JPH0275326A - Denitrification process - Google Patents

Denitrification process

Info

Publication number
JPH0275326A
JPH0275326A JP63227735A JP22773588A JPH0275326A JP H0275326 A JPH0275326 A JP H0275326A JP 63227735 A JP63227735 A JP 63227735A JP 22773588 A JP22773588 A JP 22773588A JP H0275326 A JPH0275326 A JP H0275326A
Authority
JP
Japan
Prior art keywords
denitrification
ammonia
catalyst
unreacted ammonia
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63227735A
Other languages
Japanese (ja)
Other versions
JP2607639B2 (en
Inventor
Takafuru Kobayashi
敬古 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63227735A priority Critical patent/JP2607639B2/en
Publication of JPH0275326A publication Critical patent/JPH0275326A/en
Application granted granted Critical
Publication of JP2607639B2 publication Critical patent/JP2607639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To reduce the quantity of a charge of denitrification catalyst and also reduce the quantity of catalyst for replenishment and replacement by applying ultraviolet rays to unreacted ammonia at the outlet of a denitrification apparatus to effect decomposition and removal thereof. CONSTITUTION:A light source 1 for emitting ultraviolet rays having a wavelength of 170-230mm is provided on the outlet side of a denitrification apparatus 2 wherein ammonia is used as a reducing agent. When ultraviolet rays from said light source are applied to the rare unreacted ammonia at the outlet of the denitrification apparatus 2, the ammonia is efficiently and completely decomposed and removed. In this manner, the quantity of a charge of denitrification catalyst can be reduced and further the quantity of catalyst for replenishment and replacement can be reduced. Consequently, denitrification can be accomplished economically.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアンモニアを還元剤とする脱硝装置の未反応ア
ンモニアを分解する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for decomposing unreacted ammonia in a denitrification device using ammonia as a reducing agent.

〔従来の技術〕[Conventional technology]

最近、環境規制上各種の燃焼装置より排出される排ガス
中の窒素酸化物をアンモニアの存在下で接触還元除去す
る乾式排煙脱硝装置は、湿式脱硝装置に比べ多くの利点
を有するので近時多く使用されるようになった。
Recently, due to environmental regulations, dry type flue gas denitrification equipment, which removes nitrogen oxides from flue gas emitted from various combustion equipment by catalytic reduction in the presence of ammonia, has been gaining popularity as it has many advantages over wet type denitrification equipment. came into use.

中でもハニカム状、格子状、板状構造体よシなる窒素酸
化物除却用触媒を用いた脱硝装置は、構造が簡単で圧力
損失が少なく、かつ排ガス中に含まれるダストによる触
媒の目詰りが少ない等の優れた利点を数多く有するため
、最も多く、 実用化されている。
Among them, denitration equipment that uses nitrogen oxide removal catalysts in honeycomb, lattice, or plate structures have a simple structure, have little pressure loss, and are less likely to be clogged by the dust contained in the exhaust gas. It has many excellent advantages such as, so it is the most widely used in practical use.

しかしながら、上記方法は触媒の存在下でNOxとアン
モニアを反応させ、NOxを除却する際アンモニアとN
Oxが完全に反応することは非常に難かしい。又脱硝に
用いられる触媒は、−般に使用しているうちに性能が低
下して行くが、性能が低下すると脱硝装置出口の未反応
アンモニア濃度が増加することになる。又重油波及び石
炭焚の排ガスのようにSOx、特KSO,が存在する場
合、未反応アンモニアと反応し酸性硫安となり、空気予
熱器等の熱交換器の閉塞等の問題が生じる為、未反応ア
ンモニア濃度が一定以上(5ppm〜10ppm程度)
になった時触媒の寿命とされている。
However, in the above method, NOx and ammonia are reacted in the presence of a catalyst, and when removing NOx, ammonia and N
It is very difficult for Ox to react completely. Furthermore, the performance of catalysts used for denitrification generally deteriorates as they are used, and as the performance deteriorates, the concentration of unreacted ammonia at the outlet of the denitrification device increases. In addition, when SOx, especially KSO, is present, such as in heavy oil waves and coal-fired exhaust gas, it reacts with unreacted ammonia to form acidic ammonium sulfate, which can cause problems such as clogging of heat exchangers such as air preheaters. Ammonia concentration is above a certain level (approximately 5 ppm to 10 ppm)
This is considered to be the end of the catalyst's lifespan.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上に示す通り、未反応アンモニアを低減する為には、
必要触媒量を増加するか、追加又は取替えを行う必要が
生じ、脱硝触媒の充填量が増加するとともに、触媒の追
加又は取替が頻繁に必要となり、作業が煩雑になるとい
う問題点があった。
As shown above, in order to reduce unreacted ammonia,
It became necessary to increase the required amount of catalyst, or to add or replace it, which resulted in an increase in the amount of denitration catalyst packed, and the problem that it became necessary to add or replace the catalyst frequently, making the work complicated. .

本発明は脱硝装置出口の未反応アンモニアを脱硝装置出
口部分で分解することにより、脱硝触媒の充填量の減少
、又追加触媒及び取替触媒量の減少が可能となる、経済
的な脱硝装置を提供するものである。
The present invention provides an economical denitrification device that decomposes unreacted ammonia at the exit of the denitrification device, thereby reducing the amount of denitrification catalyst packed and the amount of additional and replacement catalysts. This is what we provide.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は脱硝装置、特に触媒の寿命に大きな影響を与え
る脱硝装置出口の未反応アンモニアを減少させる為、脱
硝装置の出口側に170nmから230nmの紫外光を
出す光源を設置し、紫外光によりNH,を分解し、未反
応アンモニアを減少させることを特徴とする。
In order to reduce the amount of unreacted ammonia at the outlet of the denitrification device, which greatly affects the life of the denitrification device, especially the catalyst, the present invention installs a light source that emits ultraviolet light in the range of 170 nm to 230 nm on the exit side of the denitrification device. , and reduce unreacted ammonia.

〔作用〕[Effect]

すなわち本発明はアンモニアを還元剤とする脱硝装置で
は注入するアンモニア量(一般にはNH,/NOxモル
比)を増加させることにより容易に脱硝効率を一定に保
持することは可能である。
That is, in the present invention, in a denitrification apparatus using ammonia as a reducing agent, it is possible to easily maintain a constant denitrification efficiency by increasing the amount of ammonia injected (generally, NH,/NOx molar ratio).

しかし第1図に示す通シモル比を上昇させる為、未反応
アンモニアが増加することになる。
However, in order to increase the total smol ratio shown in FIG. 1, unreacted ammonia will increase.

未反応アンモニアは脱硝装置の後流に設置される空気予
熱器等の熱交換器の酸性硫安による閉塞問題及び排出基
準により制限されており、これが触媒の寿命を決定して
いる。又脱硝触媒は一般的に排ガス中に含まれる被毒成
分によって性能が低下する。この場合も未反応アンモニ
アが増加することとなり、この対策として触媒の追加及
び取替が必要となります。
Unreacted ammonia is limited by acidic ammonium sulfate clogging of heat exchangers such as air preheaters installed downstream of the denitrification equipment and by emission standards, which determines the lifetime of the catalyst. Furthermore, the performance of denitrification catalysts is generally degraded by poisonous components contained in exhaust gas. In this case as well, unreacted ammonia will increase, and as a countermeasure, it will be necessary to add or replace the catalyst.

以上から脱硝装置出口の未反応アンモニアを分解するこ
とにより経済的な脱硝装置が設計可能となります。
From the above, it is possible to design an economical denitrification device by decomposing unreacted ammonia at the denitrification device outlet.

脱硝装置出口の未反応アンモニアを分解する方法として
は種々の方法が考えられるが、通常未反応アンモニアは
10ppm以下の非常に希薄な濃度であり、これを脱硝
触媒の増加で処理するのは、第3図に示す通り膨大な触
媒が必要となり経済的でない。
Various methods can be considered to decompose unreacted ammonia at the outlet of the denitrification equipment, but unreacted ammonia usually has a very dilute concentration of 10 ppm or less, and treating it by increasing the denitrification catalyst is the first method. As shown in Figure 3, a huge amount of catalyst is required, which is not economical.

しかし光化学反応を利用した場合、それほどガス濃度に
よる影響を受けず、170nmから230 nmの紫外
光にてNHsを効率よく分解することが可能である。つ
まり脱硝触媒の存在下でアンモニアにより脱硝を行い、
その時に発生する希薄な未反応アンモニアを紫外光にて
処理する方法がもっとも効率的な方法と言える。
However, when photochemical reactions are used, NHs can be efficiently decomposed using ultraviolet light of 170 nm to 230 nm without being affected by gas concentration. In other words, denitrification is performed using ammonia in the presence of a denitrification catalyst,
The most efficient method is to treat the dilute unreacted ammonia generated at that time with ultraviolet light.

アンモニアは第2図に示す通電170nm〜230nm
の紫外光を吸収し、下記式で示す反応で分解する。
Ammonia is applied at a current of 170 nm to 230 nm as shown in Figure 2.
It absorbs ultraviolet light and decomposes by the reaction shown in the following formula.

NH,+hν→NH*+H 上記式で分解したアンモニアは、排ガス中のNOxと反
応し最終的には窒素゛と水に分解される。
NH, +hν→NH*+H Ammonia decomposed according to the above formula reacts with NOx in the exhaust gas and is finally decomposed into nitrogen and water.

反応式は次の通り No + NH,→!’L + Ha 0以上によシ脱
硝装置出口のNOx濃度を満足した上で、未反応アンモ
ニアを必要濃度以下にすることが可能となる。
The reaction formula is as follows: No + NH, →! 'L+Ha After satisfying the NOx concentration at the outlet of the denitration equipment by 0 or more, it is possible to reduce the unreacted ammonia to the required concentration or less.

〔実施例〕〔Example〕

第4図は本発明方法を実施するために用いた実験装置の
全体構成図を示し、ガス流量調節器4にて任意な流量に
調節された恥、歯、COl、O8、NH,などの試験ガ
スはガス混合器5で均一に混合され、両端に合成石英材
質の照射窓3をもった反応器2に入る。試験ガス中のH
lOは加湿器6によって供給される。反応器2から出た
試験ガスは反応生成物の捕集を目的としたフィルター7
を通過し、記録計10を装備したNH,分析計9へと導
かれ大気へ放出される。ガス混合器5、反応器2などは
恒温槽に収納されており、脱硝装置出口を想定して35
0℃とした。紫外線の光源としては低圧水銀ランプ又は
エキシマレーザ−が使用できるが、本装置ではエキシマ
・レーザー(1)を使用し、193nmの紫外光を照射
した。又実験に用いた供給ガス組成は次の通りである。
FIG. 4 shows an overall configuration diagram of the experimental apparatus used to carry out the method of the present invention, and tests for gas, gas, COI, O8, NH, etc., adjusted to an arbitrary flow rate with a gas flow rate controller 4. The gases are uniformly mixed in a gas mixer 5 and enter a reactor 2 having irradiation windows 3 made of synthetic quartz at both ends. H in test gas
IO is supplied by a humidifier 6. The test gas coming out of the reactor 2 is passed through a filter 7 for the purpose of collecting reaction products.
, is guided to an NH equipped with a recorder 10, an analyzer 9, and is released into the atmosphere. The gas mixer 5, reactor 2, etc. are housed in a constant temperature bath, and the temperature is 35 cm, assuming the outlet of the denitrification equipment.
The temperature was 0°C. Although a low-pressure mercury lamp or an excimer laser can be used as the ultraviolet light source, in this apparatus, an excimer laser (1) was used to irradiate ultraviolet light of 193 nm. The composition of the supply gas used in the experiment was as follows.

NOs  :50ppm  NH,二6.5ppm  
Ox  :5%  Cot  10 %u*o:to%
 N、:残 紫外光によるNH,の分解除去を確認する為に上記供給
ガスを反応器2に空間速度3,000h−’ で流通さ
せ、193nmのエキシマ・レーザー光ヲ照射した。そ
の結果を第5図に示すが、レーザを照射することにより
、完全にNH,は分解除去されていた。
NOs: 50ppm NH, 26.5ppm
Ox:5% Cot 10%u*o:to%
N: In order to confirm the decomposition and removal of NH by residual ultraviolet light, the above-mentioned feed gas was passed through the reactor 2 at a space velocity of 3,000 h-' and irradiated with excimer laser light of 193 nm. The results are shown in FIG. 5, and it was found that NH was completely decomposed and removed by laser irradiation.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明では、脱硝装置出口部分に1
70 nm〜230 nmの紫外光を照射する光源を設
け、脱硝触媒の寿命にもっとも影響の大きい未反応アン
モニアを分解除去することにより、脱硝触媒の充填量の
減少及び追加又は取替触媒量の減少が可能となり、従来
の方法に比べて経済的な脱硝方法を達成できる。
As described in detail above, in the present invention, there is a
By installing a light source that irradiates ultraviolet light of 70 nm to 230 nm and decomposing and removing unreacted ammonia, which has the greatest effect on the life of the denitrification catalyst, the amount of filling of the denitrification catalyst and the amount of additional or replacement catalyst can be reduced. This makes it possible to achieve a more economical denitrification method than conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱硝率、未反応アンモニア濃度とアンモニア
注入量との関係を示す線図、第2図はNH,の紫外吸収
スペクトルを示す線図、第3図はリークNH,と必要触
媒量との関係を示す線図、第4図は本発明の実験装置を
示す断面説明図、第5図は193 nmの紫外光による
アンモニアの分解結果を示す線図である。
Figure 1 is a diagram showing the relationship between the denitrification rate, unreacted ammonia concentration, and ammonia injection amount, Figure 2 is a diagram showing the ultraviolet absorption spectrum of NH, and Figure 3 is a diagram showing leaked NH and the required amount of catalyst. FIG. 4 is a cross-sectional explanatory diagram showing the experimental apparatus of the present invention, and FIG. 5 is a diagram showing the results of ammonia decomposition using 193 nm ultraviolet light.

Claims (1)

【特許請求の範囲】[Claims] アンモニアを還元剤とする脱硝装置において、脱硝装置
出口側に170〜230nmの紫外光を出す光源を設置
し未反応アンモニアを分解除去することを特徴とする脱
硝方法。
1. A denitrification method using ammonia as a reducing agent, which comprises installing a light source that emits ultraviolet light of 170 to 230 nm on the outlet side of the denitrification device to decompose and remove unreacted ammonia.
JP63227735A 1988-09-12 1988-09-12 DeNOx method Expired - Lifetime JP2607639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227735A JP2607639B2 (en) 1988-09-12 1988-09-12 DeNOx method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227735A JP2607639B2 (en) 1988-09-12 1988-09-12 DeNOx method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7232411A Division JPH0899016A (en) 1995-09-11 1995-09-11 Method for denitrification of exhaust gas

Publications (2)

Publication Number Publication Date
JPH0275326A true JPH0275326A (en) 1990-03-15
JP2607639B2 JP2607639B2 (en) 1997-05-07

Family

ID=16865542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227735A Expired - Lifetime JP2607639B2 (en) 1988-09-12 1988-09-12 DeNOx method

Country Status (1)

Country Link
JP (1) JP2607639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080034A (en) * 2001-09-10 2003-03-18 Mitsubishi Heavy Ind Ltd Oxidation apparatus and method for maintaining the same
JP2023509727A (en) * 2020-01-08 2023-03-09 ティッセンクルップ フェルティリツァー テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Fertilizer manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080034A (en) * 2001-09-10 2003-03-18 Mitsubishi Heavy Ind Ltd Oxidation apparatus and method for maintaining the same
JP2023509727A (en) * 2020-01-08 2023-03-09 ティッセンクルップ フェルティリツァー テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Fertilizer manufacturing method

Also Published As

Publication number Publication date
JP2607639B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
EP0802825B1 (en) Regeneration of catalyst/absorber
US5670122A (en) Methods for removing air pollutants from combustion flue gas
US7998445B2 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
CN107497264B (en) Method and system for simultaneously desulfurizing, denitrifying and removing mercury by using ozone and microwave to excite magnetically separable catalyst
US4416748A (en) Process for reduction of the content of SO2 and/or NOx in flue gas
EP0408772B1 (en) Exhaust gas cleaning method
CN107497265B (en) Integrated flue gas purification system and method for inducing free radicals by exciting fly ash through cooperation of ozone and microwaves
WO2000043102A2 (en) Process and reactor for plasma assisted gas processing
JPH0275326A (en) Denitrification process
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
KR100268029B1 (en) Method and device for removal of nitrogen oxide using oxidants
KR101172125B1 (en) Method for removing of nitrogen oxides
JPS61133125A (en) Denitration process using ultraviolet ray
JPH0199633A (en) Treatment of exhaust gas
JPS63287534A (en) Treatment of exhaust gas
JPH0714462B2 (en) Decomposition method of nitrous oxide in gas mixture
KR100406510B1 (en) Method and system for removing nitrogen oxide using oxidation catalyst
JPH0899016A (en) Method for denitrification of exhaust gas
KR20200082091A (en) Absorption composition for removing NOx and SOx simultaneously
JPS63267423A (en) Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide
JPH08257363A (en) Exhaust gas treatment method
JPH0442054B2 (en)
JPH057732A (en) Denitration of exhaust gas by light reaction
CA1213851A (en) Process for the reduction of the content of so.sub.2 and/or no.sub.x in flue gas
JPS60251917A (en) Desulfurization and denitration of waste gas