaAs基板 n型AlGaAs層 多重量子井戸層 GaAsウェル層 AlGaAsバリア層 n型AlGaAs層 P型GaAs層 5in2マスク Z rl拡散領域 プロトン打込みの分離領域 A u G e / A uのn(111電極A u 
/ Z n / A uのp側電極社用の基本実施例 第1図 (A) AuGe/AuのnmJ@5z ネ発哨の他がt充例 第3図
1(A) and (B) are a schematic perspective view and a schematic band diadem showing a basic embodiment of the present invention, FIG. 2 is a sectional view showing an embodiment of a monolithic structure of the present invention, and FIG. 3(A) ), (B), and (C) are cross-sectional views for explaining other embodiments of the present invention, and FIG. 4 is a graph for explaining heat treatment performed on the structure of FIG. 3(A). In the figure, 2.3.4 common electrode semiconductor light emitting section 1 conductivity type region active layer other conductivity type regions 11, 12 13.14 15, 16 17, 18 31, 32 electrode n-type substrate n-type region active layer p-type head Region electrode n-type GaAs substrate n-type AlGaAs layer multiple quantum well layer GaAs well layer AlGaAs barrier layer n-type AlGaAs layer P-type GaAs layer 5in2 mask Z rl diffusion region proton implantation isolation region A u G e / A u n (111 Electrode A u
/ Z n / Au basic example for p-side electrode company Fig. 1 (A) AuGe/Au nmJ@5z t-filled example Fig. 3

Claims (4)

【特許請求の範囲】[Claims] (1)、発光波長の異なる2つ以上のストライプ状半導
体発光部(2、3、4)をストライプ軸に沿って直線上
に並べ、 前記半導体発光部は禁制帯幅(E_1、E_2、E_3
)の小さなものから大きなものへ順に並べ、禁制帯幅の
大きい側から光を取り出すこと を特徴とする半導体発光装置。
(1) Two or more striped semiconductor light emitting parts (2, 3, 4) having different emission wavelengths are arranged in a straight line along the stripe axis, and the semiconductor light emitting parts have a forbidden band width (E_1, E_2, E_3).
) are arranged in order from smallest to largest, and light is extracted from the side with the largest forbidden band width.
(2)、前記2つ以上のストライプ状半導体発光部は、
1つの半導体基板(10、20)上にモノリシックに集
積されていることを特徴とする請求項1記載の半導体発
光装置。
(2) The two or more striped semiconductor light emitting parts are
2. A semiconductor light emitting device according to claim 1, characterized in that it is monolithically integrated on one semiconductor substrate (10, 20).
(3)、前記2つ以上のストライプ状半導体発光部は、
選択的に異なる条件で雰囲気熱処理をした同一構成の単
一または多重量子井戸構造(22)を有することを特徴
とする請求項1記載の半導体発光装置。
(3) The two or more striped semiconductor light emitting parts are
2. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device has single or multiple quantum well structures (22) of the same configuration that are selectively subjected to atmospheric heat treatment under different conditions.
(4)、半導体基板上に単一または多重量子井戸構造を
構成する超格子構造を形成する工程と、表面上に選択的
にマスクを形成する工程と、雰囲気下で熱処理すること
によりマスク下の超格子構造を選択的に異なる条件で雰
囲気熱処理する工程と、 異なる条件で雰囲気熱処理した領域を貫通して複数のス
トライプ状半導体発光部を形成する工程と を含むことを特徴とする半導体発光装置の製造方法。
(4) A step of forming a superlattice structure constituting a single or multiple quantum well structure on a semiconductor substrate, a step of selectively forming a mask on the surface, and a step of forming a mask under the mask by heat treatment in an atmosphere. A semiconductor light emitting device comprising the steps of: selectively subjecting a superlattice structure to atmospheric heat treatment under different conditions; and forming a plurality of striped semiconductor light emitting parts by penetrating the region subjected to atmospheric heat treatment under different conditions. Production method.
JP63158653A 1988-06-27 1988-06-27 Semiconductor light emitting device and manufacture thereof Pending JPH027581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158653A JPH027581A (en) 1988-06-27 1988-06-27 Semiconductor light emitting device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158653A JPH027581A (en) 1988-06-27 1988-06-27 Semiconductor light emitting device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH027581A true JPH027581A (en) 1990-01-11

Family

ID=15676412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158653A Pending JPH027581A (en) 1988-06-27 1988-06-27 Semiconductor light emitting device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH027581A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266549A (en) * 1989-04-07 1990-10-31 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting diode
JPH02266575A (en) * 1989-04-07 1990-10-31 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodiode
JPH031582A (en) * 1989-05-29 1991-01-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting diode
US5362673A (en) * 1991-07-29 1994-11-08 Ricoh Company, Ltd. Method of manufacturing a semiconductor light emitting device
US6060727A (en) * 1994-08-11 2000-05-09 Rohm Co., Ltd. Light emitting semiconductor device
KR100413803B1 (en) * 1996-07-16 2004-04-14 삼성전자주식회사 Multi-color led and fabricating method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266549A (en) * 1989-04-07 1990-10-31 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting diode
JPH02266575A (en) * 1989-04-07 1990-10-31 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodiode
JPH031582A (en) * 1989-05-29 1991-01-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting diode
US5362673A (en) * 1991-07-29 1994-11-08 Ricoh Company, Ltd. Method of manufacturing a semiconductor light emitting device
US6060727A (en) * 1994-08-11 2000-05-09 Rohm Co., Ltd. Light emitting semiconductor device
KR100413803B1 (en) * 1996-07-16 2004-04-14 삼성전자주식회사 Multi-color led and fabricating method thereof

Similar Documents

Publication Publication Date Title
US5250462A (en) Method for fabricating an optical semiconductor device
EP0606093A2 (en) Semiconductor optical integrated circuits and method for fabricating the same
US20090078944A1 (en) Light emitting device and method of manufacturing the same
US20180175587A1 (en) Monolithic wdm vcsels with spatially varying gain peak and fabry perot wavelength
JPH06326419A (en) Monolithic semiconductor luminescence array
EP0680119B1 (en) Fabrication process for semiconductor optical device
JPH10200190A (en) Semiconductor laser and fabrication thereof
US6992320B2 (en) Semiconductor optical device with quantum dots having internal tensile or compressive strain
CN111969415B (en) Wide-spectrum multi-wavelength Fabry-Perot laser
US5138624A (en) Multiwavelength LED and laser diode optical source
JP2751814B2 (en) Fabrication method of wavelength multiplexed surface light emitting device
JPH027581A (en) Semiconductor light emitting device and manufacture thereof
EP0293000B1 (en) Light emitting device
Deppe et al. Coupled stripe Al x Ga1− x As‐GaAs quantum well lasers defined by impurity‐induced (Si) layer disordering
JP2686306B2 (en) Semiconductor laser device and manufacturing method thereof
US5684819A (en) Monolithically integrated circuits having dielectrically isolated, electrically controlled optical devices
JP2007149808A (en) Super luminescent diode
JPH08307003A (en) Semiconductor laser device
Joyner et al. A multifrequency waveguide grating laser by selective area epitaxy
KR19990037200A (en) Semiconductor laser and manufacturing method
Kudo et al. Multiwavelength micro-array semiconductor lasers
JPH11340568A (en) Semiconductor device and its manufacture
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JPH04245493A (en) Multiwavelength semiconductor laser element and driving method of that element
JPS6356977A (en) Semiconductor laser