JPH027437A - Manufacture of silicon substrate - Google Patents

Manufacture of silicon substrate

Info

Publication number
JPH027437A
JPH027437A JP15732688A JP15732688A JPH027437A JP H027437 A JPH027437 A JP H027437A JP 15732688 A JP15732688 A JP 15732688A JP 15732688 A JP15732688 A JP 15732688A JP H027437 A JPH027437 A JP H027437A
Authority
JP
Japan
Prior art keywords
oxygen
substrate
interstitial
oxygen precipitation
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15732688A
Other languages
Japanese (ja)
Inventor
Fumitoshi Toyokawa
豊川 文敏
Seiichi Shishiguchi
獅子口 清一
Masao Mikami
三上 雅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15732688A priority Critical patent/JPH027437A/en
Publication of JPH027437A publication Critical patent/JPH027437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an Si substrate whose irregularity is small and whose IG capacity is high in a short process and at a low cost by a method wherein the silicon substrate having a prescribed interstitial oxygen concentration is heat-treated at a prescribed temperature. CONSTITUTION:A CZ substrate containing interstitial oxygen at a high concentration (16.5 to 19.5X10<17>atoms/cm<3>) is heat-treated in one stage at 1100 deg.C for three to ten hours. When the CZ substrate 1 is heat-treated, e.g., at 1200 deg.C for five hours, a region 4, in about 70mum, of a low interstitial oxygen concentration is formed in a surface layer of the CZ substrate 1; a latent oxygen precipitation nucleus 3 becomes a reduced oxygen precipitation nucleus 5. Since a smaller nucleus out of the latent oxygen precipitation nucleus 3 disappears, a density of the reduced oxygen precipitation nucleus 5 becomes lower than that of the latent oxygen precipitation nucleus 3. After that, when a heat treatment corresponding to oxidation, diffusion and the like in an electronic device production process is executed, interstitial oxygen including mainly the reduced oxygen precipitation nucleus 5 is precipitated and becomes an oxygen precipitate 6 such as silica or the like. In addition, the low oxygen concentration region 4 becomes a denuded zone DZ 7 on the surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン基板の製造方法に関し、特に、イント
リンシック・ゲッタリング(IntrinsicGet
tering)能力の高いシリコン基板の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a silicon substrate, and in particular, to a method for manufacturing a silicon substrate.
The present invention relates to a method of manufacturing a silicon substrate with high tering ability.

〔従来の技術〕[Conventional technology]

今日の超高集積度記憶素子等の電子デバイスは、主に、
チョクラルスキー法で成長したSi単結晶から切り出さ
れたSi基板(CZ基板)上に製造されている。C2基
板は、その特徴として、1〜2 X 10 ”atom
s/cJ程度の格子間酸素を過飽和の状態で含有し、こ
の格子間酸素は、後の熱処理(例えば電子デバイス製造
工程における酸化拡散等)によって潜在的にC2基板内
に存在する核(空孔等)を中心にシリカ等の酸素析出物
となる。
Today's electronic devices such as ultra-highly integrated memory elements are mainly
It is manufactured on a Si substrate (CZ substrate) cut out from a Si single crystal grown by the Czochralski method. The C2 substrate has the characteristics of 1 to 2 x 10” atoms
Contains interstitial oxygen of approximately s/cJ in a supersaturated state, and this interstitial oxygen can potentially form nuclei (vacancies) present in the C2 substrate through subsequent heat treatment (for example, oxidation diffusion in the electronic device manufacturing process). etc.) becomes oxygen precipitates such as silica.

このような酸素析出は、周辺の結晶格子に対し大きな歪
場を導入し、パンチアウト転位と称される転位を発生さ
せたり、酸素析出の過程で生じる格子間Siによって積
層欠陥を発生させたりする事が知られている。これらを
総称して内部欠陥と呼ぶ事もある。
Such oxygen precipitation introduces a large strain field to the surrounding crystal lattice, generating dislocations called punch-out dislocations, and stacking faults due to interstitial Si generated during the oxygen precipitation process. things are known. These may be collectively referred to as internal defects.

以上のような格子間酸素の析出による転位、積層欠陥が
、電子デバイスの形成されない領域に発生するならば、
電子デバイス製造工程でC2基板に取り込まれている汚
染不納物(例えば、鉄、銅。
If dislocations and stacking faults due to the precipitation of interstitial oxygen as described above occur in areas where electronic devices are not formed, then
Contaminants (e.g. iron, copper) that are introduced into the C2 substrate during the electronic device manufacturing process.

ニッケル等の重金属)を捕獲・固着ゲッタリング(Ge
ttering) 1.て、電子デバイスの電気的特性
の改善、歩留まりの向上をもたらす。このような現象は
、イントリンシック・ゲッタリング(Int−rins
ic Gettering : I G)と呼ばれ、今
日の電子デバイスの製造技術のひとつとして応用されて
いる。
Gettering captures and fixes heavy metals such as nickel
1. This leads to improvements in the electrical characteristics of electronic devices and increases in yield. This phenomenon is called intrinsic gettering (Int-rins gettering).
It is called ic gettingtering (IG) and is applied as one of the manufacturing techniques for today's electronic devices.

電子デバイス製造工程以前に特殊な熱処理を行わず、電
子デバイス製造工程における熱処理のみで、上述のゲッ
タリングを行おうとする技術をナチュラル(Natur
al) I Gと呼称しており、主にSi単結晶引き上
げ時の初期酸素濃度の制御によってIG能力が制御され
ている。
Natural (Natural) technology that attempts to perform the above-mentioned gettering only by heat treatment during the electronic device manufacturing process without performing any special heat treatment before the electronic device manufacturing process.
al) IG, and the IG capacity is controlled mainly by controlling the initial oxygen concentration during pulling of the Si single crystal.

また、電子デバイス製造工程以前に、1100℃程度以
上の高温でC2基板表面の格子間酸素をCZ基板外へ拡
散させ、かつ、潜在的な酸素析出核を縮小させた後、6
00℃〜800℃程度の低温で再び酸素析出核を形成し
て、後工程での酸素析出を促す手法も知られている。こ
の手法では、最初の高温処理でC2基板表面の格子間酸
素の濃度が低減されている事から、C2基板表面層には
、酸素析出による結晶欠陥が発生しないデヌーデッド・
シー7 (Denuded Zone : D Z)が
形成される。このように、高温・低温の2段階熱処理に
より、C7基板表面層にDZを形成し、内部に酸素析出
による結晶欠陥を導入したC2基板はDZIG基板と呼
称されている。
In addition, before the electronic device manufacturing process, after diffusing interstitial oxygen on the C2 substrate surface to the outside of the CZ substrate at a high temperature of about 1100°C or higher and reducing potential oxygen precipitation nuclei,
A method is also known in which oxygen precipitation nuclei are formed again at a low temperature of about 00° C. to 800° C. to promote oxygen precipitation in a subsequent process. In this method, since the concentration of interstitial oxygen on the surface of the C2 substrate is reduced by the initial high-temperature treatment, the surface layer of the C2 substrate is a denuded layer in which crystal defects due to oxygen precipitation do not occur.
A Denuded Zone (DZ) is formed. A C2 substrate in which a DZ is formed on the surface layer of the C7 substrate and crystal defects due to oxygen precipitation are introduced into the C7 substrate through two-step heat treatment at high and low temperatures is called a DZIG substrate.

なお、ここで述べている格子間酸素濃度は、赤外分光法
により測定される値であり、換算係数は旧ASTMで規
定されている4、81X1017を用いている。以後、
格子間酸素濃度が記述される場合は全てこの方法による
ものとする。
Note that the interstitial oxygen concentration described here is a value measured by infrared spectroscopy, and the conversion factor used is 4.81×1017 specified by the old ASTM. From then on,
This method is used in all cases where the interstitial oxygen concentration is described.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したナチュラルIGでは、後の電子デバイス製造工
程での熱処理条件に適合した初期格子間酸素濃度(例え
ば15 X 10 ”atoms/ait程度)のC2
基板を用いる事で格子間酸素の析出量を制御しようとし
ているが、Si単結晶引き上げ時の熱履歴が、引き上げ
たインゴットの位置により異なるため、潜在的な酸素析
出核の分布を完全に制御するには困難が多く、従って、
格子間酸素の析出量に大きなバラツキが生じやすい。ま
たCZ基板表面層には、内部と等しい量の格子間酸素が
存在する事から、電子デバイスの活性領域にも酸素析出
による結晶欠陥(突き出し欠陥)が発生しやすい。この
ように、酸素析出のバラツキと突き出し欠陥がナチュラ
ルIGの問題である。
In the above-mentioned natural IG, C2 with an initial interstitial oxygen concentration (e.g., about 15 x 10" atoms/ait) is suitable for the heat treatment conditions in the subsequent electronic device manufacturing process.
We are trying to control the amount of interstitial oxygen precipitated by using a substrate, but since the thermal history during pulling of a Si single crystal differs depending on the position of the pulled ingot, it is difficult to completely control the distribution of potential oxygen precipitated nuclei. There are many difficulties, therefore,
Large variations tend to occur in the amount of interstitial oxygen precipitated. Furthermore, since interstitial oxygen exists in the surface layer of the CZ substrate in an amount equal to that in the interior, crystal defects (protrusion defects) due to oxygen precipitation are likely to occur in the active region of the electronic device. As described above, variations in oxygen precipitation and protrusion defects are problems with natural IG.

これに対し、DZIGでは突き出し欠陥の問題は改善さ
れている。しかしDZより深部では、充分なIG能力を
得るため酸素の析出を充分に進行させる必要があり、残
留する格子間の酸素濃度は著しく低下する。格子間酸素
濃度の低下はSi基板の機械的強度の低下を意味し、S
i基板の反り、スリップ転位の原因となり、歩留まりに
悪影響を及ぼす。また、一般にDZIGの2段階熱処理
は、前段の高温処理に3〜5時間、後段の低温処理に数
時間から十数時間を要し、生産性、コストの面で問題が
ある。
On the other hand, in DZIG, the problem of protrusion defects has been improved. However, deeper than the DZ, it is necessary for oxygen precipitation to proceed sufficiently in order to obtain sufficient IG ability, and the oxygen concentration in the remaining interstitial spaces decreases significantly. A decrease in the interstitial oxygen concentration means a decrease in the mechanical strength of the Si substrate.
This causes warping of the i-substrate and slip dislocation, which adversely affects yield. Further, in general, the two-stage heat treatment of DZIG requires 3 to 5 hours for the first stage high temperature treatment and several hours to ten or more hours for the second stage low temperature treatment, which poses problems in terms of productivity and cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のSi基板の製造方法は、旧ASTMの規定に準
じて測定される格子間酸素を高濃度(16,5〜19.
5 X I O”atoms/ai?)で含有するC7
基板に対し、1100°以上の1段熱処理を3〜10時
間施す事を特徴としている。また、このように熱処理を
した基板にシリコンのエピタキシャル成長をすることも
できる。
The method for manufacturing a Si substrate of the present invention has a high concentration of interstitial oxygen (16,5 to 19.
C7 contained in 5 X I O"atoms/ai?)
It is characterized by subjecting the substrate to one-stage heat treatment at 1100° or higher for 3 to 10 hours. It is also possible to epitaxially grow silicon on a substrate heat-treated in this manner.

本発明によれば、バラツキが小さく、かつ、高いIG能
力を有するSi基板を、短い工程と低コストで実現でき
る。
According to the present invention, a Si substrate with small variations and high IG performance can be realized in a short process and at low cost.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

第1図(A)において、1はCZ基板であり、2は18
 X 10 ”atoms/antの濃度で含有される
格子間酸素原子であり、3は潜在酸素析出核である。
In FIG. 1(A), 1 is a CZ substrate, 2 is an 18
It is an interstitial oxygen atom contained at a concentration of X 10 ''atoms/ant, and 3 is a potential oxygen precipitation nucleus.

このCZ基板1に対し、1200℃で5時間の熱処理を
施す事によって第1図(B)のように、CZ基板1の表
面層に、格子間酸素濃度の低い領域4が約70μm形成
され、第1図(A)で示した潜在酸素析出核3は、縮小
した酸素析出核5となる。
By subjecting this CZ substrate 1 to heat treatment at 1200° C. for 5 hours, a region 4 with a low interstitial oxygen concentration of approximately 70 μm is formed in the surface layer of the CZ substrate 1, as shown in FIG. 1(B). The potential oxygen precipitation nuclei 3 shown in FIG. 1(A) become reduced oxygen precipitation nuclei 5.

この時、潜在酸素析出核3のうち大きさの小さなものは
消滅する事から、縮小した酸素析出核5の密度は、潜在
酸素析出核3の密度より低くなる。
At this time, since the smaller ones among the potential oxygen precipitation nuclei 3 disappear, the density of the reduced oxygen precipitation nuclei 5 becomes lower than the density of the potential oxygen precipitation nuclei 3.

この後、電子デバイス製造工程における酸化、拡散等に
相当する熱処理が加えられる事によって、第1図(B)
で示した縮小した酸素析出核5を中心に格子間酸素が析
出し、第1図(C)のように、シリカ等の酸素析出物6
となる。また、第1図(B)の低酸素濃度領域4は、第
1図(C)中では、表面のデヌーデット・ゾーンDZ7
となる。
After this, heat treatment corresponding to oxidation, diffusion, etc. in the electronic device manufacturing process is applied, resulting in the process shown in Figure 1 (B).
Interstitial oxygen precipitates around the reduced oxygen precipitate nuclei 5 shown in Figure 1 (C), and oxygen precipitates 6 such as silica are formed.
becomes. Furthermore, the low oxygen concentration region 4 in FIG. 1(B) is the denuded zone DZ7 on the surface in FIG. 1(C).
becomes.

本発明と従来法とを比較するため、本発明では初期酸素
濃度18 X 10 ”atoms/ailのCZ基板
直径150mmに1200℃5時間の1段熱処理を施し
たもの、従来法では15 X 10 lyatoms/
cJのCZ基板直径150mmに1200℃5時間、7
00℃16時間の2段熱処理を施したものを各々試料と
し、CMOSデバイスの製造工程を想定した疑似熱処理
を加えて、残留酸素濃度、DZの幅、内部欠陥密度、反
り、スリップを測定した、結果の一覧を表1に示す。表
1において、酸素濃度は旧ASTMの規定に準じて測定
したものである。
In order to compare the present invention and the conventional method, in the present invention, a CZ substrate with a diameter of 150 mm with an initial oxygen concentration of 18 X 10 "atoms/ail was subjected to one-step heat treatment at 1200°C for 5 hours, and in the conventional method, the initial oxygen concentration was 15 X 10" atoms/ail. /
cJ CZ substrate diameter 150mm at 1200℃ for 5 hours, 7
Each sample was subjected to two-stage heat treatment at 00°C for 16 hours, and a simulated heat treatment assuming the manufacturing process of a CMOS device was added, and the residual oxygen concentration, DZ width, internal defect density, warpage, and slip were measured. A list of results is shown in Table 1. In Table 1, the oxygen concentration was measured according to the old ASTM regulations.

表 本発明 従来法 初期酸素濃度 熱処理 高温 低温 18 X 10 ”ajoms/cd 1200℃5時間 15 X 10 ”atoIls/cd1200℃5時
間 700℃ 16時間 残留酸素濃度  〜8X10”ajoIIs/ad  
 +1−5X10”atoms/ajDz      
 〜60μm     60〜70μm内部欠陥密度 
 1〜2×10ンc+J1〜2X10’/ad反り  
     〜40μm       100μm以上ス
リ ツブ   5〜10■のもの数本 20〜40■の
ものが多発残留酸素は咎各々、約8 X 1017at
oms/cJ。
Table Conventional method of the present invention Initial oxygen concentration Heat treatment High temperature and low temperature 18 X 10" ajoms/cd 1200°C 5 hours 15 X 10" atoIls/cd 1200°C 5 hours 700°C 16 hours Residual oxygen concentration ~8X10" ajoIIs/ad
+1-5X10"atoms/ajDz
~60μm 60-70μm internal defect density
1~2x10'c+J1~2x10'/ad warp
~40μm Slips of 100μm or more Several pieces of 5-10cm There are many pieces of 20-40cm Residual oxygen is approximately 8 x 1017at each
oms/cJ.

4〜5 X 10 ”atoms/crJであったが、
酸素濃度の減少量はいづれも約10 X 10 ”at
oms/ clと同等であった。また、DZ幅、内部欠
陥密度も両者で同等であった。これに対し11反りに関
しては、従来法は本発明の2.5倍の100μm以上あ
り、リソグラフィー工程での障害となる程度の反りがみ
られた。スリップに関しては、本発明では5〜10mm
のものが数本みられたが、従来法では20〜40mmの
ものが多発した。
4 to 5 X 10” atoms/crJ,
The amount of decrease in oxygen concentration is approximately 10 x 10”at
oms/cl. Furthermore, the DZ width and internal defect density were also the same in both cases. On the other hand, regarding 11 warpage, the conventional method had a warpage of 100 μm or more, which was 2.5 times that of the present invention, and the warpage was seen to be an obstacle in the lithography process. Regarding the slip, in the present invention, the slip is 5 to 10 mm.
A few pieces were seen, but in the conventional method, there were many pieces with a diameter of 20 to 40 mm.

以上のように、DZIG基板に要求されるDZ幅と、内
部欠陥密度は同等であるのに対し、反り、スリップに関
しては本発明の方がはるかに優れている。
As described above, while the DZ width and internal defect density required for the DZIG substrate are the same, the present invention is far superior in terms of warping and slipping.

なお、本実施例では初期酸素濃度は18X10”ato
ms/c♂のC2基板について述べたが、これが16、
5 X 10 ”atoms/clより低濃度の場合、
内部欠陥密度は5X10’/ant以下まで急激に減少
し、充分なIG効果は得られない事が分かった。
In this example, the initial oxygen concentration was 18×10”ato
I mentioned the C2 board of ms/c♂, but this is 16,
For concentrations lower than 5 X 10” atoms/cl,
It was found that the internal defect density rapidly decreased to 5×10'/ant or less, and a sufficient IG effect could not be obtained.

また、19.5 X 10 ”atoms/aaを超え
る濃度では、DZ幅が狭くなり、表面へ突き出す欠陥が
多発した。
Further, at a concentration exceeding 19.5 x 10'' atoms/aa, the DZ width became narrow and many defects protruded to the surface.

高温熱処理については、本実施例では1200℃5時間
としたが、1100℃以上の温度であれば、はぼ同等の
DZ、内部欠陥の形成が可能であり、これより低い温度
では、DZの形成が不充分で、過剰の酸素析出が生じる
事から表面に多数の欠陥が発生した。また、処理時間に
ついては3時間以上の処理で充分なりZが形成されたが
、DZ幅は処理時間の平方根に比例して増加する事から
、実用的には10時間程度が上限である。
Regarding high-temperature heat treatment, in this example, the temperature was 1200°C for 5 hours, but if the temperature is 1100°C or higher, it is possible to form almost the same DZ and internal defects, and if the temperature is lower than this, the formation of DZ was insufficient, and excessive oxygen precipitation occurred, resulting in numerous defects on the surface. Regarding the processing time, a processing time of 3 hours or more was sufficient to form a Z, but since the DZ width increases in proportion to the square root of the processing time, the practical upper limit is about 10 hours.

本実施例で製造したSi基板上にCMOSデバイスで構
成されるSRAMを作製したところ、従来法のSi基板
と比較して20%程度の良品率の向上が認められた。
When an SRAM composed of a CMOS device was manufactured on the Si substrate manufactured in this example, an improvement in the non-defective product rate of about 20% was observed compared to the conventional Si substrate.

第2図は本発明の他の実施例の縦断面図である。FIG. 2 is a longitudinal sectional view of another embodiment of the invention.

第2図(A)Eおいて、8はCZ基板(直径150胴)
であり、9は17.5 X 10 ”atoms/ a
ilの濃度で含有される格子間酸素原子であり、10は
潜在酸素析出核である。このC2基板8に対し1200
℃5時間の熱処理を施し、第2図(B)のように、格子
間酸素が低濃度の領域11が約90μm形成され、潜在
酸素析出核10は、縮小した酸素析出核12となる。こ
の後1000℃16時間の熱処理を加え、第2図(C)
のようにDZ13と酸素析出物14を形成する。続いて
第2図(D)のように10μmのSiエピタキシャル膜
15を形成した。
In Figure 2 (A)E, 8 is a CZ board (diameter 150 cylinder)
and 9 is 17.5 x 10” atoms/a
It is an interstitial oxygen atom contained at a concentration of il, and 10 is a potential oxygen precipitation nucleus. 1200 for this C2 board 8
C. for 5 hours, and as shown in FIG. 2(B), a region 11 with a low concentration of interstitial oxygen of about 90 μm is formed, and the latent oxygen precipitate nuclei 10 become reduced oxygen precipitate nuclei 12. After this, heat treatment was performed at 1000°C for 16 hours, as shown in Figure 2 (C).
DZ 13 and oxygen precipitates 14 are formed as shown in FIG. Subsequently, a 10 μm thick Si epitaxial film 15 was formed as shown in FIG. 2(D).

エピタキシャル成長は高温(1000〜1200℃)の
工程であり、急熱、急冷の熱処理工程を含む事からスリ
ップが生じやすいが、本発明のDZIG基板上にSiエ
ピタキシャル成長した場合には、スリップの発生は皆無
であった。これに対し、従来法のDZIG基板に、10
00℃16時間の熱処理を加え、同様のSiエピタキシ
ャル成長を行ったところ、10〜30mmのスリップが
数十本発生した。
Epitaxial growth is a high-temperature process (1000 to 1200°C) and includes heat treatment steps such as rapid heating and rapid cooling, so slips are likely to occur, but when Si is epitaxially grown on the DZIG substrate of the present invention, no slips occur. Met. On the other hand, in the conventional DZIG substrate, 10
When similar Si epitaxial growth was performed with heat treatment at 00° C. for 16 hours, several dozen slips of 10 to 30 mm were generated.

この実施例によって、通常の電子デバイス製造工程以外
に、Siエピタキシャル基板の製造工程における本発明
の優位性が示された。
This example demonstrated the superiority of the present invention in the manufacturing process of Si epitaxial substrates, in addition to the normal electronic device manufacturing process.

本実施例によるSi基板上にCMOSデバイスで構成さ
れるSRAMを作製したところ従来法と比較して25〜
30%の良品率の向上が認められた。
When an SRAM consisting of a CMOS device was fabricated on a Si substrate according to this example, the result was 25~25% compared to the conventional method.
A 30% improvement in the non-defective product rate was observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、旧ASTMの規定に準
じて測定された16.5〜19.5X1017a t 
o m s / cntの格子間酸素を含有するDZ基
板に、1100℃以上の高温で、3〜10時間の1段熱
処理を行う事で、従来法と同等のIG能力を維持した状
態で、反り、スリップの発生が抑制されたDZIG基板
を生産性よく低コストで作製できる効果がある。
As explained above, the present invention is applicable to 16.5 to 19.5
By performing a one-step heat treatment for 3 to 10 hours at a high temperature of 1100°C or higher on a DZ substrate containing interstitial oxygen of 0 m s / cnt, warpage can be reduced while maintaining IG performance equivalent to that of conventional methods. This has the effect that a DZIG substrate in which the occurrence of slip is suppressed can be manufactured with high productivity and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(A)〜(C)本発明の一実施例の主な工程を
示す縦断面図、第2図(A)〜(D)は本発明の他の実
施例の主な工程を示す縦断面図である。 1・・・・・・CZ基板、2・・・・・・格子間酸素原
子、3・・・・・・潜在酸素析出核、4・・・・・・低
酸素濃度領域、訃・・・・・縮小した酸素析出核、6・
・・・・・酸素析出物、7・・・・・・DZ、8・・・
・・・C2基板、9・・・・・・格子間酸素原子、lO
・・・・・・潜在酸素析出核、11・・・・・・低酸素
濃度領域、12・・・・・・縮小した酸素析出核、13
・・・・・・DZ、14・・・・・・酸素析出物、15
・・・・・・エピタキシャル層。 代理人 弁理士 内 原   晋 (A’) <A) CB) (f32 (C) (D) 茅 ITyJ 茶2 図 手続補正書(自発) 補正の対象 明細書の「特許請求の範囲」 の欄
FIG. 1 is a vertical sectional view showing (A) to (C) the main steps of one embodiment of the present invention, and FIG. 2 (A) to (D) are longitudinal sectional views showing the main steps of another embodiment of the present invention. FIG. 1... CZ substrate, 2... Interstitial oxygen atoms, 3... Potential oxygen precipitation nuclei, 4... Low oxygen concentration region, Death... ...shrinked oxygen precipitate nuclei, 6.
...Oxygen precipitate, 7...DZ, 8...
...C2 substrate, 9... Interstitial oxygen atom, lO
...Potential oxygen precipitation nucleus, 11...Low oxygen concentration region, 12...Reduced oxygen precipitation nucleus, 13
...DZ, 14...Oxygen precipitate, 15
...Epitaxial layer. Agent Patent attorney Susumu Uchihara (A') <A) CB) (f32 (C) (D) Kaya ITyJ Cha 2 Drawing procedure amendment (voluntary) "Scope of claims" column of the specification to be amended

Claims (1)

【特許請求の範囲】[Claims] 格子間酸素濃度が16.5×10^1^7atoms/
cm^3以上、19.×10^1^7atoms/cm
^3以下のシリコン基板に対し、1100℃以上の温度
で熱処理を行う事を特徴とするシリコン基板の製造方法
The interstitial oxygen concentration is 16.5×10^1^7 atoms/
cm^3 or more, 19. ×10^1^7 atoms/cm
A method for manufacturing a silicon substrate, characterized in that a silicon substrate of ^3 or less is subjected to heat treatment at a temperature of 1100°C or higher.
JP15732688A 1988-06-24 1988-06-24 Manufacture of silicon substrate Pending JPH027437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15732688A JPH027437A (en) 1988-06-24 1988-06-24 Manufacture of silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15732688A JPH027437A (en) 1988-06-24 1988-06-24 Manufacture of silicon substrate

Publications (1)

Publication Number Publication Date
JPH027437A true JPH027437A (en) 1990-01-11

Family

ID=15647251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15732688A Pending JPH027437A (en) 1988-06-24 1988-06-24 Manufacture of silicon substrate

Country Status (1)

Country Link
JP (1) JPH027437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2169708A3 (en) * 2008-09-29 2011-03-02 MagnaChip Semiconductor Ltd. Silicon wafer and fabrication method thereof
JP2013129564A (en) * 2011-12-21 2013-07-04 Siltronic Ag Silicon single crystal substrate and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2169708A3 (en) * 2008-09-29 2011-03-02 MagnaChip Semiconductor Ltd. Silicon wafer and fabrication method thereof
US7977216B2 (en) 2008-09-29 2011-07-12 Magnachip Semiconductor, Ltd. Silicon wafer and fabrication method thereof
US8486813B2 (en) 2008-09-29 2013-07-16 Magnachip Semiconductor, Ltd. Silicon wafer and fabrication method thereof
US9018735B2 (en) 2008-09-29 2015-04-28 Magnachip Semiconductor, Ltd. Silicon wafer and fabrication method thereof
JP2013129564A (en) * 2011-12-21 2013-07-04 Siltronic Ag Silicon single crystal substrate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100313374B1 (en) Process for producing a single crystal
CN105026624B (en) Epitaxial silicon chip and its manufacture method
KR100487935B1 (en) Silicon Semiconductor Substrate and Process for Producing the Same
JP4013276B2 (en) Manufacturing method of silicon epitaxial wafer
JPS6272595A (en) Silicon semiconductor substrate material and manufacture
JPH01242500A (en) Production of silicon substrate
KR20000006046A (en) Production method for silicon epitaxial wafer
KR100847925B1 (en) Anneal wafer manufacturing method and anneal wafer
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
JP4055343B2 (en) Heat treatment method for silicon semiconductor substrate
JPH04130732A (en) Heat treatment method of semiconductor wafer
JPH027437A (en) Manufacture of silicon substrate
JPH0518254B2 (en)
JP2535701B2 (en) Semiconductor device
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
JPH04298042A (en) Method of heat-treating semiconductor
JPS639745B2 (en)
JP4182691B2 (en) A method for predicting pulling conditions of pure silicon single crystals.
JPS61219795A (en) Silicon single crystal wafer speedy in forming velocity of deposited nucleus and its production
JPH05121319A (en) Manufacture of semiconductor device
JPH0897222A (en) Manufacture of silicon wafer, and silicon wafer
JPH088263A (en) Semiconductor substrate
JPS58197716A (en) Silicon wafer
JP3171308B2 (en) Silicon wafer and method for manufacturing the same
JP2003146795A (en) High thermal impact resistant silicon wafer