JPH0275737A - Air/fuel ratio controller for internal combustion engine - Google Patents

Air/fuel ratio controller for internal combustion engine

Info

Publication number
JPH0275737A
JPH0275737A JP22660088A JP22660088A JPH0275737A JP H0275737 A JPH0275737 A JP H0275737A JP 22660088 A JP22660088 A JP 22660088A JP 22660088 A JP22660088 A JP 22660088A JP H0275737 A JPH0275737 A JP H0275737A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
setting
setting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22660088A
Other languages
Japanese (ja)
Other versions
JPH0711252B2 (en
Inventor
Masuo Kashiwabara
柏原 益夫
Yoshiki Yuzuriha
杠 芳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP22660088A priority Critical patent/JPH0711252B2/en
Publication of JPH0275737A publication Critical patent/JPH0275737A/en
Publication of JPH0711252B2 publication Critical patent/JPH0711252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To aim at the improvement of exhaust characteristics by setting air/fuel ratio feedback correction quantity through an integral component, etc, set according to the correction quantity and setting fuel supply quantity according to the correction quantity, at the time of air/fuel ratio feedback control. CONSTITUTION:A basic supply quantity setting means A for setting basic supply quantity according to the operating state of an engine and a correction quantity setting means B for setting correction quantity of every kind are provided and an integral component is set by an integral component setting means C according to the basic supply quantity. Air/fuel ratio feedback correction quantity is suddenly changed due to a proportional component so as to approach an air/fuel ratio detected by an air/fuel ratio detecting means D to a target air/fuel ratio, and a feedback correction quantity setting means E for gradually changing and setting a feedback correction quantity due to set integral component is provided. Fuel supply quantity is set by a fuel supply quantity setting means F according to the air/fuel ratio feedback correction quantity, the basic supply quantity and the correction quantity of every kind and a fuel supply means G is driven and controlled by a driving control means H according to the set fuel supply quantity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の空燃比制御装置に関し、特に空燃
比をフィードバック制御するものに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an air-fuel ratio control device for an internal combustion engine, and particularly to one that performs feedback control of the air-fuel ratio.

〈従来の技術〉 内燃機関の空燃比制御装置、特に電子制御燃料噴射式内
燃機関においては、一般にエアフローメータにより検出
される吸入空気流ff1Qと、点火コイルの点火信号か
ら検出される機関回転数Nとにより燃料の基本噴射量T
、(=KQ/N;には定数)を決定し、これを適宜補正
して、燃料噴射量TIを得、これに基づいてパルス幅の
出力パルスによって例えば機関1回転毎に1回所定のタ
イミングで電磁式燃料噴射弁を駆動し、最適な燃料を機
関に供給するものである。
<Prior Art> In an air-fuel ratio control device for an internal combustion engine, particularly in an electronically controlled fuel injection type internal combustion engine, the intake air flow ff1Q generally detected by an air flow meter and the engine rotation speed N detected from an ignition signal of an ignition coil are used. Therefore, the basic injection amount T of fuel is
, (=KQ/N; is a constant), correct this as appropriate to obtain the fuel injection amount TI, and based on this, the output pulse of the pulse width is used to control the fuel injection at a predetermined timing, for example, once every engine rotation. The system drives the electromagnetic fuel injection valve to supply the optimum amount of fuel to the engine.

ここで、燃料噴射量(出力パルス)Ttは次式%式% 尚、C0EFは各種補正係数、αは後述する空燃比フィ
ードバック補正係数、KBLRCは学習補正係数、KM
ETはメタノール混合率補正係数、T、はバッテリ電圧
による電圧補正骨である。
Here, the fuel injection amount (output pulse) Tt is calculated using the following formula (%). In addition, C0EF is various correction coefficients, α is the air-fuel ratio feedback correction coefficient described later, KBLRC is the learning correction coefficient, KM
ET is a methanol mixing ratio correction coefficient, and T is a voltage correction factor based on the battery voltage.

空燃比のフィードバック制御については、排気マニホー
ルドに酸素センサを取付けて実際の空燃比を検出し、空
燃比が理論空燃比(目標空燃比)より薄いか濃いかをス
ライスレベルにより判定し理論空燃比になるように燃料
の噴射量を制御するわけであり、このため、前記の空燃
比フィードバック補正係数αというものを定めて、この
αを変化させることにより理論空燃比に保っている。
For feedback control of the air-fuel ratio, an oxygen sensor is attached to the exhaust manifold to detect the actual air-fuel ratio, and the slice level determines whether the air-fuel ratio is leaner or richer than the stoichiometric air-fuel ratio (target air-fuel ratio). The amount of fuel injected is controlled so that the above-described air-fuel ratio feedback correction coefficient α is determined, and by varying this α, the stoichiometric air-fuel ratio is maintained.

ここで、空燃比フィードバック補正係数αΦ値は比例積
分(PI)制御により変化させ、安定した制御としてい
る。
Here, the air-fuel ratio feedback correction coefficient αΦ value is changed by proportional-integral (PI) control to achieve stable control.

すなわち、酸素センサの電圧値とスライスレベルとを比
較し、空燃比が濃い(薄い)場合には始めに比例骨Pだ
け下げて(上げて)、それから積分分■の傾きで徐々に
下げて(上げて)いき、空燃比を薄く (濃く)するよ
うに制御する。
That is, compare the voltage value of the oxygen sensor with the slice level, and if the air-fuel ratio is rich (lean), first lower (raise) by the proportional bone P, then gradually lower it with the slope of the integral ■ ( control the air-fuel ratio to make it leaner (richer).

このPI制御の状態を具体的に示すと、第4図に示すよ
うに、混合気が理論空燃比より濃い方向にずれた場合は
、次のような原理で混合気は理論空燃比付近に戻される
。すなわち、図の左側のように、混合気が濃い方にずれ
ると、空燃比が理論空燃比より濃くなる時間が薄くなる
時間より長くなる結果、酸素センサの電圧がスライスレ
ベルより大きくなる時間が長くなる。そのため、空燃比
フィードバック補正係数αは酸素センサの信号により図
示の如くとなって、小さくなる方向に徐々にずれていき
、その結果、図の右側のように、理論空燃比付近に制御
される。
To specifically illustrate the state of this PI control, as shown in Figure 4, when the air-fuel mixture deviates to a direction richer than the stoichiometric air-fuel ratio, the air-fuel mixture is returned to near the stoichiometric air-fuel ratio based on the following principle. It will be done. In other words, as shown on the left side of the diagram, when the air-fuel mixture shifts to the richer side, the time for the air-fuel ratio to become richer than the stoichiometric air-fuel ratio is longer than for the air-fuel ratio to become leaner, resulting in a longer time for the oxygen sensor voltage to exceed the slice level. Become. Therefore, the air-fuel ratio feedback correction coefficient α is gradually shifted in the direction of decreasing as shown in the figure by the signal from the oxygen sensor, and as a result, the air-fuel ratio is controlled to be around the stoichiometric air-fuel ratio as shown on the right side of the figure.

ここにおいて、前記積分分Iは機関運転状態に基づいて
テーブルルックアップされた基本積分分iに前記燃料噴
射T、を乗算して求めるようにしている。
Here, the integral I is determined by multiplying the basic integral i, which is looked up in a table based on the engine operating state, by the fuel injection T.

〈発明が解決しようとする課題〉 しかしながら、このような従来の空燃比制御装置におい
ては、積分分■を燃料噴射量T、に基づいて決定するよ
うにしているので、以下の不具合がある。
<Problems to be Solved by the Invention> However, in such a conventional air-fuel ratio control device, since the integral (2) is determined based on the fuel injection amount T, there are the following problems.

すなわち、燃料噴射量T1には、バッテリ電圧に応じた
燃料噴射弁の開弁に要する立ち上がり無効パルス幅に相
当する電圧補正分子、が含まれているので、アイドル運
転時等の低負荷運転時には前記電圧補正分子、の影響が
大きくなって■が大きくなり、排気特性を悪化させると
いう不具合がある。また、アルコール混合燃料を使用す
る機関では、メタノール混合率に応じて前記メタノール
交合率補正係数KMETが大きく変化し同一運転領域で
あっても前記Iが大きく変化し、前記と同様な不具合が
あった。
That is, since the fuel injection amount T1 includes a voltage correction numerator corresponding to the rising invalid pulse width required to open the fuel injector according to the battery voltage, during low load operation such as idling operation, the above-mentioned There is a problem in that the influence of the voltage correction numerator becomes large and .largecircle. becomes large, deteriorating the exhaust characteristics. Furthermore, in engines that use alcohol-mixed fuel, the methanol mixing ratio correction coefficient KMET changes greatly depending on the methanol mixing ratio, and even in the same operating range, the above I changes greatly, resulting in the same problem as above. .

本発明は、このような実状に鑑みてなされたもので、空
燃比フィードバック制御時の積分分を最適に設定できる
空燃比制御装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air-fuel ratio control device that can optimally set an integral during air-fuel ratio feedback control.

く課題を解決するための手段〉 このため、本発明は、第1図に示すように、機関運転状
態に基づいて基本供給量を設定する基本供給量設定手段
Aと、各種の補正量を設定する補正量設定手段Bと、前
記設定された基本供給量に基づいて積分分を設定する積
分分設定手段Cと、機関の実際の空燃比を検出する空燃
比検出手段りと、検出された実際の空燃比を目標空燃比
に近づけるように、空燃比フィードバック補正量を比例
骨により急激に変化させた後、前記設定された積分分に
より徐々に変化させて設定するフィードバック補正量設
定手段Eと、該設定された空燃比フィードバック補正量
と前記基本供給量と前記各種の補正量とに基づいて燃料
供給量を設定する燃料供給量設定手段Fと、設定された
燃料供給量に基づいて燃料供給手段Gを駆動制御する駆
動制御手段Hと、を備えるようにした。
Means for Solving the Problems> For this reason, the present invention, as shown in FIG. a correction amount setting means B for setting an integral based on the set basic supply amount; an air-fuel ratio detecting means for detecting the actual air-fuel ratio of the engine; a feedback correction amount setting means E for rapidly changing the air-fuel ratio feedback correction amount using a proportional bone and then gradually changing it using the set integral so that the air-fuel ratio of the air-fuel ratio approaches the target air-fuel ratio; a fuel supply amount setting means F for setting a fuel supply amount based on the set air-fuel ratio feedback correction amount, the basic supply amount, and the various correction amounts; and a fuel supply amount setting means based on the set fuel supply amount. A drive control means H for controlling drive G is provided.

〈作用〉 このようにして、空燃比フィードバック制御時に、基本
供給量に基づいて設定された積分分等により空燃比フィ
ードバック補正量を設定し、この補正量に基づいて燃料
供給量を設定するようにした。
<Operation> In this way, during air-fuel ratio feedback control, the air-fuel ratio feedback correction amount is set using an integral set based on the basic supply amount, and the fuel supply amount is set based on this correction amount. did.

〈実施例〉 以下に、本発明の一実施例を第2図及び第3図に基づい
て説明する。
<Example> An example of the present invention will be described below with reference to FIGS. 2 and 3.

第2図において、マイクロコンピュータ等からなる制御
装置1には、エアフローメータ2により検出された吸入
空気流量信号Qと、回転数センサ3により検出された機
関回転数信号Nと、空燃比検出手段としての酸素センサ
4により検出された排気中の酸素濃度検出信号と、水温
センサ5により検出された水温検出信号と、が入力され
ている。
In FIG. 2, a control device 1 consisting of a microcomputer etc. receives an intake air flow rate signal Q detected by an air flow meter 2, an engine rotation speed signal N detected by a rotation speed sensor 3, and an air-fuel ratio detection means. The oxygen concentration detection signal in the exhaust gas detected by the oxygen sensor 4 and the water temperature detection signal detected by the water temperature sensor 5 are input.

制御装置lは、第3図のフローチャートに従って作動し
、燃料供給手段としての賓料噴射弁6に駆動回路7を介
して噴射パルス信号を出力する。
The control device 1 operates according to the flowchart shown in FIG. 3, and outputs an injection pulse signal to the guest injection valve 6 as a fuel supply means via the drive circuit 7.

ここでは、制御装置1が基本供給量設定手段と補正量設
定手段と積分分設定手段とフィードパ・ンク補正量設定
手段と燃料供給量設定手段とを構成する。また、制御装
置1と駆動回路7とが駆動制御手段を構成する。
Here, the control device 1 constitutes a basic supply amount setting means, a correction amount setting means, an integral setting means, a feed pump/punk correction amount setting means, and a fuel supply amount setting means. Further, the control device 1 and the drive circuit 7 constitute a drive control means.

次に作用を第3図のフローチャートに従って説明する。Next, the operation will be explained according to the flowchart shown in FIG.

Slでは、エアフローメータ2、回転数センサ3等から
の各種信号を読込む。
At Sl, various signals from the air flow meter 2, rotation speed sensor 3, etc. are read.

S2では、エアフローメータ2からの吸入空気流量信号
Q及び回転数センサ3からの機関回転数信号Nに基づき
基本供給量としての基本噴射量T9を次式により演算す
る。
In S2, a basic injection amount T9 as a basic supply amount is calculated based on the intake air flow rate signal Q from the air flow meter 2 and the engine speed signal N from the rotation speed sensor 3 using the following equation.

TP =に−Q/N (但し、Kは定数)S3では、水
温センサ5からの水温信号やスロットルセンサ(図示せ
ず)からのスロットル弁開度信号等に基づき、各種補正
係数C0EFを演算する。
TP = -Q/N (K is a constant) In S3, various correction coefficients C0EF are calculated based on the water temperature signal from the water temperature sensor 5, the throttle valve opening signal from the throttle sensor (not shown), etc. .

S4では、バッテリ電圧に応じて燃料噴射弁の開弁に要
する立ち上がり無効パルス幅T、を演算する。
In S4, a rising invalid pulse width T required for opening the fuel injection valve is calculated according to the battery voltage.

S5では、空燃比フィードバック制御を行う運転状態で
あるか否かの判定を行う、具体的には、水温センサ5に
より検出される水温が所定値以上でスロットルセンサに
より検出されるスロットル弁開度が全開(高負荷運転)
ではなく、かつ、スロットル弁の開度変化率が所定値以
下の緩加・減速運転若しくは定常運転条件であって、酸
素センサ4が正常と判定されたとき等が空燃比フィード
バック制御条件に該当する。そして、空燃比フィードバ
ック制御を行わない場合はS12に進み、空燃比フィー
ドバック補正係数αを所定値α。(例えばα。=1)に
固定し、S6に進む。
In S5, it is determined whether or not the operating state is one in which air-fuel ratio feedback control is performed. Specifically, when the water temperature detected by the water temperature sensor 5 is equal to or higher than a predetermined value and the throttle valve opening detected by the throttle sensor is Fully open (high load operation)
, and when the rate of change in throttle valve opening is below a predetermined value, such as slow acceleration/deceleration operation or steady operation conditions, and the oxygen sensor 4 is determined to be normal, etc., corresponds to the air-fuel ratio feedback control condition. . If air-fuel ratio feedback control is not to be performed, the process proceeds to S12, where the air-fuel ratio feedback correction coefficient α is set to a predetermined value α. (for example, α.=1) and proceed to S6.

S6では、比例分P及び基本積分分1をマツプから検索
する。前記基本積分分iは機関運転状態に対応させてマ
ツプに記憶されている。また、比例分Pは空燃比フィー
ドバック制御開始から経時と共に小さくなり所定時間経
過後に略一定値になるようにマツプに記憶されている。
In S6, the proportional component P and the basic integral 1 are searched from the map. The basic integral i is stored in a map in correspondence with the engine operating state. Further, the proportional portion P is stored in the map so that it decreases with time from the start of the air-fuel ratio feedback control and becomes a substantially constant value after a predetermined period of time has elapsed.

S7では、酸素センサ4の出力が反転したか否かを判定
し、NoのときにはS8に進みYESのときにはSIO
に進む。ここで、酸素センサ4の出力電圧に基づいて検
出された実際の空燃比が目標空燃比(λ−1)に対し過
濃側或いは希薄側に切換わったときに、酸素センサ4の
出力が反転したと判定される。
In S7, it is determined whether or not the output of the oxygen sensor 4 has been reversed. If NO, the process advances to S8, and if YES, the SIO
Proceed to. Here, when the actual air-fuel ratio detected based on the output voltage of the oxygen sensor 4 switches to the rich side or the lean side with respect to the target air-fuel ratio (λ-1), the output of the oxygen sensor 4 is reversed. It is determined that

S8では、S6にて検索されたPを零に設定した後、S
9に進む。
In S8, after setting P found in S6 to zero, S
Proceed to step 9.

S9では、S6に検索された基本積分分iとS2にて演
算された基本噴射量T、とに基づいて、積分分I (=
i×2T、)を演算した後、Sllに進む。
In S9, the integral I (=
After calculating i×2T,), the process proceeds to Sll.

一方、SIOでは、積分分Iを零に設定した後、S11
に進む。
On the other hand, in SIO, after setting the integral I to zero, S11
Proceed to.

Sllでは、前回のルーチンで設定された空燃比フィー
ドバック補正係数α。と、S6若しくはS8にて設定さ
れたP分と、S9若しくは310にて設定された積分分
■と、に基づいて、新たな空燃比フィードバック補正係
数α(−α。十P+1)を演算する。
Sll is the air-fuel ratio feedback correction coefficient α set in the previous routine. A new air-fuel ratio feedback correction coefficient α (-α. 10 P+1) is calculated based on the P minute set in S6 or S8, and the integral ■ set in S9 or 310.

このようにすると、空燃比フィードバック補正係数αは
、酸素センサ4の出力反転直後に急激に増大(減少)し
た後次の出力反転時まで積分分■の傾きで徐々に増大(
減少)するように、変化する。
In this way, the air-fuel ratio feedback correction coefficient α rapidly increases (decreases) immediately after the output of the oxygen sensor 4 is reversed, and then gradually increases (decreases) at the slope of the integral ■ until the next output is reversed.
decrease), change.

S13では、燃料噴射量T1を次式により演算する。In S13, the fuel injection amount T1 is calculated using the following equation.

Ti =2xT、xcOEFxαXKBLRCxKME
T+T。
Ti = 2xT, xcOEFxαXKBLRCxKME
T+T.

尚、KBLRCは学習補正係数、KMETはメタノール
混合率補正係数、T、はバッテリ電圧による電圧補正骨
である。
Note that KBLRC is a learning correction coefficient, KMET is a methanol mixing ratio correction coefficient, and T is a voltage correction factor based on the battery voltage.

そして、演算された燃料噴射量T、に対応する噴射パル
ス信号を駆動回路7を介して燃料噴射弁6に出力し、燃
料噴射を行わせる。
Then, an injection pulse signal corresponding to the calculated fuel injection amount T is outputted to the fuel injection valve 6 via the drive circuit 7 to cause fuel injection to be performed.

以上説明したように、積分分■を基本噴射量Tpに基づ
いて設定するようにしたので、積分分Iは電圧補正分子
、或いはメタノール混合率補正係数KMETの影響を受
けることなく設定できるため同−運転傾城では積分分I
は略同様になり、もって排気特性を向上できる。
As explained above, since the integral I is set based on the basic injection amount Tp, the integral I can be set without being influenced by the voltage correction numerator or the methanol mixing ratio correction coefficient KMET. Integral I in driving leaning castle
are almost the same, thereby improving the exhaust characteristics.

〈発明の効果〉 本発明は、以上説明したように、空燃比フィードバック
制御時に積分分を基本供給量に基づいて設定して空燃比
フィードバック補正量を求め燃料供給を行うようにした
ので、積分分は各種の補正量の影響を受けることがなく
排気特性を向上できる。
<Effects of the Invention> As explained above, the present invention sets the integral based on the basic supply amount during air-fuel ratio feedback control to determine the air-fuel ratio feedback correction amount and perform fuel supply. can improve exhaust characteristics without being affected by various correction amounts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図は同上のフローチャート、
第4図は空燃比フィードバック制御の一例を示すタイム
チャートである。 l・・・制御装置  2・・・エアフローメータ  3
・・・回転数センサ  4・・・酸素センサ  6・・
・燃料噴射弁  7・・・駆動回路 特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  富二雄
Fig. 1 is a claim correspondence diagram of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the present invention, Fig. 3 is a flowchart of the same as above,
FIG. 4 is a time chart showing an example of air-fuel ratio feedback control. l...Control device 2...Air flow meter 3
...Rotation speed sensor 4...Oxygen sensor 6...
・Fuel injection valve 7... Drive circuit patent applicant Fujio Sasashima, agent of Japan Electronics Co., Ltd., patent attorney

Claims (1)

【特許請求の範囲】[Claims] 機関運転状態に基づいて基本供給量を設定する基本供給
量設定手段と、各種の補正量を設定する補正量設定手段
と、前記設定された基本供給量に基づいて積分分を設定
する積分分設定手段と、機関の実際の空燃比を検出する
空燃比検出手段と、検出された実際の空燃比を目標目標
空燃比に近づけるように、空燃比フィードバック補正量
を比例分により急激に変化させた後前記設定された積分
分により徐々に変化させて設定するフィードバック補正
量設定手段と、該設定された空燃比フィードバック補正
量と前記基本供給量と前記各種の補正量とに基づいて燃
料供給量を設定する燃料供給量設定手段と、設定された
燃料供給量に基づいて燃料供給手段を駆動制御する駆動
制御手段と、を備えたことを特徴とする内燃機関の空燃
比制御装置。
basic supply amount setting means for setting the basic supply amount based on the engine operating state; correction amount setting means for setting various correction amounts; and integral setting means for setting the integral based on the set basic supply amount. means, an air-fuel ratio detection means for detecting the actual air-fuel ratio of the engine, and after rapidly changing the air-fuel ratio feedback correction amount by a proportional amount so that the detected actual air-fuel ratio approaches the target target air-fuel ratio. Feedback correction amount setting means that gradually changes and sets according to the set integral, and sets a fuel supply amount based on the set air-fuel ratio feedback correction amount, the basic supply amount, and the various correction amounts. 1. An air-fuel ratio control device for an internal combustion engine, comprising: a fuel supply amount setting means for controlling the fuel supply amount; and a drive control means for driving and controlling the fuel supply means based on the set fuel supply amount.
JP22660088A 1988-09-12 1988-09-12 Air-fuel ratio controller for internal combustion engine Expired - Lifetime JPH0711252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22660088A JPH0711252B2 (en) 1988-09-12 1988-09-12 Air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22660088A JPH0711252B2 (en) 1988-09-12 1988-09-12 Air-fuel ratio controller for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0275737A true JPH0275737A (en) 1990-03-15
JPH0711252B2 JPH0711252B2 (en) 1995-02-08

Family

ID=16847735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22660088A Expired - Lifetime JPH0711252B2 (en) 1988-09-12 1988-09-12 Air-fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0711252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333678A (en) * 2006-06-19 2007-12-27 Nsk Ltd Torque sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333678A (en) * 2006-06-19 2007-12-27 Nsk Ltd Torque sensor

Also Published As

Publication number Publication date
JPH0711252B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPH0645646Y2 (en) Misfire determination device for internal combustion engine
JPH0275737A (en) Air/fuel ratio controller for internal combustion engine
KR0161699B1 (en) Air fuel ratio controller for internal combustion engine
JP2521037B2 (en) Engine air-fuel ratio control device
JPH03275954A (en) Control device for air-fuel ratio of internal combustion engine using fuel of different kind
JPS63295832A (en) Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine
JPS62253936A (en) Electronically controlled fuel injection equipment for internal combustion engine
JP2505750B2 (en) Air-fuel ratio control method for multi-fuel internal combustion engine
JPS5949346A (en) Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type
JP3640085B2 (en) Control method and control apparatus for fuel injection device for internal combustion engine
JPS62159744A (en) Electronic fuel injection control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2808214B2 (en) Air-fuel ratio control device for internal combustion engine with evaporative fuel control device
JPH03271541A (en) Air-fuel ratio feedback control device of internal combustion engine
JP2924577B2 (en) Engine stability control device
JP2582558B2 (en) Learning control device for air-fuel ratio of internal combustion engine
JPS63105256A (en) Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine
JPS63277837A (en) Air-fuel ratio learning control device for internal combustion engine
JPH04109049A (en) Air-fuel ratio control device for internal combustion engine
JPS63295833A (en) Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine
JPH0571784B2 (en)
JPH02104945A (en) Device for controlling engine
JPH03168342A (en) Air-fuel ratio controller of internal combustion engine
JPH0573909B2 (en)
JPS62191639A (en) Device for controlling air fuel ratio for electronically controlled fuel injection type internal combustion engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14