JPH0275457A - Method for preventing air from intruding into dipping nozzle - Google Patents

Method for preventing air from intruding into dipping nozzle

Info

Publication number
JPH0275457A
JPH0275457A JP22545088A JP22545088A JPH0275457A JP H0275457 A JPH0275457 A JP H0275457A JP 22545088 A JP22545088 A JP 22545088A JP 22545088 A JP22545088 A JP 22545088A JP H0275457 A JPH0275457 A JP H0275457A
Authority
JP
Japan
Prior art keywords
nozzle
dipping nozzle
pressure
gas
immersion nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22545088A
Other languages
Japanese (ja)
Inventor
Nobufumi Kasai
宣文 笠井
Morio Kawasaki
守夫 川崎
Takeshi Nakai
中井 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22545088A priority Critical patent/JPH0275457A/en
Publication of JPH0275457A publication Critical patent/JPH0275457A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/58Pouring-nozzles with gas injecting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent air from intruding from a fitting part and a sliding part of a dipping nozzle by blowing inert gas into the dipping nozzle, while measuring pressure of the inside of the dipping nozzle. CONSTITUTION:Pressure in a dipping nozzle 1 is measured continuously by a pressure gauge 8 through a dipping nozzle internal pressure measuring conduit 5 which is attached to the dipping nozzle 1. The measured pressure is converted to an inert gas flow rate instructing signal by a transducer 9, and transmitted to flow rate control valve 10. Inert gas is controlled as to its flow rate by the flow rate control valve 10, passes through a flow meter 11 which is installed in accordance with necessity, and thereafter, blown into the dipping nozzle 1 through a gas blowing use porous refractory 6, and pressure in the dipping nozzle 1 is controlled to prescribed pressure. In such a way, gas in the dipping nozzle 1 is exhausted to the outside of the dipping nozzle from a fitting part and a sliding part, and the inert gas always flows into a void in the dipping nozzle 1, therefore, an intrusion of air can be prevented completely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼等の金属の連続鋳造技術に関し、特に金g4
溶湯を鋳型内に供給する浸漬ノズル内への空気侵入防止
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to continuous casting technology for metals such as steel, and in particular to gold G4.
The present invention relates to a method for preventing air from entering into a submerged nozzle that supplies molten metal into a mold.

〔従来の技術〕[Conventional technology]

鋼等の連続鋳造において浸漬ノズルを用いる主目的の一
つは溶鋼が夕/ディッシ、から鋳型へ移行する間におけ
る空気中酸素による酸化の防止であるが、完全に無酸化
吠歯に保持することは困難で、浸漬ノズルとタンデイツ
シュとの接合部、あるいはスライディングゲートの固定
盤、スライダー等浸漬ノズルの嵌合部、摺動部から空気
が侵入する。その結果、該侵入空気中の酸素と溶鋼中の
Aiが反応してA420aが析出、堆積し、ノズル閉塞
を起こして鋳造不可能となる場合がある。また、空気の
侵入が著しい場合は堆積したAj220aが剥離し、鋳
型内に持ち込まれ大型介在物として鋳片内に残存するこ
とがあり、更に溶鋼中のAll と反応するl!l素量
思量以上素が浸漬ノにルを通過して鋳型内に入り、鋳型
内のパウダーが酸化され、劣化することにより潤滑作用
が低下し、ブレークアウトに至る場合がある。
One of the main purposes of using an immersion nozzle in continuous casting of steel, etc. is to prevent oxidation due to atmospheric oxygen during the transition of molten steel from the dish to the mold, but it is also important to keep the molten steel completely free of oxidation. Air can enter from the joint between the immersion nozzle and the tundish, or from the fitting and sliding parts of the immersion nozzle such as the fixed plate of the sliding gate and the slider. As a result, the oxygen in the invading air reacts with the Ai in the molten steel, causing A420a to precipitate and accumulate, which may clog the nozzle and make it impossible to cast. Furthermore, if there is significant air intrusion, the deposited Aj220a may peel off, be brought into the mold, and remain in the slab as large inclusions, and further react with All in the molten steel. More than 1 atomic amount of powder passes through the immersion nozzle and enters the mold, and the powder in the mold is oxidized and deteriorated, reducing the lubricating effect and possibly leading to breakout.

そのため、従来は浸漬ノズル内への空気侵入防止策とし
て以下のような方法が用いられていた。
Therefore, conventionally, the following methods have been used to prevent air from entering the immersion nozzle.

すなわち、 (1) 浸漬ノズルの嵌合部、摺動部の周囲を不活性ガ
スで覆う方法。
(1) A method of covering the fitting part and sliding part of the immersion nozzle with inert gas.

■ 嵌合部の耐火物に膨張性を付与し熱が加わることに
より耐火物を膨張させる方法。
■ A method of expanding the refractory by adding expandability to the refractory in the fitting part and applying heat.

(3)  浸漬ノズル内に上ノズルあるいは上固定盤よ
り不活性ガスを吹き込み、付着するAflzO*を強制
的に鋳型内に流出させる方法。
(3) A method in which inert gas is blown into the immersion nozzle from the upper nozzle or upper fixed plate to force the attached AflzO* to flow out into the mold.

(4)  浸漬ノズルにスリットを設け、該スリットを
介して不活性ガスを吹き込み、上記(3)と同様の効果
をもたせる方法。
(4) A method of providing the same effect as in (3) above by providing a slit in the immersion nozzle and blowing inert gas through the slit.

(9浸漬ノズルに銅パイプを接続し、吸引ボ/プにより
前記ノズル内のガスを吸引してノズル内の圧力をコント
ロールする方法 〔鉄と鋼(198B)S1078) 等の方法である。
(9) A method of connecting a copper pipe to a submerged nozzle and controlling the pressure inside the nozzle by sucking the gas inside the nozzle using a suction valve [Tetsu to Hagane (198B) S1078].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の方法においては以下のような
課題があった。すなわち、 (1)の浸漬ノズルの嵌合部、摺動部の周囲を不活性ガ
スで覆う方法では、空気中の酸素濃度は下がっても前記
嵌合部、摺動部におけるリーク自体は改善されないため
、不活性ガスの送給の住方によっては空気侵入量が増大
する場合がある。
However, the conventional method described above has the following problems. In other words, in the method (1) of covering the fitting and sliding parts of the immersion nozzle with inert gas, even though the oxygen concentration in the air decreases, the leakage itself at the fitting and sliding parts is not improved. Therefore, the amount of air intrusion may increase depending on where the inert gas is supplied.

(2)の嵌合部の耐火物に膨張性を付与する方法では、
熱が連続的に加わることにより耐火物の膨張性が損なわ
れ、逆に隙間が大きくなり空気侵入量が増大する場合が
ある。
In the method (2) of imparting expandability to the refractory of the fitting part,
Continuous application of heat may impair the expandability of the refractory, and conversely, the gap may become larger and the amount of air intrusion may increase.

(3)及び(Φの浸漬ノズルの上固定盤、上ノズルある
いは浸漬ノズルに設けたスリットを介して浸漬ノズル内
に不活性ガスを吹込み、付着するAuzO*を鋳型内に
流出させる方法では、不活性ガス吹込み量が常に一定で
あるため空気侵入量が少ない鋳造初期においては前記吹
込まれた不活性ガスがピンホール等の鋳片欠陥として鋳
片内に残存する場合がある。
(3) and (methods in which inert gas is blown into the immersion nozzle through the upper fixed plate of the Φ immersion nozzle, the upper nozzle, or the slit provided in the immersion nozzle, and the adhering AuzO* flows out into the mold, Since the amount of inert gas blown is always constant, in the early stages of casting when the amount of air intrusion is small, the inert gas blown may remain in the slab as defects such as pinholes.

6)の浸漬ノズル内のガスを吸引して前記ノズル内の圧
力をコントロールする方法では、空気の侵入による前記
の弊害を完全に防止することができず、溶鋼の付着によ
りノズル内圧力のコントロールが不可能となる場合もあ
る。
6) The method of controlling the pressure inside the nozzle by suctioning the gas inside the submerged nozzle cannot completely prevent the above-mentioned adverse effects caused by the intrusion of air, and the control of the pressure inside the nozzle is difficult due to the adhesion of molten steel. Sometimes it is impossible.

本発明は浸漬ノズルの嵌合部、摺動部からの空気の°侵
入を完全に防止し、鋳片におけるピンホールの発生や、
Aj!zo3の析出、堆積に起因する浸漬ノズルの閉塞
あるいは大型介在物の鋳片内での残存を防止することを
目的とする。
The present invention completely prevents air from entering from the fitting and sliding parts of the immersion nozzle, and prevents the formation of pinholes in slabs.
Aj! The purpose of this method is to prevent clogging of the immersion nozzle or the remaining of large inclusions in the slab due to the precipitation and accumulation of zo3.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は浸漬ノズル内の圧力を測定することが可能
で、該測定により浸漬ノズル内への空気の侵入量を連続
的かつ定量的に把握することが可能であることに着目し
、種々検討の結果、前記の空気侵入量に見合う量の不活
性ガスを浸漬ノズル内に吹き込むことにより、該ノズル
内の圧力を一定に保ち、空気の侵入を防止してAI!、
zOaの析出、堆積を防ぎ、また鋳片におけるピンホー
ルの発生を防止できることを確認した。すなわち本発明
の要旨は、金属溶湯を連続鋳造用鋳型内に供給する浸漬
ノズル内の圧力を測定しつつ該浸漬ノズル内に不活性ガ
スを吹き込み、前記浸漬ノズル内の圧力を制御すること
を特徴とする浸漬ノズル内への空気侵入防止方法である
The present inventors focused on the fact that it is possible to measure the pressure inside the immersed nozzle, and that it is possible to continuously and quantitatively understand the amount of air entering the immersed nozzle through this measurement. As a result of the study, by blowing an amount of inert gas into the submerged nozzle that corresponds to the amount of air intrusion, the pressure inside the nozzle is kept constant and air intrusion is prevented and AI! ,
It was confirmed that precipitation and accumulation of zOa can be prevented, and pinholes can be prevented from forming in slabs. That is, the gist of the present invention is to control the pressure inside the immersion nozzle by blowing an inert gas into the immersion nozzle while measuring the pressure inside the immersion nozzle that supplies molten metal into a mold for continuous casting. This is a method of preventing air from entering the immersion nozzle.

〔作   用〕[For production]

以下に本発明を図に基づいて詳細に説明する。 The present invention will be explained in detail below based on the drawings.

第1図は本発明を実施するための装置の一例の構成を示
す説明図で、(I)は浸漬ノズル、■及び(Jはそれぞ
れスライディングゲートの上固定盤及び下固定盤、(4
)は矢印方向に移動してスライディングゲートを開閉す
るスライダー、■は浸漬ノズル内圧力測定用導管、(6
)はガス吹込み用多孔質耐火物、また、(2)は連続鋳
造用パウダーである。同図において、浸漬ノズル(1)
に取り付けられた浸漬ノズル内圧力測定用導管■を介し
て圧力計(8)により浸漬ノズル(1)内の圧力が連続
的に測定され、該測定された圧力は変換器(9)により
不活性ガス流量指示信号に変換され、流量調節弁鋤へ伝
えられる。
FIG. 1 is an explanatory diagram showing the configuration of an example of an apparatus for carrying out the present invention, in which (I) is an immersion nozzle, (2) and (J are respectively an upper fixed plate and a lower fixed plate of a sliding gate, (4)
) is a slider that moves in the direction of the arrow to open and close the sliding gate, ■ is a conduit for measuring the pressure inside the immersion nozzle, (6
) is a porous refractory for gas injection, and (2) is a powder for continuous casting. In the same figure, the immersion nozzle (1)
The pressure inside the submerged nozzle (1) is continuously measured by a pressure gauge (8) through a conduit for measuring pressure inside the submerged nozzle attached to the It is converted into a gas flow rate indication signal and transmitted to the flow rate regulating valve plow.

不活性ガスは前記流量調節弁01で流量がm節され、必
要によりL&置する流量計QOを通過した後ガス吹込み
用多孔質耐火物(6)を介して浸漬ノズル(鳳)内に吹
き込まれ、該浸漬ノズル(1)内の圧力は所定の圧力に
制御される。前記所定の圧力は 0〜0.05kg/c
Jの範囲内とするのが好適である。
The flow rate of the inert gas is set to m by the flow rate control valve 01, and after passing through a flow meter QO installed at L& if necessary, it is blown into the immersion nozzle (Feng) through the porous refractory for gas injection (6). The pressure inside the immersion nozzle (1) is controlled to a predetermined pressure. The predetermined pressure is 0 to 0.05 kg/c
It is preferable to set it within the range of J.

すなわち、浸漬ノズル(1)内の圧力を負圧にならない
ように制御することにより浸漬ノズル0)内のガスは嵌
合部、摺動部から浸漬ノズル0)外へ排出され、該浸漬
ノズル(鳳)内の空隙には常に不活性ガスが流れるため
空気の侵入は完全に防止される。
That is, by controlling the pressure inside the immersion nozzle (1) so as not to become a negative pressure, the gas inside the immersion nozzle 0) is discharged from the fitting part and the sliding part to the outside of the immersion nozzle 0), Since inert gas always flows into the voids inside the casing, air intrusion is completely prevented.

また、浸漬ノズル(1)内の圧力をα05 i@/cJ
以下に制御して余剰なガスを吹き込まない吠態に保持す
ることにより鋳片におけるピンホールの発生は問題のな
いレベルに抑えられる。
Also, the pressure inside the immersion nozzle (1) is α05 i@/cJ
The occurrence of pinholes in the slab can be suppressed to a non-problematic level by controlling it as follows and maintaining it in a state where excess gas is not blown into the slab.

不活性ガスとしてはN2ガス% Arガス等が使用可能
である。
As the inert gas, N2 gas% Ar gas, etc. can be used.

〔実 施 例〕〔Example〕

以下、実施例に基づいて説明する。 The following will explain based on examples.

薄板向低炭素鋼を対象として、第1表に示す鋳造条件で
本発明の浸漬ノズル内への空気侵入防止方法を適用して
連続鋳造を行ない、浸漬ノズル閉塞状況、ピンホール発
生状況、介在物に起因する表面欠陥発生状況について従
来の方法を適用した場合と 比較調査した。尚、不活性
ガスとしてはArガスを使用した。
Continuous casting was carried out using the method for preventing air intrusion into a submerged nozzle of the present invention under the casting conditions shown in Table 1 for low-carbon steel for thin plates, and the submerged nozzle clogging state, pinhole occurrence state, and inclusions were evaluated. We conducted a comparative study on the occurrence of surface defects caused by conventional methods. Note that Ar gas was used as the inert gas.

(以下余白) 第  1  表 ・調査結果を第2図〜fi5図に示す。(Margin below) Table 1 ・The survey results are shown in Figures 2 to 5.

第2図は浸漬ノズル内の圧力の経時変化の一例であり、
横軸は鋳造開始後の経過時間すなわち鋳造時間、縦軸は
浸漬ノズル内圧力である。図中の実aaは本発明の空気
侵入防止方法を適用した場合の浸漬ノズル内圧力を、破
nb及び−点鎖Sacはいずれも従来の空気侵入防止方
法を用いた場合で、破IIabは浸漬ノズルの上固定盤
から1Of!、7分でガスを吹き込んだ場合、−点鎖!
!aCはガス吹き込みなしの場合の浸漬ノ゛ズル内圧力
をそれぞれ示す。
Figure 2 is an example of the change in pressure within the immersion nozzle over time.
The horizontal axis is the elapsed time after the start of casting, that is, the casting time, and the vertical axis is the pressure inside the immersion nozzle. Actual aa in the figure indicates the pressure inside the submerged nozzle when the air intrusion prevention method of the present invention is applied, fracture nb and -point chain Sac are both when the conventional air intrusion prevention method is used, and fracture IIab indicates the pressure inside the immersion nozzle. 1Of from the upper fixed plate of the nozzle! , if gas is blown in 7 minutes, - point chain!
! aC indicates the pressure inside the immersion nozzle without gas blowing.

同図において、ガス吹き込みなしの場合(−点鎖IIc
)鋳込み初期においては浸漬ノズル内圧力は負圧を示し
、空気の侵入すなわちリークが起こりはじめると圧力は
徐々に上昇しOkg/cJに近ずく。
In the same figure, in the case without gas injection (− dot chain IIc
) At the initial stage of casting, the pressure inside the immersion nozzle shows a negative pressure, and when air begins to enter or leak, the pressure gradually increases and approaches 0 kg/cJ.

リーク量を圧力で表わすと同図中のPcで示した領域と
なる。 また、浸漬ノズル内に1011/分でA「ガス
を吹き込んだ場合(破11b)は鋳込み初期において浸
漬ノズル内圧力は正圧を示し、リークが起こると圧力は
徐々に低下する。同図中pbで示した領域がリーク量を
表わす、この場合は正圧であるため浸漬ノズル内のガス
すなわち余剰ガスは該ノズルの吐出口から鋳型内に侵入
しピンホールの原因となる。これに対し、本発明を適用
した場合(実線a)は浸漬ノズル内の圧力は 0〜α0
5 k寵1clすなわちOk@lcJないし若干正圧の
範囲で制御され、鋳型内へのガスの侵入を防ぎつつ浸漬
ノズルの嵌合部、摺動部からのリークも防止することが
できる。
When the amount of leakage is expressed in terms of pressure, it becomes the area indicated by Pc in the same figure. In addition, when A' gas is blown into the immersion nozzle at 1011/min (break 11b), the pressure inside the immersion nozzle shows positive pressure at the early stage of casting, and when leakage occurs, the pressure gradually decreases. The area shown by indicates the amount of leakage. In this case, since the pressure is positive, the gas in the submerged nozzle, that is, the excess gas, enters the mold from the discharge port of the nozzle and causes pinholes. When the invention is applied (solid line a), the pressure inside the immersion nozzle is 0 to α0
The pressure is controlled within a range of 5 kℓ1cl, that is, Ok@lcJ to a slightly positive pressure, and it is possible to prevent gas from entering the mold and also to prevent leakage from the fitting part and sliding part of the immersion nozzle.

第3図は浸漬ノズルの閉塞状況を示す図で、横軸は鋳造
回数、縦軸はノズル内面へのAu*03の伸行厚さを5
段階で表わした浸漬ノズル閉IIm数、また図中の実1
!ilaは本発明の空気侵入防止方法を適用した場合の
ノズル閉塞の程度を、破stb及び−点鎖!Icはいず
れも従来の空気侵入防止方法を用いた場合で、破abは
浸漬ノズルの上固定盤から1011分でガスを吹き込ん
だ場合、−点鎖11cはガス吹き込みなしの場合のノズ
ル閉塞の程度を示す、尚、図中の斜線部より上の領域は
浸漬ノズル内面へのAitosの付着が著しく使用に際
しノズル孔#索洗いを要する領域を示す。同図より、従
来のガス吹き込みなしの場合(−点鎖、?il c )
及びガスを吹き込んだ場合(破線b)は鋳造回数が増す
につれて浸漬ノズルの閉塞状況が悪化するのに対し、本
発明を適用した場合(実!a)はノズルの閉塞はそれほ
ど顕著に進行しないことがわかる。
Figure 3 is a diagram showing the state of blockage of the immersion nozzle, where the horizontal axis represents the number of castings and the vertical axis represents the extension thickness of Au*03 to the nozzle inner surface.
The number of immersion nozzle closure IIm expressed in stages, and the actual number 1 in the figure.
! ila is the degree of nozzle blockage when the air intrusion prevention method of the present invention is applied, and the break stb and -point blockage! Ic is the case when the conventional air intrusion prevention method is used, failure ab is when gas is blown from the upper fixed plate of the immersion nozzle in 1011 minutes, and - point chain 11c is the degree of nozzle blockage when no gas is blown. The area above the shaded area in the figure indicates the area where Aitos is significantly adhered to the inner surface of the immersion nozzle and requires cleaning of the nozzle hole and wire during use. From the same figure, the conventional case without gas injection (-point chain, ?il c)
In contrast, when the present invention is applied (Actually! a), the clogging of the immersion nozzle worsens as the number of castings increases (dotted line b), but the nozzle clogging does not progress so significantly when the present invention is applied (actual! a). I understand.

第4図は鋳片表面におけるピアホールの発生状況を示す
図で、横軸はaが本発明の空気侵入防止方法を適用した
場合、bが浸漬ノズルの上固定盤から10Jl1分でA
「ガスを吹き込んだ場合、Cがガス吹き込みなしの場合
、縦軸は鋳片表面におけるピンホールの発生状況を5段
階で表わしたピンホール指数である。同図より、従来の
ガスを吹き込ンタ場合(b)及びガス吹き込みなしの場
合(C)に比較し、本発明を適用した場合(a)はビン
ホールの発生が著しく減少していることがわかる。
Figure 4 is a diagram showing the occurrence of pier holes on the surface of the slab.
``When gas is blown, and C is without gas blown, the vertical axis is the pinhole index, which expresses the occurrence of pinholes on the slab surface in five stages. It can be seen that the occurrence of bottle holes is significantly reduced in case (a) when the present invention is applied, compared to case (b) and case (C) without gas blowing.

第5図は浸漬ノズル内で析出、堆積したAu203が?
II Ill Lで鋳型内に持ち込まれた介在物に起因
する鋳片圧延後の表面欠陥の発生状況を示す図で、横軸
は前記第4図と同様にaが本発明を適用した場合、bが
Arガスを吹き込んだ場合、Cがガス吹き込みなしの場
合、縦軸は表面欠陥を5段階で表わした表面欠陥指数で
ある。同図より、従来のガスを吹き込んだ場合(b)及
びガス吹き込みなしの場合(C)に比較し、本発明を適
用した場合(a)は表面欠陥の発生が著しく減少してい
ることがわかる。
Figure 5 shows Au203 precipitated and deposited inside the immersion nozzle.
This is a diagram showing the occurrence of surface defects after rolling the slab due to inclusions brought into the mold in II Ill L, and the horizontal axis is the same as in FIG. When Ar gas is blown into C, and when C is no gas blown, the vertical axis is a surface defect index expressing surface defects in five levels. From the same figure, it can be seen that the occurrence of surface defects is significantly reduced in the case of applying the present invention (a) compared to the case of conventional gas injection (b) and the case of no gas injection (C). .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、連続鋳造において、浸漬ノズル内
の圧力を測定しつつ該ノズル内へ不活性ガスを吹き込む
本発明の空気侵入防止方法を適用することにより、浸漬
ノズルの嵌合部、摺動部からの空気の侵入を完全に防止
することが可能で、その結果浸漬ノズルの閉塞を防止す
ると共にピンホール及び介在物に起因する表面欠陥の発
生を著しく減少させることができる。
As explained above, in continuous casting, by applying the air intrusion prevention method of the present invention in which inert gas is blown into the nozzle while measuring the pressure inside the immersion nozzle, the fitting part of the immersion nozzle, the sliding As a result, it is possible to completely prevent air from entering the submerged nozzle, and as a result, blockage of the submerged nozzle can be prevented and the occurrence of surface defects caused by pinholes and inclusions can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の一例の構成を示
す説明図、第2図は浸漬ノズル内圧力の経時変化の一例
を示す図、第3図は浸漬ノズルの閉塞状況を示す図、第
4図はピンホールの発生状況を示す図、第5図は介在物
に起因する表面欠陥の発生状況を示す図である。 1・・・浸漬ノズル    2・・・1固定盤3・・・
下固定盤     4・・・スライダー5・・・浸漬ノ
ズル内圧力測定用導管 6・・・ガス吹込み用多孔質耐火物 7・・・連続鋳造用パウダー
FIG. 1 is an explanatory diagram showing the configuration of an example of an apparatus for carrying out the present invention, FIG. 2 is a diagram showing an example of the change over time in the internal pressure of a submerged nozzle, and FIG. 3 is a diagram showing a state of blockage of the submerged nozzle. , FIG. 4 is a diagram showing the occurrence of pinholes, and FIG. 5 is a diagram showing the occurrence of surface defects due to inclusions. 1... Immersion nozzle 2... 1 Fixed plate 3...
Lower fixed plate 4... Slider 5... Conduit for measuring the pressure inside the immersion nozzle 6... Porous refractory for gas injection 7... Powder for continuous casting

Claims (1)

【特許請求の範囲】[Claims] 金属溶湯を連続鋳造用鋳型内に供給する浸漬ノズル内の
圧力を測定しつつ該浸漬ノズル内に不活性ガスを吹き込
み、前記浸漬ノズル内の圧力を制御することを特徴とす
る浸漬ノズル内への空気侵入防止方法。
A method of controlling the pressure inside the immersion nozzle by blowing an inert gas into the immersion nozzle while measuring the pressure inside the immersion nozzle for supplying molten metal into a mold for continuous casting. How to prevent air intrusion.
JP22545088A 1988-09-08 1988-09-08 Method for preventing air from intruding into dipping nozzle Pending JPH0275457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22545088A JPH0275457A (en) 1988-09-08 1988-09-08 Method for preventing air from intruding into dipping nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22545088A JPH0275457A (en) 1988-09-08 1988-09-08 Method for preventing air from intruding into dipping nozzle

Publications (1)

Publication Number Publication Date
JPH0275457A true JPH0275457A (en) 1990-03-15

Family

ID=16829541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22545088A Pending JPH0275457A (en) 1988-09-08 1988-09-08 Method for preventing air from intruding into dipping nozzle

Country Status (1)

Country Link
JP (1) JPH0275457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682900A3 (en) * 1991-10-28 1993-04-30 Irsid Nozzle for the continuous casting of liquid metal, especially steel, into a mould and device incorporating this nozzle
JP2009172675A (en) * 2007-12-25 2009-08-06 Nippon Steel Corp Method of sealing nozzle junction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682900A3 (en) * 1991-10-28 1993-04-30 Irsid Nozzle for the continuous casting of liquid metal, especially steel, into a mould and device incorporating this nozzle
JP2009172675A (en) * 2007-12-25 2009-08-06 Nippon Steel Corp Method of sealing nozzle junction

Similar Documents

Publication Publication Date Title
JPH0275457A (en) Method for preventing air from intruding into dipping nozzle
JP2647707B2 (en) How to pour a tundish
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JPH10193053A (en) Method and device for detecting abnormality of immersion nozzle
JP2002301549A (en) Continuous casting method
JPH04333355A (en) Method for continuously casting steel with tundish stopper
JP3642284B2 (en) How to prevent contamination of molten steel in tundish
JPH0211257A (en) Method for diagnosing inclusion series internal defect in continuously cast slab and continuous casting method by using this method
JP2895580B2 (en) Level control method of molten metal level in mold in continuous casting
JPS619966A (en) Estimating method of amount of molten steel remaining in ladle
JP2000084647A (en) Method for blowing gas into upper nozzle in tundish
JPS55149761A (en) Continuous casting control device
JPH03258443A (en) Method for estimating stuck quantity of alumina in continuous casting
JPS62259649A (en) Continuous casting apparatus for small sectional casting billet
JPS6221447A (en) Method for controlling blowing of gas with immersion nozzle for continuous casting
JPH02137655A (en) Method for measuring fluctuation in molten steel surface and method for controlling such fluctuation
JPH02307656A (en) Continuous casting method
JPS62279059A (en) Submerged nozzle
JPH0230122Y2 (en)
JP4421136B2 (en) Continuous casting method
JPH06226403A (en) Method for continuously casting low aluminum steel
JPH05245608A (en) Method for controlling stopper in continuous casting
JPH04108952U (en) Slag cutting determination device
JPH08117938A (en) Method for pouring molten steel in continuous casting of thin slab
KR20130120882A (en) Device for predicting gas in the pipeline leakage on continuous casting process and method therefor