JPH0273953A - Alloying hot dip galvanized steel sheet excellent in workability and painting suitability and its production - Google Patents

Alloying hot dip galvanized steel sheet excellent in workability and painting suitability and its production

Info

Publication number
JPH0273953A
JPH0273953A JP22333388A JP22333388A JPH0273953A JP H0273953 A JPH0273953 A JP H0273953A JP 22333388 A JP22333388 A JP 22333388A JP 22333388 A JP22333388 A JP 22333388A JP H0273953 A JPH0273953 A JP H0273953A
Authority
JP
Japan
Prior art keywords
plating
hot
steel sheet
plating film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22333388A
Other languages
Japanese (ja)
Other versions
JP2754590B2 (en
Inventor
Yasuhisa Tajiri
田尻 泰久
Soichi Shimada
島田 聰一
Michitaka Sakurai
理孝 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22333388A priority Critical patent/JP2754590B2/en
Publication of JPH0273953A publication Critical patent/JPH0273953A/en
Application granted granted Critical
Publication of JP2754590B2 publication Critical patent/JP2754590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide a steel sheet excellent in corrosion resistance, powdering resistance, and cratering resistance by providing an outer layer part composed of an Fe-Zn alloy with a specific component in a specific coating weight and an inner layer part composed of alloyed zinc in a specific coating weight to a steel sheet, applying thermal diffusion to the boundary between the above layer parts to form an integral structure, and forming a plating film on the above. CONSTITUTION:At least one side of a steel sheet is provided with an outer layer composed of an Fe-Zn alloy of >=40wt.% iron content in which coating weight is regulated to 0.5-10g/m 2 and an inner layer composed of alloyed zinc of 0.5mum thickness which consists of delta1-phase and zeta-phase except in the boundary layer between a steel as base metal and this layer and in which coating weight is regulated to 30-90g/m<2>. The boundary between both layers mentioned above is subjected to mutual thermal diffusion, by which the above layers are formed into an integral structure. Further, the distribution of iron content is uniformized in a facial direction to form a plating film. By this method, the steel sheet excellent in corrosion resistance, powdering resistance, and cratering resistance can be provided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車や家電機器或は建材等に使用されるF
e−Zn合金めっき鋼板に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to the production of fibers used in automobiles, home appliances, building materials, etc.
This relates to e-Zn alloy plated steel sheets.

[従来技術] 亜鉛めっき鋼板は安価で耐食性や強度に優れた材料とし
て広く使われており、なかでも自動車の内外板には耐食
性に加えて、加工性や塗装性を考慮したものが多量に使
われている。亜鉛めっき鋼板の量産法として一般的には
電気めっき法と溶融めっき法とがあるが、電気めっき法
では、低温で処理するので熱影響による相変化が無くめ
っき被膜の成分コントロールも容易であるが、めっき付
着量を多くするには処理時間を増さねばならない。これ
に対して、溶融めっき法では処理時間を増すことなく簡
単に付着量を増すことが出来、めっき後熱処理を施すこ
とにより容易にFe−Zn合金を作ることが出来る。し
かし、めっき皮膜組成と生成される相のコントロールに
工夫を要する。近年自動車用の鋼板では、塩害への対処
等もあってより高度の耐食性が要求され、これに呼応し
て、付着量が容易に確保出来、且つ経済的な溶融亜鉛め
っきを主体に、めっき組成や相コントロールを上手に行
い、高い耐食性を確保しながらその上で加工性や塗装性
を合わせ持っためっき鋼板が求められている。
[Prior art] Galvanized steel sheets are widely used as materials that are inexpensive and have excellent corrosion resistance and strength.In particular, galvanized steel sheets are used in large quantities for the interior and exterior panels of automobiles, considering their workability and paintability in addition to their corrosion resistance. It is being said. Generally speaking, there are two methods for mass producing galvanized steel sheets: electroplating and hot-dip plating.Since electroplating is processed at low temperatures, there is no phase change due to heat effects, and it is easy to control the composition of the plating film. In order to increase the amount of plating deposited, the processing time must be increased. On the other hand, with the hot-dip plating method, the amount of adhesion can be easily increased without increasing the processing time, and an Fe-Zn alloy can be easily produced by performing heat treatment after plating. However, it requires some effort to control the composition of the plating film and the phases produced. In recent years, steel sheets for automobiles have been required to have a higher degree of corrosion resistance in order to deal with salt damage, etc. In response to this, we have developed plating compositions, mainly hot-dip galvanizing, which can easily secure a coating amount and is economical. There is a need for a plated steel sheet that has excellent corrosion resistance, good phase control, and good workability and paintability while also ensuring high corrosion resistance.

加工性で最も問題になるのが耐パウダリング性であり、
塗装性で問題になるのが耐クレータリング性である。パ
ウダリングとは、プレス成形の際にめっき皮膜が粉状に
なって脱落する現象であり、クレータリングとは、めっ
き皮膜に化成処理を施した後行う電着塗装処理において
塗膜に目視できる凹凸(クレータ)が発生する現象であ
る。前者はめっき皮膜中に鉄含有率の高い「相(Fe3
Zn1o、Fe2O〜28wt%)が生成され、これが
硬くて脆いために起こり、後者はめっき皮膜表面の不均
一さく表面形状、酸化膜、めっき皮膜相構造等)に起因
して発生する。
The most important problem in processability is powdering resistance.
An issue with paintability is cratering resistance. Powdering is a phenomenon in which a plating film becomes powdery and falls off during press molding, and cratering is a phenomenon in which the plating film becomes powdery and falls off. Cratering is a phenomenon in which the plating film becomes visually visible in the electrocoating process that is performed after chemical conversion treatment. (crater) is a phenomenon that occurs. The former has a high iron content phase (Fe3) in the plating film.
Zn1o, Fe2O ~ 28 wt%) is generated, which occurs because it is hard and brittle, and the latter occurs due to the uneven surface shape of the plating film surface, oxide film, plating film phase structure, etc.).

従来、自動車用に使用されている合金化溶融亜鉛めっき
鋼板は、溶融めっき後金めっき皮膜平均の鉄含有率が1
0wt%前後に達するまで合金化処理を施し、めっき表
面までFeを拡散させて耐食性、特に塗装後耐食性を向
上させたものである。
Conventionally, alloyed hot-dip galvanized steel sheets used for automobiles have an average iron content of 1 after hot-dipping.
Alloying treatment is performed until the Fe content reaches around 0 wt%, and Fe is diffused to the plating surface to improve corrosion resistance, especially post-painting corrosion resistance.

即ち、鋼帯に連続的に前処理(熱処理を含む)を施して
素材を調整した後、亜鉛を溶融しためつき浴に浸漬して
めっきし、後続してこのめっき鋼帯を合金化炉内で50
0℃から700℃の温度に急速に昇温させ短時間(10
〜30秒)保持して、めっき皮膜の鉄含有率を10%前
後に合金化させたものである。しかし、このようにして
作られる合金化溶融亜鉛めっき鋼板は急速な昇温によっ
て高温に加熱されるので、めっき皮膜中の鉄含有量が場
所により異なりがちで、めっき皮膜の面方向及び深さ方
向共に合金化が不均一になること、これに加えてめっき
被膜内での鉄濃度勾配が大きくなり、表層の鉄含有量を
確保するため鋼素地との界面の鉄含有率が高まり「相の
生成が避けられないこと、更に高温処理と急速冷却によ
りめっき皮膜に熱応力が発生すること等の問題を抱えて
いる。
That is, after the steel strip is subjected to continuous pretreatment (including heat treatment) to prepare the material, it is plated by immersing it in a molten zinc bath, and then the plated steel strip is placed in an alloying furnace. and 50
Rapidly raise the temperature from 0℃ to 700℃ for a short period of time (10
~30 seconds) to alloy the plating film with an iron content of around 10%. However, since the alloyed hot-dip galvanized steel sheets produced in this way are heated to high temperatures due to rapid temperature rise, the iron content in the plating film tends to vary depending on the location, and the iron content in the plating film tends to vary in the surface direction and depth direction. In addition to this, the iron concentration gradient within the plating film becomes large, and in order to secure the iron content in the surface layer, the iron content at the interface with the steel base increases, resulting in the formation of "phases". Furthermore, high temperature treatment and rapid cooling generate thermal stress in the plating film.

一方、合金化処理を一次、二次の二工程に分けて処理す
る方法が提案されている。例えば特公昭一 59−14541号では、−次加熱において、めっき皮
膜の平滑性を得るためにZnめっき皮膜を再溶融させる
急速昇温高温加熱を行う。この加熱では鉄含有率を2.
2〜5.5wt%の低い範囲に留まるので、この−次加
熱の結果に応じて、二次加熱を亜鉛の融点以下の低温で
時間をかけて行い、鉄含有率を6〜13wt%の範囲に
納めるものである。そしてこの方法によって、表面が平
滑で外観が優れ、且つ加工の際に剥離やパウダリングの
ない合金化溶融亜鉛めっき皮膜が得られることを開示し
ている。
On the other hand, a method has been proposed in which the alloying treatment is divided into two steps, primary and secondary. For example, in Japanese Patent Publication No. 59-14541, in order to obtain smoothness of the plating film, rapid heating and high temperature heating is performed to remelt the Zn plating film in the second heating. In this heating, the iron content was reduced to 2.
Since the iron content remains in a low range of 2 to 5.5 wt%, depending on the result of this secondary heating, secondary heating is performed at a low temperature below the melting point of zinc over time to bring the iron content to a range of 6 to 13 wt%. It can be paid to. It is also disclosed that by this method, it is possible to obtain an alloyed hot-dip galvanized film with a smooth surface, excellent appearance, and no peeling or powdering during processing.

他方、めっき皮膜表層のみの鉄含有率を高めて耐クレー
タリング性を改善したものも提案されている。例えば、
特公昭58−15554号の提案は、耐食性金属層を内
層とし、その上に鉄含有率の高いFe−Zn合金被覆層
を付してカチオン電着塗装性を向上させためっき鋼板で
ある。この提案では、内層である前記耐食性金属層とし
て溶融亜鉛めっき後に熱処理によりFe−Zn合金化し
た合金化溶融亜鉛めっき層が開示されている。
On the other hand, it has also been proposed to improve cratering resistance by increasing the iron content only in the surface layer of the plating film. for example,
The proposal of Japanese Patent Publication No. 58-15554 is a plated steel sheet with a corrosion-resistant metal layer as an inner layer and a Fe--Zn alloy coating layer with a high iron content attached thereon to improve cationic electrodeposition coating properties. This proposal discloses an alloyed hot-dip galvanized layer that is formed into an Fe-Zn alloy by heat treatment after hot-dip galvanizing as the corrosion-resistant metal layer that is the inner layer.

[発明が解決しようとする課題] しかしながら、上述した特公昭59−14541号では
、耐クレータリング性を満足するものではない。耐クレ
ータリング性に関しては、表面の鉄含有率は不十分であ
り、又、耐パウダリング性に関しても、溶融亜鉛めっき
後急速昇温高温加熱によって合金化処理を行うので合金
化反応が不均一に進むことが避けられず、その結果、加
工性に劣るr層が成長してしまう。又、場合によっては
、合金化されない部分と合金化の進んだ部分とが混在し
て、いわゆる焼けむらの現象を呈したりする。このよう
に、−次加熱が不均一になり易いので、−次加熱の結果
を基にした二次加熱条件が極めて複雑になり実操業では
その実施に大きな困難を伴う。
[Problems to be Solved by the Invention] However, the above-mentioned Japanese Patent Publication No. 59-14541 does not satisfy the cratering resistance. Regarding cratering resistance, the iron content on the surface is insufficient, and regarding powdering resistance, the alloying reaction is uneven because the alloying treatment is performed by rapid heating at high temperature after hot-dip galvanizing. As a result, an r layer with poor workability grows. Further, in some cases, unalloyed portions and highly alloyed portions coexist, resulting in a so-called uneven burning phenomenon. As described above, secondary heating tends to be non-uniform, so secondary heating conditions based on the results of secondary heating become extremely complicated, and implementation thereof is very difficult in actual operation.

特公昭58−15554号では、めっき表面の鉄濃度を
飛躍的に高めなので、耐クレータリング性は改善される
が、溶融亜鉛めっき後の熱処理によって合金化を完結さ
せているので、特公昭59−14541号と同様に合金
化の不均一さの問題があり、加えてめっき皮膜内での鉄
濃度勾配が大きくなり、鉄濃度の高くなる鋼素地との界
面では「相が成長してしまう。又、急熱急冷による熱応
力も耐パウダリング性にとっては好ましくない このように、耐パウダリング性、耐クレータリング性を
満たすべく工夫がなされてきたが、未だ両特性を共に満
足させる溶融亜鉛めっき鋼板は得られていない。
In Japanese Patent Publication No. 58-15554, the iron concentration on the plating surface is dramatically increased, which improves the cratering resistance, but since alloying is completed by heat treatment after hot-dip galvanizing, Similar to No. 14541, there is the problem of non-uniform alloying, and in addition, the iron concentration gradient within the plating film becomes large, resulting in phase growth at the interface with the steel base where the iron concentration is high. Thermal stress caused by rapid heating and cooling is also unfavorable for powdering resistance.Thus, efforts have been made to satisfy powdering resistance and cratering resistance, but there is still no hot-dip galvanized steel sheet that satisfies both properties. has not been obtained.

この問題を解決するために、この発明はなされたもので
、耐食性に加えて耐パウダリング性と耐クレータリング
性とを共に満たすめっき鋼板とその製造法を提供するこ
とを目的とするものである。
In order to solve this problem, this invention was made, and the object is to provide a plated steel sheet that satisfies both powdering resistance and cratering resistance in addition to corrosion resistance, and a method for manufacturing the same. .

[課題を解決するための手段及び作用]この目的を達成
するための手段は、鋼板の少なくとも片面に、付着量が
0.5g/♂以上10g / m”以下で、鉄含有率が
40wt%以上のFeZn合金層の外層部と、付着量が
30 g / m”以上90 g / m2以下で、厚
さ0,5μmの鋼素地との境界層を除いてδ、相とζ相
からなる合金化亜鉛の内層部と、それらの両層部が境界
において相互に熱拡散されて一体構造を形成し、且つ鉄
含有率の分布が面方向に均一であるめっき皮膜を有する
合金化溶融亜鉛めっき鋼板である。
[Means and effects for solving the problem] The means for achieving this purpose is to coat at least one side of the steel plate with an adhesion amount of 0.5 g/♂ or more and 10 g/m” or less, and an iron content of 40 wt% or more. Alloying consisting of δ, phase and ζ phase, except for the boundary layer between the outer layer of the FeZn alloy layer and the steel substrate with a coating weight of 30 g/m" or more and 90 g/m2 or less and a thickness of 0.5 μm. An alloyed hot-dip galvanized steel sheet that has an inner layer of zinc and a plating film in which both layers are thermally diffused to each other at the boundary to form an integral structure, and the distribution of iron content is uniform in the surface direction. be.

上記合金化溶融亜鉛めっき鋼板を製造する方法としては
次のものがある。
The method for manufacturing the above-mentioned alloyed hot-dip galvanized steel sheet includes the following.

一つの方法は次のようである。One method is as follows.

(イ)通常の前処理を施した鋼帯をAg3,05wt%
以上0.3wt%以下、且つPb0.2wt%以下を含
有する溶融亜鉛めっき浴に浸漬して30g/m′″以上
90 g/m”以下のめっきを施す工程、(ロ)めっき
皮膜が溶融状態であるうちにスパングルの微細化処理を
施す工程、 (ハ)めっき皮膜が固化した後スキンパス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)この溶融亜鉛めっき鋼帯の片面又は両面に0.5
g/m”以上10 g / rn”以下のFe30wt
%以上のFe−Zn合金めっきを施す工程、(ホ)前記
工程でめっきを施した鋼帯を非酸化性又は還元性雰囲気
に維持したバッチ式焼鈍炉内でオーブンコイルの状態で
320℃以上亜鉛の融点以下の範囲内の温度で10分か
ら50時間加熱する工程を含む合金化溶融亜鉛めっき鋼
板を製造する方法である。
(b) Steel strip subjected to normal pretreatment with Ag3.05wt%
A step of applying plating of 30 g/m'' to 90 g/m'' by immersing it in a hot-dip galvanizing bath containing Pb of 0.3 wt% or less and Pb of 0.2 wt% or less, (b) The plating film is in a molten state. (c) Performing a skin pass treatment after the plating film has solidified,
A step of smoothing the surface of the hot-dip galvanized film;
g/m" or more and 10 g/rn" or less Fe30wt
% or more of Fe-Zn alloy plating, (e) the steel strip plated in the above step is heated at 320°C or higher in an oven coil state in a batch annealing furnace maintained in a non-oxidizing or reducing atmosphere. This is a method for producing an alloyed hot-dip galvanized steel sheet, which includes a step of heating at a temperature within the range of melting point or lower for 10 minutes to 50 hours.

他の方法は次のようである。Another method is as follows.

前記(イ)の溶融亜鉛めっき工程の後、めっき皮膜が溶
融状態であるうちに鋼帯の片面又は両面にFe30wt
%以上のFe−Zn合金パウダーを吹き付けてQ、5g
/m”以上10g/m”以下の上層めっきを施す工程を
含み、その後前記(ハ)、(ニ)、(ホ)の工程を含む
合金化溶融亜鉛めっき鋼板を製造する方法である。
After the hot-dip galvanizing process in (a) above, 30wt of Fe is applied to one or both sides of the steel strip while the plating film is in a molten state.
Q, 5g by spraying Fe-Zn alloy powder of % or more
This is a method for manufacturing an alloyed hot-dip galvanized steel sheet, which includes a step of applying an upper layer plating of at least 10 g/m'' and then steps (c), (d), and (e).

以上の手段について、以下にその作用も含め、詳しく述
べる。
The above means will be described in detail below, including their effects.

先ず、めっき用の鋼帯は冷延鋼帯でも熱延鋼帯でもよく
、通常の前処理として表面調整とともに焼鈍処理を施し
てもよい。
First, the steel strip for plating may be a cold-rolled steel strip or a hot-rolled steel strip, and may be subjected to surface conditioning and annealing treatment as a normal pretreatment.

めっき皮膜外層部の鉄含有率を50vt%以上とすると
、電着塗装時のクレータ発生が防止される。即ち、合金
化溶融亜鉛めっき鋼板は、めっき面に燐酸塩処理を施し
た後カチオン電着塗装が施されるが、この化成処理によ
って生成される燐酸塩結晶に、Feを含むホスホフィラ
イト[Zn2 F e (PO4)2  ・4 H20
]と称する粒状で緻密な結晶と、Feを含まないホパイ
ト[Zn5(POa)z ・4H20]と称する粗大な
針状結晶とがある。クレータ発生原因の一つに化成処理
皮膜欠陥部への局所的な電流集中が考えられるが、ホス
ホフィライトで形成さる皮膜はホパイトのそれより緻密
で欠陥部が少ない。したがって、ホスホフィライトが生
成し易いようにめっき面上で十分なFeを供給してやれ
ば、クレータは生じにくくなる。めっき表面の鉄含有率
が高くなり40wt%近くになるとクレータの発生は急
激に減少する。
When the iron content of the outer layer of the plating film is 50 vt% or more, the generation of craters during electrodeposition coating is prevented. In other words, alloyed hot-dip galvanized steel sheets are subjected to cationic electrodeposition coating after phosphate treatment on the plated surface, but phosphophyllite [Zn2] containing Fe is added to the phosphate crystals produced by this chemical conversion treatment. F e (PO4)2 ・4 H20
] and coarse acicular crystals called hopite [Zn5(POa)z 4H20] which does not contain Fe. One of the causes of cratering is thought to be local concentration of current at defective areas in the chemical conversion coating, but the coating formed with phosphophyllite is denser than that of hopite and has fewer defects. Therefore, if enough Fe is supplied on the plating surface to facilitate the formation of phosphophyllite, craters will be less likely to occur. When the iron content on the plating surface becomes high and approaches 40 wt%, the occurrence of craters rapidly decreases.

外層部は付着量が0.5g/yn”から10g7m”で
あることが必要である。0.5g/m2未満ではめっき
面全体にわたって十分にFeを供給することが出来ない
、町た1 0 g / m2を超えて付着した場合には
その効果が飽和し、コスト的に不利になるばかりでなく
、塗装後耐食性においても赤錆が発生し易くなる。
The outer layer needs to have a coating weight of 0.5 g/yn" to 10 g/7 m". If it is less than 0.5 g/m2, it will not be possible to sufficiently supply Fe to the entire plating surface, and if it is deposited in excess of 10 g/m2, the effect will be saturated and it will only become disadvantageous in terms of cost. Moreover, red rust is more likely to occur in corrosion resistance after painting.

合金化溶融亜鉛めっき鋼板の場合、めっき付着量と皮膜
中の鉄含有率によって耐食性の殆どが決定される。
In the case of alloyed hot-dip galvanized steel sheets, the corrosion resistance is mostly determined by the coating weight and the iron content in the coating.

内層部は30 g / m2から90 g / rnz
の付着量が高耐食化のために適当であり、この場合外層
部のように高い鉄含有率は必要でなく5wt%〜20w
t%の範囲が好ましい。なお90 g / m”を超え
た場合には過剰品質となるばかりか、後の工程の低温で
行う合金化処理において長時間を要し生産性を低下させ
る。又、一般にめっき皮膜が厚くなると加工時に皮膜の
破壊や剥離が起こることがあり、合金化溶融亜鉛めっき
鋼板の場合ではパウダリングが起こり易くなる。
Inner layer from 30 g/m2 to 90 g/rnz
The amount of iron deposited is appropriate for high corrosion resistance.
A range of t% is preferred. If it exceeds 90 g/m", not only will it result in excessive quality, but it will also take a long time in the subsequent alloying process at a low temperature, reducing productivity. In addition, in general, the thicker the plating film, the harder it is to process. Occasionally, the coating may break or peel, and in the case of alloyed hot-dip galvanized steel sheets, powdering is likely to occur.

本発明では前記した外層部と内層部の境界層が相互に熱
拡散されて形成した一体構造を有することが重要である
。熱拡散された一体構造によって外層部と内層部の鉄濃
度が連続して変化した状態を形成し、めっき皮膜の大半
を占める内層部の材質を、厚さ0.5μmの鋼素地との
境界を除いて、硬くて脆い「相を含ますδ、相とζ相と
からなるものにし、且つ鉄含有率の分布が面方向に均一
である。このような内層部の材質によってパウダリング
を防止することが出来る。「相は内層部と鋼素地との境
界層に生成するが、この「相が検出されないめっき皮膜
は耐パウダリング性が良好である。そしてF相が0.5
μm以上の厚さに成長していないと検出することは困難
である。加工性や塗装後耐食性にとってめっき皮膜中の
鉄含有率は重要な意味を持ち、これがめつき面全体にわ
たって均一に制御されてこそ、これらの特性が十分に発
揮される。この構造によってめっき皮膜は機械的性質や
電気化学的性質が隣接した部分で極端に異なることが無
く、加工性及び耐食性において優れたものとなる。
In the present invention, it is important that the boundary layer between the outer layer and the inner layer has an integral structure formed by mutual thermal diffusion. The thermally diffused integrated structure creates a state in which the iron concentration of the outer layer and inner layer changes continuously, and the material of the inner layer, which makes up the majority of the plating film, is separated from the 0.5 μm thick steel base. The material of the inner layer is made to consist of hard and brittle "δ", "ζ" and "ζ" phases, and the distribution of iron content is uniform in the surface direction. Powdering is prevented by the material of the inner layer. The "phase" is generated in the boundary layer between the inner layer and the steel base, but the plating film in which this "phase is not detected has good powdering resistance.
It is difficult to detect unless it has grown to a thickness of μm or more. The iron content in the plating film has an important meaning in terms of processability and post-painting corrosion resistance, and these properties can only be fully demonstrated if this content is uniformly controlled over the entire plated surface. Due to this structure, the mechanical properties and electrochemical properties of the plated film do not differ significantly between adjacent parts, and the plated film has excellent workability and corrosion resistance.

本発明の合金化溶融亜鉛めっき鋼板は用途によっては他
面にめっき皮膜がなくても、あってもよい。
The alloyed hot-dip galvanized steel sheet of the present invention may or may not have a plating film on the other side depending on the use.

以下に、本発明の製造方法について述べる。The manufacturing method of the present invention will be described below.

溶融亜鉛めっき浴には通常、Fe−Zn合金反応の抑制
やめっき面の平滑化等のためAρが0.2%前後添加さ
れており、スパングル調整のためpbが含まれている。
A hot-dip galvanizing bath usually contains around 0.2% Aρ for suppressing Fe-Zn alloy reactions and smoothing the plated surface, and also contains PB for spangle adjustment.

このうちAρは合金化抑制効果を持つので、0.05w
t%以上添加し、溶融亜鉛めっき浴浸漬後のFe−Zn
合金が部分的且つ不均一に生成することを防ぐ。この工
程で不均一にFe−Zn合金を生成させないことは重要
なことであり、−旦不均−化すると後の工程で修正する
ことが出来ない。A、Rの添加量が多過ぎて0.3wt
%を超えると合金化の抑制効果が過剰となり、後の合金
化処理に時間が掛かり過ぎ工業的には不適切になる。p
bは合金化反応には直接関与しないが、多量のpbは耐
パウダリング性を低下させるので、0.2wt%以下に
制限しなければならない。
Among these, Aρ has the effect of suppressing alloying, so 0.05w
Fe-Zn after addition of t% or more and immersed in hot-dip galvanizing bath
Prevents partial and non-uniform formation of alloy. It is important that the Fe--Zn alloy is not formed non-uniformly in this process, and once it becomes non-uniform, it cannot be corrected in subsequent steps. The amount of A and R added is too large, 0.3wt.
If it exceeds %, the effect of suppressing alloying becomes excessive, and the subsequent alloying treatment takes too much time, making it unsuitable for industrial use. p
Although b does not directly participate in the alloying reaction, a large amount of pb reduces powdering resistance, so it must be limited to 0.2 wt% or less.

この溶融亜鉛めっき皮膜が溶融状態であるうちにスパン
グルを微細化し、更にめっき皮膜が固化した後スキンパ
ス処理を行うことによって平滑なめっき面が得られ、こ
の後に施す上層めっきの被覆率が向上する。その結果、
耐クレータリング性を効率的に向上させることができる
と共に、塗装後の鮮映性を得ることもできる。スキンパ
スは伸長率0.3%以上で行うとめつき面は平滑となる
が、伸長率が大き過ぎて5%を超えると、一般的薄板用
鋼材では加工性に影響するおそれがある。
By refining the spangles while the hot-dip galvanized film is in a molten state and further performing a skin pass treatment after the galvanized film has solidified, a smooth plated surface is obtained, and the coverage of the subsequent upper layer plating is improved. the result,
Not only can the cratering resistance be efficiently improved, but also the sharpness after painting can be obtained. If the skin pass is performed at an elongation rate of 0.3% or more, the mating surface will be smooth, but if the elongation rate is too large and exceeds 5%, the workability of general steel materials for thin plates may be affected.

鉄含有率40wt%以上のFe−Zn合金めつきは、耐
クレータリング性を確保すると共に、この後の加熱処理
において、先に施した溶融亜鉛めっき層へ鋼素地とは反
対面からFeを拡散させその結果めっき皮膜内層部の鉄
濃度勾配を小さく押さえることになる。上記合金めっき
の処理方法は、亜鉛の融点より高い温度で処理する方法
でなければ、電気めっき、蒸着めっき、溶射等どのよう
な方法でもよい。この合金めっき処理を合金パウダー吹
き付けで行うときは、先の溶融亜鉛めっき層が溶融状態
のうちに行うとスパングルの微細化も同時に行われ、工
程を一つ省くことが出来る。
Fe-Zn alloy plating with an iron content of 40 wt% or more not only ensures cratering resistance, but also allows Fe to be diffused into the previously applied hot-dip galvanized layer from the opposite side of the steel base during subsequent heat treatment. As a result, the iron concentration gradient in the inner layer of the plating film can be kept small. The processing method for the alloy plating may be any method such as electroplating, vapor deposition plating, thermal spraying, etc., as long as the processing is not performed at a temperature higher than the melting point of zinc. When this alloy plating treatment is performed by spraying alloy powder, if it is performed while the previous hot-dip galvanized layer is in a molten state, the spangles will be made finer at the same time, and one step can be omitted.

上記した二度のめつき工程を経ためつき鋼帯を加熱処理
するが、非酸化性又は還元性雰囲気で行うのは表面の酸
化を防ぎ、塗装前の化成処理において化成皮膜結晶が不
均一になることを避けるためであり、バッチ式焼鈍炉内
で行うのは低温で時間を掛けて処理するからである。オ
ーブンコイルの状態で加熱するのは、均一に加熱するこ
とによって合金化にむらが生ずることを防止すると同時
にめっき面同士が付着して欠陥が発生することを防ぐた
めである。タイトコイルの状態では、温度分布が不均一
となり、部分的に合金化速度の大きい部分と小さい部分
とができてしまう。特に、鋼帯長手方向にこの不均一が
生じ、高品質製品は得られ難い。加熱は低温で行うが、
320℃以上の温度は必要である。320℃未満では塗
装後耐食性を確保するに足る合金化度を得るのに時間が
掛かり過ぎる。温度を亜鉛の融点<419.5℃)より
も高くすると、合金化が急速に進む箇所が現れ又F相の
生成も無視できなくなる。更にオーブンコイルの鋼帯間
に挿入するスペーサーがめつき面に痕跡を残すおそれも
出てくる。第1図は上記の温度範囲で、パウダリングと
クレータの両者が共に発生しない条件を調べたもので、
横軸は加熱時間縦軸は加熱温度である。図で、点a、b
、c。
The plated steel strip that has gone through the above-mentioned two plating processes is heat treated, but doing so in a non-oxidizing or reducing atmosphere prevents surface oxidation and prevents the chemical conversion coating crystals from forming unevenly during the chemical conversion treatment before painting. This is to avoid such problems, and the reason why the process is carried out in a batch type annealing furnace is because the process is carried out at a low temperature over a long period of time. The purpose of heating with an oven coil is to prevent unevenness in alloying by uniformly heating, and at the same time to prevent the plating surfaces from adhering to each other and causing defects. In a tight coil state, the temperature distribution becomes non-uniform, and there are parts where the alloying rate is high and parts where the alloying rate is low. In particular, this non-uniformity occurs in the longitudinal direction of the steel strip, making it difficult to obtain a high quality product. Heating is done at a low temperature, but
A temperature of 320° C. or higher is necessary. If the temperature is lower than 320°C, it takes too much time to obtain a degree of alloying sufficient to ensure corrosion resistance after painting. When the temperature is made higher than the melting point of zinc (<419.5° C.), there appear locations where alloying progresses rapidly and the formation of F phase cannot be ignored. Furthermore, there is a risk that the spacer inserted between the steel strips of the oven coil may leave marks on the plating surface. Figure 1 shows the conditions under which both powdering and cratering do not occur within the above temperature range.
The horizontal axis represents heating time and the vertical axis represents heating temperature. In the figure, points a and b
,c.

dを結ぶ線で囲まれた範囲が、パウダリング及びクレー
タを発生させない実操業上好ましい条件範囲で、加熱時
間については、a点の時間座標からC点の時間座標まで
、即ち、10分以上50時間以下となる。以上の加熱条
件で熱処理を行うと、Feは鋼素地側からと外層めっき
側とから拡散するので、鋼索地側に大きなFe濃度勾配
が出来ずに適正な合金化が達成される。このため、「相
は実質的に生成せずδ1相とζ相とのみからなるめっき
皮膜が得られる。そして、このめっき皮膜は、急速な高
温加熱を避けているので、面に沿っても均一となる。又
、鉄含有率も5wt%から20wt%の範囲に収まる。
The range surrounded by the line connecting d is the preferred range of conditions for actual operation that does not cause powdering or cratering, and the heating time is from the time coordinate of point A to the time coordinate of point C, that is, 10 minutes or more. It will take less than an hour. When the heat treatment is performed under the above heating conditions, Fe diffuses from the steel base side and the outer layer plating side, so that appropriate alloying is achieved without creating a large Fe concentration gradient on the steel cable base side. As a result, a plating film consisting only of the δ1 phase and ζ phase is obtained, with virtually no phase formation.And since rapid high-temperature heating is avoided, this plating film is uniform even along the surface. In addition, the iron content falls within the range of 5 wt% to 20 wt%.

しかし、実操業時に起こりがちな条件のバラツキ等を考
えると特に好ましいのは、加熱温度が320℃から38
0℃まで、加熱時間が30分から10時間までである。
However, considering the variations in conditions that tend to occur during actual operation, it is particularly preferable that the heating temperature is between 320°C and 38°C.
The heating time is 30 minutes to 10 hours to 0°C.

この場=18 合めっき皮膜の鉄含有率は5wt%から14Wし%の範
囲に収まる。更に、この熱処理によって、外層部と内層
部はFe−Znの熱拡散によって一体構造となる。
In this case = 18 The iron content of the composite plating film falls within the range of 5wt% to 14W%. Further, by this heat treatment, the outer layer portion and the inner layer portion become an integral structure due to thermal diffusion of Fe-Zn.

[実施例] 一種類の鋼販を使用し、溶融亜鉛めっき条件、上層めっ
き条件及び合金化処理条件を変えて処理した17例(実
施例)の合金化溶融亜鉛めっき鋼板について、めっき皮
膜中の鉄含有率を調べ、パウダリング試験及びクレータ
リング試験を行って評価した。なお比較のために、この
発明の範囲外の条件で処理した6例(比較例)及び従来
技術による3例(従来例)についても同様に調べな。条
件の詳細は以下の通りである。
[Example] Regarding the alloyed hot-dip galvanized steel sheets of 17 examples (Examples) that were treated using one type of steel and changing the hot-dip galvanizing conditions, upper layer plating conditions, and alloying treatment conditions, the The iron content was investigated and evaluated by performing a powdering test and a cratering test. For comparison, 6 examples (comparative examples) treated under conditions outside the scope of the present invention and 3 examples (conventional examples) according to the prior art will also be examined in the same manner. Details of the conditions are as follows.

用いた鋼販は板厚0.8朋の冷延鋼販で、汎用されてい
る薄板用低炭素A、&キルド(素材A)及び高加工用で
パウダリングを起こし易いと云われている超低炭チタン
含有鋼(素材B)とである。
The steel used was cold-rolled steel with a plate thickness of 0.8 mm, including low carbon A, which is commonly used for thin plates, &killed (material A), and super, which is said to be prone to powdering due to high processing. It is a low carbon titanium containing steel (Material B).

各々の成分を第1表に示す。Table 1 shows each component.

第1表 (重量%) 溶融亜鉛めっきは、無酸化炉、還元加熱炉を備えた連続
式めっき設備で行い、めっき浴室後に設けられた気体絞
り装置によって付着量の調整を行い、つづいてミストス
プレィによりスパングルを微細化し、めっき層が冷却後
伸長率1.5%でスキンパスを行い表面を平滑にしな。
Table 1 (wt%) Hot-dip galvanizing is performed in a continuous plating facility equipped with a non-oxidizing furnace and a reduction heating furnace, and the coating amount is adjusted using a gas throttle device installed after the plating bath. After cooling the plating layer, perform a skin pass at an elongation rate of 1.5% to make the surface smooth.

Fe−Zn合金めっきには、電気めっき、プラズマ溶射
又はパウダースプレィの方法を用いたが、各々次の条件
で処理した。
Electroplating, plasma spraying, or powder spraying was used for Fe-Zn alloy plating, and each treatment was performed under the following conditions.

(1)電気めっき F e 2 S O4・7 H20380g / IZ
 n SO4・7 H2015〜150 g/ (IC
H3COONa        20g/lNa2S○
4          30 g / 1浴温    
           50℃陰極電流密度     
   50A/dm2(2)プラズマ溶射 プラズマガス             Ar溶射入熱
            20KW溶射距離     
       100+*m平均粉末粒径(Fe80%
)   約5μm粉末供給速度      、5g/w
in−dm2(3)パウダースプレィ 平均粉末粒径(Fe80%)   約5μm粉末供給速
度       3g/win・d m”めっき皮膜中
の鉄含有率は、グリムグロー放電発光分光分析によって
、めっき外層部及びめっき内層部とを調べた。
(1) Electroplating Fe 2 SO4 7 H20380g / IZ
n SO4・7 H2015~150 g/ (IC
H3COONa 20g/lNa2S○
4 30 g / 1 bath temperature
50℃ cathode current density
50A/dm2 (2) Plasma spraying Plasma gas Ar spraying heat input 20KW spraying distance
100+*m average powder particle size (Fe80%
) Approximately 5μm powder supply rate, 5g/w
in-dm2 (3) Powder spray Average powder particle size (Fe80%) Approximately 5 μm Powder supply rate 3 g/win・d m” The iron content in the plating film was determined by grim glow discharge emission spectroscopy. The inner layer was investigated.

耐パウダリング性は、曲率半径2龍で90度曲げた後、
曲げの内側に粘着テープを貼り付け、これを剥して、パ
ウダーがこの粘着テープに付着した状況を目視観察し、
点数付けて評価しな。評点の基準は、 1;全く付着無し、 2;極くわずかに付着、 3;わずかに付着、 4;少し付着、 5;かなり付着、 の五段階である。
Powdering resistance is determined after bending 90 degrees with a radius of curvature of 2.
Adhesive tape was pasted on the inside of the bend, peeled off, and visually observed to see if the powder had adhered to the adhesive tape.
Evaluate by giving points. The scoring criteria is on a five-point scale: 1: no adhesion, 2: very little adhesion, 3: slightly adhesion, 4: a little adhesion, 5: considerable adhesion.

耐クレータリング性は、めっき面に化成処理を施し、次
いで電着塗装を行い、このとき発生したクレータの数で
評価した。化成処理には市販されている浸漬型の燐酸塩
系処理剤を用いた。電着塗装にはやはり市販されている
カチオン電着塗料を用いたが、調合後−週間攪拌し、極
間距1114 CIで電着電圧300vを瞬時に印加し
て電着した。
Cratering resistance was evaluated by applying a chemical conversion treatment to the plated surface, followed by electrodeposition coating, and evaluating the number of craters generated at this time. A commercially available dipping type phosphate treatment agent was used for the chemical conversion treatment. For electrodeposition coating, a commercially available cationic electrodeposition paint was used, and after preparation, it was stirred for one week and electrodeposition was carried out by instantaneously applying an electrodeposition voltage of 300 V with an electrode spacing of 1114 CI.

これらの例の各々の処理条件と調査結果を第2表に示す
The processing conditions and investigation results for each of these examples are shown in Table 2.

実施例では、素材Bでも耐パウダリング性に劣るものは
なく、限界付着量に近い実施例Na 6及び限界加熱時
間に近い実施例N[Ll7とで、掻く僅かにパウダリン
グが認められたが、実用上は問題がない。耐クレータリ
ング性では、上層部の鉄含有率が限界近い実施例 No
、 11 、 N[L L 2 、 N113で1個内
至2個の小さなりレータが発見されたが、これも実用上
は問題ない。このように、実施例では全ての合金化溶融
亜鉛めっき鋼板が耐パウダリング性と耐クレータリング
性とを兼ね備えている。又、内層の鉄含有率も5.5w
t%から13wt%の範囲内にあり、塗装後耐食性を十
分に確保するものである。
In the examples, there was no inferiority in powdering resistance even with material B, and slight powdering was observed in Example Na 6, which was close to the limit adhesion amount, and Example N [Ll7, which was close to the limit heating time. , there is no problem in practical use. In terms of cratering resistance, the iron content in the upper layer is close to the limit Example No.
, 11 , N[L L 2 , N113, one to two small lators were found, but this also poses no problem in practice. In this way, all the alloyed hot-dip galvanized steel sheets in the examples have both powdering resistance and cratering resistance. Also, the iron content of the inner layer is 5.5w.
The content is within the range of t% to 13wt%, which ensures sufficient corrosion resistance after painting.

一方、発明の範囲から外れた条件で処理された比較例で
は、浴中Aβの無い比較例Nα1、加熱時間過剰の比較
例No、2−洛中pbの多い比較例N113.付着量の
多すぎる比較例N[L4、上層部の無い比較例No、 
5 、加熱温度の高過ぎる比較例N[L6等耐パウダリ
ング性か耐クレータリング性の何れかに問題がある。
On the other hand, in the comparative examples treated under conditions outside the scope of the invention, there is Comparative Example Nα1 with no Aβ in the bath, Comparative Example No. 2 with excessive heating time, and Comparative Example N113 with a large amount of Pb in the bath. Comparative example No. with too much adhesion [L4, comparative example No. without upper layer,
5. Comparative Example N where the heating temperature was too high [L6, etc.] There is a problem in either powdering resistance or cratering resistance.

従来例では、従来例N[Llは急速昇温高温加熱のみに
より合金化したもので両特性に問題があり、従来例阻2
は急速昇温高温加熱の後低温で合金化調整したもので耐
クレータリングが劣り、従来例NQ、3は急速昇温高温
加熱によって合金化しその上に鉄含有率の高いめっき層
を付したもので、耐パウダリング性に劣る。このように
、両特性が同時には満足されていない。
In the conventional example, Conventional Example N
The conventional examples NQ and 3 are alloyed by rapid heating at high temperature and then alloyed at low temperature, and have inferior cratering resistance, while conventional examples NQ and 3 are alloyed by rapid heating at high temperature and then have a plating layer with a high iron content on top. and has poor powdering resistance. In this way, both characteristics are not satisfied at the same time.

次に本発明によるめっき皮膜の内層部の鉄含有率分布を
調べた。
Next, the iron content distribution in the inner layer of the plating film according to the present invention was investigated.

ここでは実施例N[Ll4の合金化溶融亜鉛めっきコイ
ル(幅800mm)の幅方向について、200龍間隔で
めっき内層部の鉄含有率を調べた。この場合従来例N1
L2と比較した。この結果を第2図に示す。図において
横軸はコイル左端からの距離、縦軸は鉄含有率であり、
O印は実施例Na14をプロットしたものであり、・印
は従来例慮2をプロットしたものである。図から明らか
なように実施例慮14の鉄含有率は平均9.7wt%で
あり、全ての測定点が9.5wt%から9.9wt%の
間に分布していた。これに対して従来例Nα2の鉄含有
率は平均8.3wt%であり、全ての測定点が7.9w
t%から9.OwL%の間に分布しバラツキが大きかっ
た。
Here, in the width direction of the alloyed hot-dip galvanized coil (width 800 mm) of Example N [L14], the iron content of the inner layer of the plating was investigated at 200-meter intervals. In this case, conventional example N1
Compared with L2. The results are shown in FIG. In the figure, the horizontal axis is the distance from the left end of the coil, and the vertical axis is the iron content.
The O mark is a plot of Example Na14, and the * mark is a plot of Conventional Example 2. As is clear from the figure, the average iron content of Example No. 14 was 9.7 wt%, and all measurement points were distributed between 9.5 wt% and 9.9 wt%. On the other hand, the average iron content of conventional example Nα2 is 8.3 wt%, and all measurement points are 7.9 wt%.
t% to 9. It was distributed between OwL% and had a large variation.

更にめっき皮膜の底部に「相が存在しているが否かにつ
いて、実施例No、2からNa 17迄の合金化溶融亜
鉛めっき処理を施した試料について、上層約三分の二を
取り除きX線回折を行った結果、何れの試料についても
1゛相は検出されなかった。
Furthermore, to determine whether or not a phase exists at the bottom of the plating film, approximately two-thirds of the upper layer was removed from the samples subjected to the alloying hot-dip galvanizing treatment from Example No. 2 to Na 17. As a result of diffraction, no 1° phase was detected in any of the samples.

[発明の効果] 本発明のめっき鋼板は、めっき皮膜中に「相が実質的に
存在せず、鉄含有率が高い外層部と内層部とが一体構造
になっており、・しがも鉄含有率の分布が面方向に均一
な皮膜を持−)でいるので、十分な耐食性に加えて優れ
た耐パウダリング性と耐クレータリンク性とを共に有し
ており、また本発明の方法は上記めっき鋼板を簡単な工
程で容易に製造出来るので産業上効果の大きい発明であ
る。
[Effects of the invention] The plated steel sheet of the present invention has substantially no phase in the plating film, and has an integral structure of an outer layer portion and an inner layer portion with a high iron content. Since the film has a uniform content distribution in the surface direction, it has not only sufficient corrosion resistance but also excellent powdering resistance and crater link resistance. This invention is industrially very effective because the plated steel sheet described above can be easily manufactured through a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための熱処理条件と
特性適正との関係を示す図、第2図は本発明の一実施例
の鉄含有率の分布を示す図である。
FIG. 1 is a diagram showing the relationship between heat treatment conditions and appropriate characteristics for detailed explanation of the present invention, and FIG. 2 is a diagram showing the distribution of iron content in one embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)鋼板の少なくとも片面に、付着量が0.5g/m
^2以上10g/m^2以下で鉄含有率が40wt%以
上のFe−Zn合金層の外層部と、付着量が30g/m
^2以上90g/m^2以下で厚さ0.5μmの鋼素地
との境界層を除いてδ_1相とζ相からなる合金化亜鉛
の内層部と、それらの両層部が境界において相互に熱拡
散されて一体構造を形成し、且つ鉄含有率の分布が面方
向に均一であるめっき皮膜を有することを特徴とする加
工性、塗装性に優れた合金化溶融亜鉛めっき鋼板。
(1) At least one side of the steel plate has an adhesion amount of 0.5 g/m
The outer layer of the Fe-Zn alloy layer has an iron content of 40 wt% or more with a thickness of ^2 or more and 10 g/m or less, and an adhesion amount of 30 g/m
The inner layer of alloyed zinc consisting of the δ_1 phase and the ζ phase, except for the boundary layer with the steel substrate with a thickness of 0.5 μm and ^2 or more and 90 g/m^2 or less, and those two layers mutually at the boundary. An alloyed hot-dip galvanized steel sheet with excellent workability and paintability, characterized by having a plating film that forms an integral structure through heat diffusion and has a uniform distribution of iron content in the surface direction.
(2)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼帯をAl0.05wt%
以上0.3wt%以下、且つPb0.2wt%以下を含
有する溶融亜鉛めっき浴に浸漬して、30g/m^2以
上90g/m^2以下のめっきを施す工程、 (ロ)めっき皮膜が溶融状態であるうちにスパングルの
微細化処理を施す工程、 (ハ)めっき皮膜が固化した後スキンパス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)この溶融亜鉛めっき鋼帯の片面又は両面に0.5
g/m^2以上10g/m^2以下のFe50wt%以
上のFe−Zn合金めっきを施す工程、 (ホ)前記工程でめっきを施した鋼帯を非酸化性又は還
元性雰囲気に維持したバッチ式焼鈍炉内でオープンコイ
ルの状態で320℃以上亜鉛の融点以下の範囲内の温度
で10分から50時間加熱する工程。
(2) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, the method comprising the following steps. (b) Steel strip subjected to normal pretreatment with Al0.05wt%
A step of applying plating of 30 g/m^2 to 90 g/m^2 by immersing it in a hot-dip galvanizing bath containing Pb of 0.3 wt% or less and Pb of 0.2 wt% or less; (b) The plating film is melted. (c) Performing a skin pass treatment after the plating film has solidified,
A step of smoothing the surface of the hot-dip galvanized film;
A step of applying Fe-Zn alloy plating with Fe50wt% or more of g/m^2 or more and 10 g/m^2 or less, (e) A batch in which the steel strip plated in the above step is maintained in a non-oxidizing or reducing atmosphere. A process of heating an open coil in a type annealing furnace at a temperature of 320°C or higher and lower than the melting point of zinc for 10 minutes to 50 hours.
(3)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼帯をAl0.05wt%
以上0.3wt%以下、且つPb0.2wt%以下を含
有する溶融亜鉛めっき浴に浸漬して、30g/m^2以
上90g/m^2以下のめっきを施す工程、 (ロ)めっき皮膜が溶融状態であるうちに鋼帯の片面又
は両面にFe50wt%以上のFe−Zn合金パウダー
を吹き付けて0.5g/m^2以上10g/m^2以下
の上層めっきを施す工程、 (ハ)めっき皮膜が固化した後、スキンパス処理を行い
溶融亜鉛めっき皮膜の表面を平滑化する工程、 (ニ)前記工程で平滑化しためっき皮膜を有する鋼帯を
非酸化性又は還元性雰囲気に維持したバッチ式焼鈍炉内
でオープンコイルの状態で320℃以上亜鉛の融点以下
の範囲内の温度で10分から50時間加熱する工程。
(3) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, the method comprising the following steps. (b) Steel strip subjected to normal pretreatment with Al0.05wt%
A step of applying plating of 30 g/m^2 to 90 g/m^2 by immersing it in a hot-dip galvanizing bath containing Pb of 0.3 wt% or less and Pb of 0.2 wt% or less; (b) The plating film is melted. A step of spraying Fe-Zn alloy powder containing 50 wt% or more of Fe on one or both sides of the steel strip while the steel strip is still in the condition to form an upper layer plating of 0.5 g/m^2 or more and 10 g/m^2 or less, (c) Plating film After solidification, a step of smoothing the surface of the hot-dip galvanized film by skin pass treatment; (d) batch annealing in which the steel strip with the galvanized film smoothed in the above step is maintained in a non-oxidizing or reducing atmosphere; A process of heating in an open coil in a furnace at a temperature within the range of 320°C or higher and lower than the melting point of zinc for 10 minutes to 50 hours.
JP22333388A 1988-09-06 1988-09-06 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same Expired - Fee Related JP2754590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22333388A JP2754590B2 (en) 1988-09-06 1988-09-06 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22333388A JP2754590B2 (en) 1988-09-06 1988-09-06 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0273953A true JPH0273953A (en) 1990-03-13
JP2754590B2 JP2754590B2 (en) 1998-05-20

Family

ID=16796513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22333388A Expired - Fee Related JP2754590B2 (en) 1988-09-06 1988-09-06 Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same

Country Status (1)

Country Link
JP (1) JP2754590B2 (en)

Also Published As

Publication number Publication date
JP2754590B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
JPH05331609A (en) Production of galvannealed steel sheet excellent in image clarity after coating
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JP2727598B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH0273953A (en) Alloying hot dip galvanized steel sheet excellent in workability and painting suitability and its production
JP2727595B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2754596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same
JPH02138481A (en) Production of alloyed hot dip galvanizing steel sheet having excellent workability and paintability
JP2727596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02145777A (en) Production of alloyed hot-dip galvanized steel sheet excellent in workability and suitability for coating
JP2727597B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02122082A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability
JPH02166261A (en) Manufacture of alloyed hot dip galvanized steel sheet excellent in workability and coating suitability
JPH02138482A (en) Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability
JPH02166264A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JPH02166265A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JP3643559B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JPH04276055A (en) Manufacture of differential galvannealed steel
JPH02166263A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JPH0128098B2 (en)
JPH02118089A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability
JP2792345B2 (en) Alloyed hot-dip galvanized steel sheet excellent in powdering resistance and outer surface suitability and method for producing the same
JP3367455B2 (en) Method for producing hot-dip coated steel sheet with uniform crystal pattern
JPH02133583A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees