JPH0274847A - Method and jig for measuring infrared absorption spectrum by diffusion reflection method - Google Patents

Method and jig for measuring infrared absorption spectrum by diffusion reflection method

Info

Publication number
JPH0274847A
JPH0274847A JP63226896A JP22689688A JPH0274847A JP H0274847 A JPH0274847 A JP H0274847A JP 63226896 A JP63226896 A JP 63226896A JP 22689688 A JP22689688 A JP 22689688A JP H0274847 A JPH0274847 A JP H0274847A
Authority
JP
Japan
Prior art keywords
infrared
sample
specimen
infrared absorption
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63226896A
Other languages
Japanese (ja)
Inventor
Mariko Ishino
石野 真理子
Yoshiro Akagi
与志郎 赤木
Yoshiharu Nakajima
義晴 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63226896A priority Critical patent/JPH0274847A/en
Publication of JPH0274847A publication Critical patent/JPH0274847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure infrared-ray absorption at high sensitivity by using a minute amount of specimen by mounting a minute powder specimen on a measuring jig having a mirror surface at an infrared-ray reflecting surface, condensing and projecting the infrared rays which are emitted from an infrared-ray source part, and measuring the infrared-ray absorbing spectrum of the specimen. CONSTITUTION:Infrared rays emitted from an infrared-ray source part 7 are reflected from reflecting mirrors 1 and 2 and condensed with a concave mirror 3. The infrared rays are projected toward a specimen which is directly mounted on a horizontal mounting surface 10 of the mirror surface at the center of a measuring jig 8. The diffused light from the specimen is condensed with a concave mirror 4 again and guided to a detecting system 9 with reflecting mirrors 5 and 6. Even the minute amount of the specimen can be measured. A minute absorbing peak can be emphasized and detected. Since it is not necessary to dilute the specimen with powder, pretreatment such as adjustment of the specimen can be omitted.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、拡散反射法による赤外吸収スペクトル測定
法に関し、ことに有機化合物、無機化合物全般にわたる
粉末試料の高感度定性分析に用いられる。
[Detailed description of the invention] (a) Industrial application field This invention relates to an infrared absorption spectrometry method using a diffuse reflection method, and is particularly used for high-sensitivity qualitative analysis of powder samples of organic and inorganic compounds in general. .

(ロ)従来の技術 従来、有機化合物、無機化合物を問わず粉末試料の赤外
吸収スペクトルを測定する方法として脂肪族炭化水素な
どの赤外吸収の少ない液状物質に混練する方法が用いら
れてきたが、吸収スペクトルが重畳する領域や微小な変
化、微小ピークの測定には用いることが出来なかった。
(b) Conventional technology Conventionally, the method used to measure the infrared absorption spectrum of powder samples, whether organic or inorganic, is to knead them into a liquid substance with low infrared absorption, such as aliphatic hydrocarbons. However, it could not be used to measure areas where absorption spectra overlap, minute changes, or minute peaks.

これに替って次の2つの方法が開発されて来た。すなわ
ち、i)試料を臭化カリウム(以下、KBrと記す)粉
末に希釈し、ベレット状に加圧成型して透過法で測定す
る方法、ii)試料表面で反射されてくる強力な正反射
光を除去するため試料をKBr粉末などで希釈して拡散
反射法で測定する方法である。これらのうち拡散反射法
とは赤外光源から来る赤外放射光を試料上に一方向から
集光照射し、この照射光と試料内で反射と透過を繰り返
した後に試料から全立体角に拡散する拡散反射スペクト
ルとを比較することにより、試料による赤外吸収を測定
する方法である。一般に11)の拡散反射法による粉末
試料の赤外吸収測定は前記i)の方法に比べて試料を加
圧成型する手間が不要であり簡便であるが拡散反射光が
非常に弱いことに加えて、試料表面で反射されて来る強
力な正反射光の影響をKBr粉末などで十分に希釈する
ことによりある程度まで抑えることはできるが、完全に
は除去し得ないためにスペクトル強度と試料量との間の
直線性が損なわれることが多く定量分析を行うには様々
な困難を伴う事が難点である。すなわち、定量分析では
一般に透過法の方がより直接的であり、拡散反射法の定
虫性を議論する際には前記のようなKBr希釈をはじめ
とする試料調整、正反射光除法などの測定上の注意事項
に留意してもなお不確定要素が大となる問題点を有して
いる。
In place of this, the following two methods have been developed. Namely, i) a method in which the sample is diluted with potassium bromide (hereinafter referred to as KBr) powder, pressure-molded into a pellet shape, and measured using a transmission method, and ii) a method in which the strong regular reflection light reflected from the sample surface is used. In this method, the sample is diluted with KBr powder or the like in order to remove it, and then measured using the diffuse reflection method. Among these methods, the diffuse reflection method focuses infrared radiation from an infrared light source onto the sample from one direction, and after repeating reflection and transmission within the sample, this irradiated light is diffused from the sample over the entire solid angle. This is a method of measuring infrared absorption by a sample by comparing it with the diffuse reflection spectrum. In general, infrared absorption measurement of powder samples using the diffuse reflection method in 11) is simpler and does not require the effort of pressure molding the sample compared to method i) above, but in addition to the fact that the diffuse reflection light is very weak. Although the influence of the strong specularly reflected light reflected from the sample surface can be suppressed to some extent by sufficiently diluting it with KBr powder, etc., it cannot be completely eliminated, so the relationship between the spectral intensity and the sample amount is The problem is that the linearity between the two is often impaired, and quantitative analysis is accompanied by various difficulties. In other words, the transmission method is generally more direct for quantitative analysis, and when discussing the regularity of the diffuse reflection method, it is important to consider sample preparation such as KBr dilution as described above, and measurements such as the specular reflection method. Even if the above precautions are taken into account, there is still a problem with large uncertainties.

(ハ)発明が解決しようとする課題 しかし前記従来法によるいずれの測定法ら原理的な意味
での高感度測定ではなく、KBr等の希釈剤を用いない
でそのままの試料を拡散反射法によって測定しても試料
による拡散反射光が弱く試料表面で反射される強い正反
射のため高感度定性分析ができなかった。
(c) Problems to be solved by the invention However, none of the above-mentioned conventional measurement methods is a high-sensitivity measurement in the principle sense, and the sample is measured as it is by the diffuse reflection method without using a diluent such as KBr. However, high-sensitivity qualitative analysis was not possible because the diffuse reflection light from the sample was weak and the strong specular reflection reflected from the sample surface.

また前記i)、ii)の方法はどちらもKBr粉末に混
合、希釈するために被測定試料の回収は事実上不可能で
ある。加えて、試料調整が煩雑であるうえにKBr粉末
中に一様に混合させなければならないため試料の重工は
数ミリグラム以上はないと一般に検出か困難であり、ま
たKBr粉末は数百ミリグラムを要しランニングコスト
の点でも負担となる。更に、KBrと化学反応する物質
に対しては使用することか出来ないことは勿論であるが
、粉砕に使用する乳鉢の材質の影響も無視出来なくなる
。これは被測定試料そのもの、あるいは試料中の含有物
質の測定スペクトル強度が弱くなるにつれて−R深刻と
なってくる。一方、KBrは非常に吸湿性の高い物質で
あり、水分は赤外吸収測定範囲のかなり広い部分に非常
に強い吸収帯をもっているために測定条件によっては物
質の同定が困難となることもしばしばであった。吸湿性
の難点を避けるために赤外光に対して比較的透明なダイ
アモンド粉末をKBr粉末の替わりに用いて希釈粉末試
料とすることもあるが、コスト、取り扱い上に問題があ
り一般的ではない。
In addition, in both methods i) and ii), it is virtually impossible to collect the sample to be measured because it is mixed with and diluted with KBr powder. In addition, sample preparation is complicated and must be uniformly mixed into KBr powder, so it is generally difficult to detect heavy samples if they are less than a few milligrams, and KBr powder requires hundreds of milligrams. This also becomes a burden in terms of running costs. Furthermore, it goes without saying that it cannot be used for substances that chemically react with KBr, but the influence of the material of the mortar used for crushing cannot be ignored. This becomes more serious as the measured spectral intensity of the sample itself or the substance contained in the sample becomes weaker. On the other hand, KBr is a highly hygroscopic substance, and water has a very strong absorption band in a fairly wide range of infrared absorption measurement, so it is often difficult to identify the substance depending on the measurement conditions. there were. In order to avoid the problem of hygroscopicity, diamond powder, which is relatively transparent to infrared light, is sometimes used instead of KBr powder to make a diluted powder sample, but this is not common due to cost and handling problems. .

また、ii)の拡散反射法では特にKBr粉末試料表面
の平坦性が問題となることが多く光学系調整用ミラーと
の平坦性の違いにより赤外光の光路調整が僅かにずれる
ため、その都度微調製が必要となるなど必ずしも簡便で
はない。
In addition, in the diffuse reflection method (ii), the flatness of the KBr powder sample surface is often a problem, and the optical path adjustment of the infrared light is slightly deviated due to the difference in flatness with the mirror for adjusting the optical system. It is not necessarily easy as it requires fine preparation.

そこでこの発明は従来法に比べて、試料をKBr粉末等
の希釈剤で調整することなく、より微量の試料でより高
感度な赤外吸収測定を本質的に可能とする拡散反射法に
よる赤外吸収スペクトル測定法を創出し、提供しようと
するものである。
Therefore, compared to conventional methods, this invention utilizes an infrared absorption method using a diffuse reflection method that essentially enables more sensitive infrared absorption measurement with a smaller amount of sample without adjusting the sample with a diluent such as KBr powder. This project aims to create and provide an absorption spectrum measurement method.

(ニ)課題を解決するための手段 この発明は、粉末試料の赤外吸収スペクトル高感度測定
に際し、従来の拡散反射法で行っているKBr粉末によ
る希釈法を用いる事なく、赤外光反射面に鏡面を有する
測定用治具に微細な粉末試料を載置し、赤外光源部から
放射された赤外光を集光照射して試料の赤外吸収スペク
トルを測定することを特徴とする拡散反射法による赤外
吸収スペクトル測定法を提供するものである。
(d) Means for Solving the Problems This invention enables high-sensitivity measurement of infrared absorption spectra of powder samples without using the dilution method with KBr powder used in the conventional diffuse reflection method. Diffusion is characterized in that a fine powder sample is placed on a measurement jig with a mirror surface, and the infrared absorption spectrum of the sample is measured by condensing and irradiating infrared light emitted from an infrared light source. This provides an infrared absorption spectrum measurement method using a reflection method.

この発明においては、中央に粉末試料を載置できる水平
載置面を有しかつ赤外吸収スペクトル測定装置の拡散反
射光学系内に設置しうる形状を有する試料保持具からな
り、少なくとも上記水平載置面が鏡面で構成されてなる
ことを特徴とする拡散反射法による赤外吸収スペクトル
測定用治具が用いられる。例えば第2図〜第7図にこの
発明で提供する測定を行うための測定用治具(試料保持
具)を示す。これら測定用治具8は、赤外光反射面に試
料を載置する鏡面の水平載置面lOを有し、例えば第4
図に示すように平行平板状であり、その中央部から周辺
部までを含む全面に鏡面を有してもよいが赤外光ビーム
を集光させる部分のみに鏡面を有するようにした方が効
率がよく、例えば第2図〜第3図に示すように中央部の
凸状の上面又は凹状の底面に鏡面の水平載置面IOを形
成するのが好ましい。これは余分な反射光を極力除去し
得ることによるものである。上記測定用治具8の外形、
寸法は操作に支障のない限り任意である。
In this invention, the sample holder has a horizontal mounting surface on which a powder sample can be placed in the center and has a shape that can be installed in the diffuse reflection optical system of an infrared absorption spectrum measuring device, A jig for measuring infrared absorption spectra using a diffuse reflection method is used, which is characterized in that the mounting surface is a mirror surface. For example, FIGS. 2 to 7 show measurement jigs (sample holders) for performing measurements provided by the present invention. These measuring jigs 8 have a mirror horizontal mounting surface lO on which a sample is mounted on an infrared light reflecting surface, and for example, a fourth
As shown in the figure, it has a parallel plate shape and may have a mirror surface on the entire surface from the center to the periphery, but it is more efficient to have a mirror surface only on the part where the infrared light beam is focused. For example, as shown in FIGS. 2 and 3, it is preferable to form a mirror-like horizontal mounting surface IO on a convex top surface or a concave bottom surface at the center. This is because unnecessary reflected light can be removed as much as possible. The external shape of the measurement jig 8,
The dimensions are arbitrary as long as they do not interfere with operation.

また鏡面の水平載置面10の外形は用いる赤外分光光度
計の赤外線ビーム径、拡散反射光学系の集光能力に依存
するが直径数ミリメートル程度で十分である。
The external shape of the mirror horizontal mounting surface 10 depends on the infrared beam diameter of the infrared spectrophotometer used and the light-gathering ability of the diffuse reflection optical system, but a diameter of several millimeters is sufficient.

なお、測定用治具8の材質は鏡面加工して赤外光を反射
するものであればいずれも可能であるが、耐久性を考慮
すれば、例えばステンレススチールが好ましい。第2図
〜第7図で詳細に示したように中央の水平載置面10は
周辺部と比べて赤外光の反射率、形状が変わっている方
が良く、周辺部からの余分な正反射光を極力除去しうる
光学的構造になっていることが肝要である。この中央の
鏡面部は第7図に示すように測定用治具と一体に形成さ
れていてもよいが、第5図に示すようにネジあるいは第
6図に示すように嵌め込みで測定用冶具の周辺部と分割
できるようになっていても良い。
Note that the measuring jig 8 may be made of any material as long as it is mirror-finished and reflects infrared light, but stainless steel, for example, is preferable in consideration of durability. As shown in detail in Figures 2 to 7, it is better for the central horizontal mounting surface 10 to have a different infrared light reflectance and shape than the peripheral parts, and to prevent excess light from the peripheral parts. It is important to have an optical structure that can remove reflected light as much as possible. This central mirror surface part may be formed integrally with the measuring jig as shown in Fig. 7, but it can be attached to the measuring jig by screwing it as shown in Fig. 5 or by fitting it as shown in Fig. 6. It may be possible to separate it from the periphery.

試料は鏡面部に載置するが、この発明の治具を用いるこ
とにより光学系の調整と赤外吸収測定の両方の操作を調
整なしに同じ光学系で行うことが出来る。これは、従来
の拡散反射法では原理上不可避なことであった。この発
明が測定対象としている試料の厚さは数10〜数100
μm以下であるためこのような事態は生じることがなく
、測定サンプルを交換しても光学系を再調整する必要は
全くない。
Although the sample is placed on a mirror surface, by using the jig of the present invention, both optical system adjustment and infrared absorption measurement can be performed using the same optical system without adjustment. This is inevitable in principle in the conventional diffuse reflection method. The thickness of the sample to be measured by this invention is several 10 to several 100.
Since it is less than μm, such a situation does not occur, and there is no need to readjust the optical system even if the measurement sample is replaced.

第2図〜第7図で示した測定用治具8は、第1図で示す
ように、拡散反射光学系中の凹面鏡3゜4に対向する位
置に装着して用いられる。第1図において、赤外光源部
7から出た赤外光は平面鏡1及び2により方向を変えら
れ、凹面鏡3により測定用治具8の試料位置に集光され
、試料から拡散反射された赤外光は凹面鏡4で集光され
、反射鏡5.6で反射されて検出系9へ導かれる。
The measurement jig 8 shown in FIGS. 2 to 7 is used by being mounted at a position facing the concave mirror 3.degree. 4 in the diffuse reflection optical system, as shown in FIG. In FIG. 1, the direction of infrared light emitted from an infrared light source 7 is changed by plane mirrors 1 and 2, and condensed by a concave mirror 3 at the sample position of a measurement jig 8, and the infrared light is diffusely reflected from the sample. External light is collected by a concave mirror 4, reflected by a reflecting mirror 5.6, and guided to a detection system 9.

ここで試料に集光された赤外光が試料によって拡散反射
される際の光路について詳細に説明する。
Here, the optical path when the infrared light focused on the sample is diffusely reflected by the sample will be explained in detail.

第8図に示すように試料に向けて到達した赤外光(A)
は一部正反射光(B)となるがその他は試料への入射光
(C) (C′)となる。ここで入射光(C)は吸収係
数が大きいためにトータルな吸収の大きい波長域の赤外
光の拡散過程を示している。
Infrared light (A) reaching the sample as shown in Figure 8
A part of the light becomes specularly reflected light (B), but the rest becomes light incident on the sample (C) (C'). Here, the incident light (C) shows a diffusion process of infrared light in a wavelength range where total absorption is large because the absorption coefficient is large.

吸収が大きいために赤外光の実効的な侵入深さはサンプ
ルサイズ、例えば数10〜数100μm1に比べて数μ
m前後と小さくなるのでサンプルサイズに依存しない。
Due to the large absorption, the effective penetration depth of infrared light is several micrometers compared to the sample size, for example, several tens to hundreds of micrometers.
It is small, around m, so it does not depend on the sample size.

一方、入射光(C′)は被測定試料によるトータルな吸
収の小さい波長の赤外光の拡散過程を示している。これ
は、例えば混合物の場合には低い含有量、純物質の場合
には小さい吸収係数をもつ特性吸収線を扱う際に重要と
なる。トータルな吸収が小さいために試料内で何回も拡
散、反射、透過を繰り返すので実効的な測定膜厚はサン
プルサイズに比べて十分大きなものとなる。いずれの場
合でも試料と相互作用した後、試料から出た赤外光(D
)は正反射光(B)と共に集光され検出系に至る。
On the other hand, the incident light (C') shows the diffusion process of infrared light of a wavelength with small total absorption by the sample to be measured. This is important, for example, when dealing with characteristic absorption lines with low content in the case of mixtures and small absorption coefficients in the case of pure substances. Since the total absorption is small, the material is diffused, reflected, and transmitted many times within the sample, so the effective measured film thickness is sufficiently large compared to the sample size. In any case, after interacting with the sample, infrared light (D
) is condensed together with the specularly reflected light (B) and reaches the detection system.

上記2つの場合のうちの後者、すなわち低濃度の不純物
や添加剤など、あるいは吸収係数の小さい分子・原子団
・イオンの特性振動ピークとなればなるほど、ますます
この発明が極めて有効に作用することになる。すなわち
、実効膜厚がサンプルサイズに比べて非常に大きくなる
ことにより本質的に高感度測定が可能となるのである。
In the latter of the above two cases, that is, the characteristic vibration peak of a low concentration impurity or additive, or a molecule, atomic group, or ion with a small absorption coefficient, the more effective this invention becomes. become. In other words, since the effective film thickness is much larger than the sample size, essentially highly sensitive measurements are possible.

この発明の拡散反射法の光学系は、通常4〜8倍程度の
集光能力をもちπステラジアン程度の測光立体角を有す
るものであれば十分利用することができ、検出器は熱電
対型、焦電気型、半導体型などいずれの種類のものも用
いることができる。
The optical system for the diffuse reflection method of this invention can be sufficiently used as long as it has a light-gathering ability of about 4 to 8 times and a photometric solid angle of about π steradian, and the detector is a thermocouple type, Any type, such as a pyroelectric type or a semiconductor type, can be used.

これらの中でも、特に半導体型は感度が高いのでこの発
明を更に有効に活用し得るので好ま仁い。
Among these, the semiconductor type is particularly preferred because it has high sensitivity and allows the present invention to be utilized more effectively.

(ホ)作用 例えば、混合物の場合には低い含有量、又は純物質の場
合には小さい吸収係数をもつ特性吸収線を扱う際にこれ
らの波長域の赤外光はトータルな吸収か小さいために試
料内又はこの発明の測定用治具の鏡面で何回も拡散、反
射、透過を繰り返すので実効的な測定膜厚はサンプルサ
イズに比べて十分大きなものとなり、微弱な吸収ピーク
はど強調され、強い吸収ピークは圧縮される。
(e) Effect For example, when dealing with characteristic absorption lines that have a low content in the case of a mixture or a small absorption coefficient in the case of a pure substance, infrared light in these wavelength ranges has a small total absorption. Because it is repeatedly diffused, reflected, and transmitted many times within the sample or on the mirror surface of the measurement jig of this invention, the effective measurement film thickness is sufficiently large compared to the sample size, and weak absorption peaks are emphasized. Strong absorption peaks are compressed.

(へ)実施例 この発明の実施例を再び第1図を用いて説明する。赤外
光源部7より出た赤外光は反射11.2で反射され、凹
面鏡3で6倍に集光され第2図に示したものと同様の測
定用治具8の中央の鏡面の水平載置面lO上に直接載置
された30μ9の試料(ポリメチルメタクリレート)に
向けて照射される。
(f) Embodiment An embodiment of the present invention will be explained with reference to FIG. 1 again. The infrared light emitted from the infrared light source section 7 is reflected by the reflection 11.2, and condensed six times by the concave mirror 3.The infrared light emitted from the infrared light source section 7 is then condensed six times by the concave mirror 3. Irradiation is directed toward a 30μ9 sample (polymethyl methacrylate) placed directly on the placement surface IO.

試料からでた拡散光はπステラジアンの測光立体角を有
する凹面鏡4で再び集光され、5.6の反射鏡により検
出系9へと導かれる。この配置及び測定用治具8を用い
ると水平載置面lOと光学系調整用ミラーに同一の反射
面を利用できるため先に述べたように再調整は不要とな
る。
The diffused light emitted from the sample is again focused by a concave mirror 4 having a photometric solid angle of π steradians, and guided to a detection system 9 by a 5.6-inch reflecting mirror. If this arrangement and measurement jig 8 are used, the same reflective surface can be used for the horizontal mounting surface lO and the optical system adjustment mirror, so readjustment is not necessary as described above.

第9図には上記のようにして得られたポリメチルメタク
リレートの赤外吸収結果の図を示した。
FIG. 9 shows the infrared absorption results of polymethyl methacrylate obtained as described above.

第11図には前記i)のKBr圧縮成型体を用いた透過
法によって、そして第1O図には前記11)のKBr粉
末希釈法による拡散反射法によって、得られたそれぞれ
のポリメチルメタクリレートの赤外吸収結果を比較例と
して示す。上記3種類のスペクトルを比較して明らかな
ように、この実施例の方法を用いても比較例1)ii)
の方法と同様なスペクトルが得られることは勿論のこと
であるが更に実施例の第9図中A、B、Cで示したよう
なカルボニル基の倍音ピークをはじめとする微小な吸収
ビー・りは比較例1)ii)の方法では測定困難であっ
たかこの実施例では極めて顕著に明瞭に観察出来ること
が分かった。また、僅かであるが11)のKBr希釈に
よる従来の拡散反射法ではKBr中の水分の影響が見ら
れ、これを除くためには相当な時間が必要となるが第9
図に示すこの実施例による方法では吸湿性の原因となる
KBrを用いないため水分の影響は°全く見られずこの
ような待ち時間は不必要となる。
Fig. 11 shows the red color of each polymethyl methacrylate obtained by the transmission method using the KBr compression molded body in i) above, and Fig. 1O shows the red color of each polymethyl methacrylate obtained by the diffuse reflection method using the KBr powder dilution method in 11) above. The external absorption results are shown as a comparative example. As is clear from comparing the three types of spectra above, even if the method of this example is used, Comparative Example 1) ii)
It goes without saying that a spectrum similar to that obtained by the method described above can be obtained, but it is also possible to obtain minute absorption beams such as the overtone peaks of carbonyl groups as shown by A, B, and C in Figure 9 of the example. Although it was difficult to measure by the method of Comparative Example 1) ii), it was found that it could be observed very clearly and clearly in this example. In addition, in the conventional diffuse reflection method using KBr dilution in 11), the effect of water in KBr is seen, although it is slight, and it takes a considerable amount of time to remove this effect.
In the method according to this embodiment shown in the figure, since KBr, which causes hygroscopicity, is not used, no influence of moisture is observed and such waiting time is unnecessary.

上記各々の測定方法で必要最低限の試料量を、ポリメチ
ルメタクリレートを例として第1表に示す。
Table 1 shows the minimum amount of sample required for each of the above measurement methods, using polymethyl methacrylate as an example.

第1表からこの実施例では測定に要する試料量が透過法
及び従来の拡散反射法と比へて極めて少ないことが分か
る。高感度測定と極微少測定という本発明の特徴及びそ
の有効性は十分に実証されている。
It can be seen from Table 1 that the amount of sample required for measurement in this example is extremely small compared to the transmission method and the conventional diffuse reflection method. The features of the present invention, such as high-sensitivity measurement and ultra-fine measurement, and their effectiveness have been fully demonstrated.

この発明による測定をより簡便に行うことを目的とした
測定治具の例を第2図〜第7図にしめしたが図中、水平
載置面lOは赤外光を集光させるために鏡面とする必要
がある。この図では5つの例を上げたが、これ以外でも
水平載置面10が鏡面となっていて正反射を促すように
なっていればその周辺部の形状は特定しない。しかし、
いかなる幾何学的、光学的構造であれ周辺部による正反
射の影響を減少させるような機能を果たすことが必要で
ある。
Examples of measurement jigs for the purpose of making measurements according to the present invention easier are shown in Figures 2 to 7. It is necessary to do so. Although five examples are given in this figure, if the horizontal mounting surface 10 is a mirror surface and promotes specular reflection, the shape of the peripheral portion is not specified. but,
Any geometrical or optical structure must function to reduce the effects of specular reflection from the periphery.

(ト)発明の効果 この発明によれば、第1に、微量の試料、例えば1マイ
クログラム以下、でも測定可能であり、第2に、従来検
出困難であった微小な吸収ピークを強調して検出するこ
とができ、第3に、KBr粉末で希釈する必要がないた
め試料調整などの前処理を省くことができ、これは単に
測定時間の短縮のみらなず、KBrの吸湿性の影響を避
けることができるため微小な吸収の検出能力を高めるこ
とができ、被測定試料の回収が容易に行え、キャスティ
ング法によるフィルム試料作成やKBrによる単純な希
釈・混合が極めて困難な特殊な高分子材料等の赤外吸収
スペクトルも簡便に得ることのできる拡散反射法による
赤外吸収スペクトル測定法を提供することができる。
(G) Effects of the Invention According to this invention, firstly, it is possible to measure even a minute amount of sample, for example, 1 microgram or less, and secondly, it is possible to emphasize minute absorption peaks that were previously difficult to detect. Thirdly, since there is no need to dilute with KBr powder, pretreatment such as sample preparation can be omitted, which not only shortens the measurement time but also eliminates the influence of KBr's hygroscopicity. This is a special polymer material that can improve the detection ability of minute absorptions and makes it easy to collect the sample to be measured. It is possible to provide an infrared absorption spectrum measurement method using a diffuse reflection method that can easily obtain infrared absorption spectra such as the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例で用いた拡散反射光学系の
図、第2図〜第7図は、この発明の測定法をより簡便に
行うための測定用治具の斜視図及び断面図、第8図は照
射赤外光の試料内での拡散反射過程の説明図、第9図は
この発明の実施例で得られたポリメチルメタクリレート
粉末の赤外吸収スペクトルの図、第10図〜第11図は
従来の方法によるポリメチルメタクリレート粉末の赤外
吸収スペクトル図である。 1.2,5.6・・・・・反射鏡、 γ 図 竿 図 第 図 ・・凹面鏡、 ・・赤外光源部、 ・・測定用治具(試料保持具)、 ・検出系、 ・・・・鏡面の水平載置面。 笥 図 笥 図 第 図 禦 図 赤タト尤 台
Fig. 1 is a diagram of a diffuse reflection optical system used in an embodiment of the present invention, and Figs. 2 to 7 are a perspective view and a cross section of a measuring jig for carrying out the measurement method of the present invention more easily. Figure 8 is an explanatory diagram of the diffuse reflection process of irradiated infrared light within the sample, Figure 9 is a diagram of the infrared absorption spectrum of polymethyl methacrylate powder obtained in an example of the present invention, and Figure 10 11 is an infrared absorption spectrum diagram of polymethyl methacrylate powder obtained by a conventional method. 1.2, 5.6...Reflector, γ rod diagram...Concave mirror,...Infrared light source,...Measurement jig (sample holder), -Detection system,... ...Mirror horizontal mounting surface. Red Tato Yudai

Claims (1)

【特許請求の範囲】 1、赤外光反射面に鏡面を有する測定用治具に微細な粉
末試料を載置し、赤外光源部から放射された赤外光を集
光照射して試料の赤外吸収スペクトルを測定することを
特徴とする拡散反射法による赤外吸収スペクトル測定法
。 2、中央に粉末試料を載置できる水平載置面を有しかつ
赤外吸収スペクトル測定装置の拡散反射光学系内に設置
しうる形状を有する試料保持具からなり、少なくとも上
記水平載置面が鏡面で構成されてなることを特徴とする
拡散反射法による赤外吸収スペクトル測定用治具。
[Claims] 1. A fine powder sample is placed on a measuring jig having a mirror surface on its infrared light reflecting surface, and the sample is irradiated with focused infrared light emitted from an infrared light source. An infrared absorption spectrum measurement method using the diffuse reflection method, which is characterized by measuring an infrared absorption spectrum. 2. A sample holder having a horizontal mounting surface on which a powder sample can be placed in the center and having a shape that can be installed in the diffuse reflection optical system of an infrared absorption spectrum measuring device, and at least the horizontal mounting surface is A jig for measuring infrared absorption spectra using a diffuse reflection method, characterized by being composed of a mirror surface.
JP63226896A 1988-09-09 1988-09-09 Method and jig for measuring infrared absorption spectrum by diffusion reflection method Pending JPH0274847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63226896A JPH0274847A (en) 1988-09-09 1988-09-09 Method and jig for measuring infrared absorption spectrum by diffusion reflection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226896A JPH0274847A (en) 1988-09-09 1988-09-09 Method and jig for measuring infrared absorption spectrum by diffusion reflection method

Publications (1)

Publication Number Publication Date
JPH0274847A true JPH0274847A (en) 1990-03-14

Family

ID=16852285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226896A Pending JPH0274847A (en) 1988-09-09 1988-09-09 Method and jig for measuring infrared absorption spectrum by diffusion reflection method

Country Status (1)

Country Link
JP (1) JPH0274847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287960A (en) * 2008-05-27 2009-12-10 Denso Corp Non-contact measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287960A (en) * 2008-05-27 2009-12-10 Denso Corp Non-contact measuring device

Similar Documents

Publication Publication Date Title
DE69030902T2 (en) Internal total reflection apparatus using scattered light.
FI883868A0 (en) Sensor for biological, biochemical and chemical testing
KR930703594A (en) Simultaneous Multi-Angle / Multi-wavelength Elliptical Polarimeter and Measurement Method
EP0396409A3 (en) High resolution ellipsometric apparatus
KR890000876A (en) Micro height difference measuring device and method
US4972092A (en) Apparatus for determining the effective surface roughness of polished optical samples by measuring the integral scattered radiation
KR950014849A (en) Photometric detectors scattered by thin films of colloidal media
Doyle Absorbance linearity and repeatability in cylindrical internal reflectance FT-IR spectroscopy of liquids
US3972618A (en) Interferometer for testing materials of different sizes
JPH0274847A (en) Method and jig for measuring infrared absorption spectrum by diffusion reflection method
US6147350A (en) Spectroscopic residue detection system and method
EP3830553B1 (en) Diffuse reflectance apparatus
JP3436982B2 (en) Immunoassay method and device
JPH07502344A (en) Reflection-free polarimetry system for small volume sample cells
JPH0219897B2 (en)
JP2943236B2 (en) Total reflection absorption spectrum measurement device
US5212393A (en) Sample cell for diffraction-scattering measurement of particle size distributions
JPH10160570A (en) Powder atr measuring method, device therefor, and infrared spectrophotometer
JP2597515Y2 (en) Total reflection absorption spectrum measurement device
JPH04138340A (en) Infrared spectrum measuring head and measuring apparatus
JPS6314295B2 (en)
JPH0518686Y2 (en)
JPS5822128Y2 (en) Fukukousokubunkoukoudokei
JPS59104521A (en) Optical system device for measuring infrared characteristic of crystal body
JP2023051228A (en) Sample support for infrared spectroscopic analysis