JPH0273940A - Al alloy sheet for uncarbonated beverage can end - Google Patents

Al alloy sheet for uncarbonated beverage can end

Info

Publication number
JPH0273940A
JPH0273940A JP22607288A JP22607288A JPH0273940A JP H0273940 A JPH0273940 A JP H0273940A JP 22607288 A JP22607288 A JP 22607288A JP 22607288 A JP22607288 A JP 22607288A JP H0273940 A JPH0273940 A JP H0273940A
Authority
JP
Japan
Prior art keywords
bendability
alloy
carbonated
rolling
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22607288A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneda
豊 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22607288A priority Critical patent/JPH0273940A/en
Publication of JPH0273940A publication Critical patent/JPH0273940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve bendability and rivet workability by subjecting an Al alloy having a composition in which Mg is contained as an essential component and further respective contents of Si, Fe, Cu, Mn, Cr, etc., are specified to heat and rolling treatments under respectively prescribed conditions. CONSTITUTION:An alloy which has a composition consisting of, by weight, 3-4% Mg as an essential component and the balance Al or further containing, besides the above, one or more kinds among <=0.3% Si, <=0.4% Fe, <=0.2% Cu, <=0.5% Mn, <=0.25% Cr, <=0.3% Zn, <=0.15% Zr, and <=0.2% Ti is refined. An ingot of the above alloy is subjected to homogenizing heat treatment and then to hot rolling. Subsequently, the resulting plate is cold-rolled at >=80% draft and process-annealed to undergo grain size regulation to <=15mum. The above sheet is further process-annealed and then cold-rolled at 30-70% draft.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、果汁、コーヒー缶等の非炭酸缶用エンド材に
係り、更に詳しくは1曲げ性及びリベット加工性に優れ
た非炭酸缶エンド用Al合金板及びその製造方法に関す
るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an end material for non-carbonated cans such as fruit juice and coffee cans, and more particularly, to a non-carbonated can end material with excellent bendability and riveting property. The present invention relates to an aluminum alloy plate for use and a method for manufacturing the same.

(従来の技術及び解決しようとする課題)非炭酸缶とは
果汁、コーヒー飲料等、炭酸を含まない内容物が充填さ
れ、缶内部が負の圧力を受ける容器である。
(Prior Art and Problems to be Solved) A non-carbonated can is a container filled with contents that do not contain carbonic acid, such as fruit juice or coffee drinks, and whose interior is subjected to negative pressure.

従来より、非炭酸缶用エンド材としては、AA5052
等の成分を有するAl合金鋳塊を熱間圧延した後、比較
的高い圧延率で冷間圧延された材料が用いられている。
Conventionally, AA5052 has been used as an end material for non-carbonated cans.
After hot rolling an Al alloy ingot having the following components, a material is used that is cold rolled at a relatively high rolling rate.

一方、近年、非炭酸缶エンドの薄肉化に伴い、比較的強
度が高く、しかもエンド材の重要な特性である曲げ加工
性及びリベット加工性に優れた材料が要望されている。
On the other hand, in recent years, as non-carbonated can ends have become thinner, there has been a demand for materials that have relatively high strength and are excellent in bending workability and riveting workability, which are important properties of end materials.

すなわち、非炭酸缶は缶内部が負の圧力状態であるが、
内容物の殺菌処理(いわゆるレトルト処理)時には、缶
内部は加熱により2〜3kg/cm”の加圧を受け、エ
ンドの変形を防止するための適度な強度が必要である。
In other words, non-carbonated cans have negative pressure inside the can,
During sterilization of the contents (so-called retort processing), the inside of the can is heated and pressurized at 2 to 3 kg/cm'', and appropriate strength is required to prevent the end from deforming.

また、開缶時、エン1−は曲げ変形を受け、素材の曲げ
性が悪い場合にはクラックを生し、飲み口金面が開口さ
れない場合がある。更に、非炭酸缶エンド材の薄肉、高
強度化に伴いリベット加工性が低下するため、従来材に
比べ高強度で曲げ性及びリベット加工性に優れた非炭酸
缶エンド材が要望されているのである。
Moreover, when the can is opened, the en 1- is subjected to bending deformation, and if the bendability of the material is poor, cracks may occur and the spout surface may not open. Furthermore, as non-carbonated can end materials become thinner and stronger, their riveting properties deteriorate, so there is a demand for non-carbonated can end materials that have higher strength and better bendability and riveting properties than conventional materials. be.

しかし乍ら、従来の前記A A 5052で強度を向」
二させるためには、更に高冷間圧延する必要があるが、
高冷間圧延した場合には結晶粒が偏平伸長粒となり、曲
げ性及びリベット加工性の低下を招くという問題がある
However, the strength was improved with the conventional A A 5052.
In order to achieve this, it is necessary to perform further cold rolling.
When subjected to high cold rolling, the crystal grains become flat and elongated grains, which causes a problem of deterioration of bendability and riveting workability.

また、ビール、炭酸飲料缶等に用いられているAA50
82、AA5182等を非炭酸缶エンド材として用いた
場合には、高強度化には有効なものの、強度が高すぎる
ために曲げ性及びリベット加工性の低下を招くという問
題がある。更に、これらの合金材を用いた場合、仕上焼
鈍が必須となるが、仕上焼鈍は比較的高温(280℃程
度)で行なわれるため、圧延油の焼付を防止する目的で
通常は脱脂処理が必要となり、更には仕」二焼鈍温度の
範囲が狭く、また焼鈍温度の精度が重要となるため、焼
鈍設備も精度のよいものが必要となる等、従来材に比べ
て製造コストが高くなるという問題がある。
In addition, AA50, which is used for beer and carbonated drink cans, etc.
When non-carbonated can end materials such as No. 82 and AA5182 are used, although they are effective in increasing the strength, there is a problem that the strength is too high, leading to a decrease in bendability and riveting workability. Furthermore, when these alloy materials are used, final annealing is essential, but since final annealing is performed at a relatively high temperature (approximately 280°C), degreasing is usually required to prevent rolling oil from seizing. Moreover, since the range of annealing temperatures is narrow and the accuracy of annealing temperature is important, highly accurate annealing equipment is required, leading to higher manufacturing costs compared to conventional materials. There is.

例えば、米国特許筒3,502,448号明細書に開示
されている製造方法はビール、炭酸飲料缶エンド材に関
する従来法であり、仕上圧延率を85%以上とし、この
工程後に仕上焼鈍が施されるが、非炭酸缶用エンド材に
適用するためには更に高温での焼鈍が必要となる。
For example, the manufacturing method disclosed in U.S. Pat. However, in order to apply it to end materials for non-carbonated cans, annealing at a higher temperature is required.

また、特公昭62−9177公報にはキャン用Af1合
金板としてキャンボディー、エンド、タブが示されてい
るが、これは従来のAA5052に比べて強度が高すぎ
るため、曲げ性、リベット加工性の低下を招くという問
題があり、また、このようなキャン用Al合金材料に仕
上焼鈍を施すことにより曲げ性、リベット加工性の向上
が図れるが、製造コス1〜が高くほか、仕上焼鈍温度の
範囲が狭く、実用上困難である。
In addition, Japanese Patent Publication No. 62-9177 shows a can body, end, and tab as Af1 alloy plates for cans, but these have too much strength compared to the conventional AA5052, so they have poor bendability and riveting properties. Furthermore, by subjecting such aluminum alloy materials for cans to finish annealing, bendability and riveting workability can be improved, but the manufacturing cost is high and the finish annealing temperature range is high. is narrow and difficult in practice.

本発明は、上記従来技術の問題点を解決して前記要望に
応えるへくなされたものであって、特に曲げ性及びリベ
ット加工性に優れた非炭酸缶エンド用Al、合金板及び
その製造方法を提供することを目的とするものである。
The present invention has been made to solve the problems of the prior art described above and to meet the above-mentioned needs, and includes an aluminum and alloy plate for non-carbonated can ends having particularly excellent bendability and riveting workability, and a method for manufacturing the same. The purpose is to provide the following.

(課題を解決するための手段) 前記目的を達成するため、本発明者らは、現有材料を用
いて高強度にした場合の曲げ性及びリベット加工性の低
下について着目し、比較的低コストで高強度且つ曲げ性
及びリベット加工性に優れた非炭酸缶エンド用Al合余
材料の開発を目的として、鋭意研究を重ねた。
(Means for Solving the Problems) In order to achieve the above object, the present inventors focused on the decrease in bendability and riveting workability when high strength is achieved using existing materials, and developed a material that can be produced at a relatively low cost. We conducted extensive research with the aim of developing an Al alloy material for non-carbonated can ends that has high strength and excellent bendability and riveting workability.

まず、本発明者らが曲げ性及びリベット加工性について
調査した結果、結晶粒が小さいほどこれらの特性が優れ
、これは中間焼鈍前の圧延率に大きな影響を受けること
が判明した。更に、中間焼鈍後の圧延率を適度にコント
ロールすることにより、比較的高強度で曲げ性、リベッ
ト加工性に優れた異方性の小さな非炭酸缶エンド用材料
が仕上焼鈍なしで得られることを見い出した。そこで、
力いる知見に基づき化学成分を調整すると共に、特に冷
間圧延工程の条件を規制することにより、初期の目的が
達成可能であることを見い出し、ここに本発明をなした
ものである。
First, the present inventors investigated bendability and riveting property, and found that the smaller the crystal grains, the better these properties were, and that this was greatly affected by the rolling rate before intermediate annealing. Furthermore, by appropriately controlling the rolling rate after intermediate annealing, a non-carbonated can end material with relatively high strength, excellent bendability and riveting workability, and small anisotropy can be obtained without final annealing. I found it. Therefore,
We have discovered that the initial objective can be achieved by adjusting the chemical components based on our extensive knowledge and particularly regulating the conditions of the cold rolling process, and have hereby created the present invention.

すなわち、本発明は、Mg:3.0〜4.0%を必須成
分として含み、更に必要に応じてSi≦0.30%、F
e50.40%、Cu≦0.20%、Mn≦0.50%
、Cr≦0.25%、Zn≦0.30%、Zr≦0.1
5%及びTi≦0.20%のうちの1種又は2種以上を
含み、残部がAfl及び不可避的不純物からなることを
特徴とする曲げ性及びリベット加工性に優れた非炭酸缶
エンド用Al合金板を要旨とするものである。
That is, the present invention contains Mg: 3.0 to 4.0% as an essential component, and further contains Si≦0.30% and F as necessary.
e50.40%, Cu≦0.20%, Mn≦0.50%
, Cr≦0.25%, Zn≦0.30%, Zr≦0.1
5% and one or more of Ti≦0.20%, and the remainder is Afl and unavoidable impurities, and has excellent bendability and riveting property. The main subject is alloy plates.

また、その製造方法は、上記化学成分を有するAl金合
金鋳塊を均質化熱処理した後、熱間圧延を行ない、更に
80%以上で冷間圧延した後、中間焼鈍を行なって、そ
の圧延板表面から見た結晶粒度を15μm以下にし、更
に該中間焼鈍後、圧延率が30〜70%で冷間圧延する
ことを特徴とする曲げ性及びリベット加工性に優れた非
炭酸缶エン1−用Al合金板の製造方法を要旨とするも
のである。
In addition, the manufacturing method is to homogenize an Al gold alloy ingot having the above chemical composition, then hot-roll it, then cold-roll it at 80% or more, and then perform intermediate annealing to form a rolled plate. Non-carbonated can engine 1- with excellent bendability and rivet workability characterized by having a crystal grain size of 15 μm or less as seen from the surface and cold rolling at a rolling rate of 30 to 70% after the intermediate annealing. The gist of this paper is a method for manufacturing an Al alloy plate.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 先ず、本発明において用いるAl金合金化学成分の限定
理由について説明する。
(Function) First, the reasons for limiting the chemical components of the Al-gold alloy used in the present invention will be explained.

Mg: Mgは強度を付与する重要な元素であり、本発明では必
須成分とするものである。非炭酸缶用エンド材として少
なくとも、3.0%以上添加しないと強度が低く、使用
できない。しかし、過多に添加されると強度が高すぎる
ことによる成形性の低下を招くため、添加量の上限は4
.0%である。
Mg: Mg is an important element that imparts strength, and is an essential component in the present invention. Unless it is added at least 3.0% as an end material for non-carbonated cans, the strength will be low and it cannot be used. However, if too much is added, the strength will be too high and formability will deteriorate, so the upper limit of the amount added is 4.
.. It is 0%.

したがって、Mgの添加量は3.0〜4.0%の範囲と
する。
Therefore, the amount of Mg added is in the range of 3.0 to 4.0%.

本発明では、上記Mgを必須成分とするほか、以下の元
素の1種又は2種以上を必要に応じて含有させることが
できる。
In the present invention, in addition to the above-mentioned Mg as an essential component, one or more of the following elements may be included as necessary.

Fe: Feの添加は結晶粒微細化に大きな効果を示し、その添
加量が多い程微細化される。しかし、4゜0%を超えて
過多に添加されると結晶粒微細化には有効なものの、晶
出物生成の数が多くなり、曲げ性の低下を招く。したが
って、Feの添加量は0.40%以下とする。
Fe: The addition of Fe has a great effect on grain refinement, and the larger the amount added, the more refined the grains are. However, if it is added in excess of 4.0%, although it is effective for grain refinement, the number of crystallized substances produced increases, leading to a decrease in bendability. Therefore, the amount of Fe added is 0.40% or less.

Sj : Siの添加は、Feと同様、結晶粒微細化に効果を示す
ものの、0.30%を超えて過多に添加されると晶出物
の生成、特にMg2Siの晶出物が多く生成され、曲げ
性の低下を招く。゛したがって、Siの添加量は0.3
0%以下とする。
Sj: Like Fe, addition of Si is effective in refining crystal grains, but when added in excess of 0.30%, crystallized products, especially Mg2Si crystallized products, are generated in large quantities. , leading to a decrease in bendability.゛Therefore, the amount of Si added is 0.3
0% or less.

Cu: Cuの添加は強度向上に効果を示す。しかし、0.20
%を超えて過多に添加されると強度が高すぎることによ
る成形加工性の低下及び耐食性が劣化する。したがって
、Cuの添加量は0.20%以下とする。
Cu: Addition of Cu is effective in improving strength. However, 0.20
If it is added in excess of more than %, the strength will be too high, resulting in a decrease in moldability and corrosion resistance. Therefore, the amount of Cu added is 0.20% or less.

Mn、Cr: Mn、Crの添加は強度向上及び結晶粒微細化に大きな
効果を示す。しかし、過多に添加されると巨大品出物の
生成及び晶出物の生成の数が多くなり1曲げ性の低下を
招く。それぞれの上限はMnが0.50%、Crは0.
25%である。したがって、Mnは0.50%以下、C
rは0.25%以下とする。
Mn, Cr: Addition of Mn and Cr has a great effect on improving strength and refining grains. However, if it is added in excess, the number of large particles and crystallized substances will increase, resulting in a decrease in bendability. The respective upper limits are 0.50% for Mn and 0.50% for Cr.
It is 25%. Therefore, Mn is 0.50% or less, C
r is 0.25% or less.

Zn: Znの添加は曲げ性、張り出し性等の成形性を向上させ
、圧延板表面から見た(M n 、 F e) A Q
 6の金属間化合物の晶出物を小さくする効果がある、
しかし、0.30%を超えて過多に添加されると耐食性
の低下を招く。したがって、Znの添加量は0.30%
以下とする。
Zn: Addition of Zn improves formability such as bendability and stretchability, and improves the (M n , Fe) A Q seen from the rolled plate surface.
It has the effect of reducing the size of crystallized intermetallic compounds in No. 6.
However, if added in excess of more than 0.30%, corrosion resistance will deteriorate. Therefore, the amount of Zn added is 0.30%
The following shall apply.

Zr、Tiニ Zr及びTiは組織を安定化させるための有効な元素で
あるものの、その添加量が多いと巨大化合物を生成して
曲げ性を低下させる。それぞれの条件はZrが0.15
%、Tiが0.20%である。したがって、Zrは0.
15%以下、Tiは0.20%以下とする。
Zr and TiAlthough Zr and Ti are effective elements for stabilizing the structure, if they are added in large amounts, they form giant compounds and reduce bendability. Each condition is Zr is 0.15
%, and Ti is 0.20%. Therefore, Zr is 0.
15% or less, and Ti is 0.20% or less.

次に本発明の製造工程について説明する。Next, the manufacturing process of the present invention will be explained.

上記化学成分を有するAl金合金、常法により溶解、鋳
造され、鋳塊について均質化熱処理を施した後、熱間圧
延が行われる。
The Al-gold alloy having the above chemical components is melted and cast by a conventional method, and the ingot is subjected to homogenization heat treatment, followed by hot rolling.

熱間圧延後、冷間圧延を行なうが、本発明法では、以下
に示すように、中間焼鈍を含む冷間圧延工程を特定の条
件で行なうことが最も特徴としている。
After hot rolling, cold rolling is performed, and the method of the present invention is most characterized in that the cold rolling process including intermediate annealing is performed under specific conditions, as shown below.

中間焼鈍前の冷間圧延率は中間焼鈍後の結晶粒度に大き
な影響を及ぼす条件であり、圧延率が80%未満では中
間焼鈍後の結晶粒が大きく、後の製品厚での曲げ性、リ
ベット加工性が低下する。
The cold rolling rate before intermediate annealing is a condition that has a large effect on the grain size after intermediate annealing. If the rolling rate is less than 80%, the grain size after intermediate annealing will be large, resulting in poor bendability and rivet properties at the later product thickness. Processability decreases.

したがって、中間焼鈍前の圧延率は80%以」−とする
Therefore, the rolling ratio before intermediate annealing is set to 80% or more.

次いで中間焼鈍を行なうが、中間焼鈍後の結晶粒度は小
さい程、曲げ性及びリベット加工性に優れ、その圧延板
表面から見た結晶粒の大きさは15μII+以下が好ま
しい。したかって、中間焼鈍は力いる大きさの結晶粒が
得られるような条件で行なう。
Intermediate annealing is then performed, and the smaller the grain size after intermediate annealing, the better the bendability and riveting workability, and the grain size as seen from the surface of the rolled plate is preferably 15 μII+ or less. Therefore, the intermediate annealing is performed under conditions that will yield crystal grains of a reasonable size.

中間焼鈍後の冷間圧延での圧延率は強度、曲げ性、リベ
ット加工性及び異方性に影響する条件であり、圧延率が
30%未満では曲げ性、リベット性及び異方性に対し好
ましいものの、必要な強度が得られない。
The rolling ratio in cold rolling after intermediate annealing is a condition that affects strength, bendability, riveting property, and anisotropy, and a rolling ratio of less than 30% is preferable for bending property, riveting property, and anisotropy. However, the required strength cannot be obtained.

また、強度向上には圧延率の増大が有効なものの、圧延
率が70%を超えると強度が高すぎることによる曲げ性
、リベット加工性の低下を招くと共に異方性が大きくな
る。したがって、中間焼鈍後の冷間圧延率は30〜70
%の範囲とする。
Further, although increasing the rolling rate is effective for improving strength, if the rolling rate exceeds 70%, the strength is too high, leading to a decrease in bendability and riveting workability, and an increase in anisotropy. Therefore, the cold rolling rate after intermediate annealing is 30 to 70.
% range.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

矢−施−例」− 第1表に示す化学成分を有するへΩ合金の鋳塊に均質化
熱処理として500℃の温度で3時間保持の処理を施し
、その後熱間圧延にて板厚4mmとした。
Example: An ingot of Hemium alloy having the chemical composition shown in Table 1 was subjected to homogenization heat treatment at 500°C for 3 hours, and then hot rolled to a plate thickness of 4 mm. did.

次いで、冷間圧延により、14q1は1.25mm、H
a 2−1は0.55mm、Nn3は0.55mm、N
a41は0.33mm、Na4−2は1.25mmとし
た。また、Nα2−2は中間焼鈍前圧延率が50%とな
るよう、板厚1.1mmで一旦軟質化処理した後、更に
冷間圧延にて0.55mmとした。
Then, by cold rolling, 14q1 was reduced to 1.25 mm, H
a 2-1 is 0.55 mm, Nn3 is 0.55 mm, N
A41 was set to 0.33 mm, and Na4-2 was set to 1.25 mm. Further, Nα2-2 was once softened to a plate thickness of 1.1 mm so that the rolling reduction before intermediate annealing was 50%, and then further cold rolled to a thickness of 0.55 mm.

その後、CAL焼鈍(加熱冷却速度700℃/分、到達
温度450℃、保持時間2秒)を施し、更に冷間圧延に
て製品厚さ0.25mmとした。ここで、中間焼鈍時の
板厚が異なるのは強度を一定にするために調整したもの
であり、それぞれの中間焼鈍前圧延率及び中間焼鈍前圧
延率を第2表に示す。なお、No 4−2は製品厚に冷
間圧延した後、270″C,X2時間の仕上焼鈍を行な
った。
Thereafter, CAL annealing (heating/cooling rate 700° C./min, final temperature 450° C., holding time 2 seconds) was performed, and the product was further cold rolled to a thickness of 0.25 mm. Here, the difference in plate thickness during intermediate annealing was adjusted to keep the strength constant, and the respective rolling rates before intermediate annealing and rolling rates before intermediate annealing are shown in Table 2. In addition, after No. 4-2 was cold-rolled to the product thickness, finish annealing was performed at 270''C for 2 hours.

また、エンド材は塗装後成形加工されるため、200 
’CX 20分のベーキング処理を行ない、塗装した場
合と同じ条件とした。
In addition, since the end material is molded after painting, the
'CX Baking treatment was performed for 20 minutes under the same conditions as when painting.

製品板厚0.25mmのもののベーキング処理後の材料
特性(機械的性質、曲げ性、リベット張り出し高さ及び
結晶粒度)を第3表に示す。
Table 3 shows the material properties (mechanical properties, bendability, rivet protrusion height, and crystal grain size) of the product plate with a thickness of 0.25 mm after baking treatment.

なお、曲げ性は、O°力方向RDに直角方向)及び18
0°方向(RD力方向にそれぞれ180°密着曲げ試験
(第1図参照)を実施し、曲げ部のクラック発生程度に
応して判定し、◎(優)→O→△→×(劣)にて評価し
た。また、リベット張り出し高さは、第2図に示すよう
に、第3]二程目の限界張り出し高さh3(+++II
+)を求めて評価した。結晶粒度は中1711焼鈍後に
」q定した。
In addition, the bendability is 0° (direction perpendicular to the force direction RD) and 18
A 180° close bending test (see Figure 1) was conducted in the 0° direction (RD force direction), and judgment was made according to the degree of crack occurrence in the bent part. ◎ (Excellent) → O → △ → × (Poor) In addition, the rivet protrusion height was evaluated based on the 3rd] second limit protrusion height h3 (+++II
+) was calculated and evaluated. The grain size was determined after medium 1711 annealing.

第3表より、以下の如く考察される。From Table 3, the following considerations can be made.

本発明例のNn 2−1、Na 3は結晶粒度が小さく
、曲げ性及びリベット張り出し性に優れている。また適
切な高強度が得られている。
Nn 2-1 and Na 3 in the examples of the present invention have small crystal grain sizes and are excellent in bending properties and rivet extension properties. In addition, appropriate high strength was obtained.

しかし、比較例&4.−1は、前記本発明例と同様に結
晶粒度が小さく、曲げ性及びリベット張り出し性に優れ
るものの、中間焼鈍時の板厚が薄く、CA L #を鈍
の場合は通板性に問題を生じ、更に、中間焼鈍がバッチ
式の場合においては、表面性状に問題を生じ、実用上問
題がある。
However, comparative example &4. -1 has a small grain size and is excellent in bendability and rivet extension property as in the above-mentioned invention example, but the plate thickness during intermediate annealing is thin, and when the CA L # is dull, there is a problem in plate threadability. Furthermore, when intermediate annealing is performed in a batch manner, problems arise in surface properties, which is a practical problem.

比較例Nu ]は従来材(AA5052)であり、曲げ
性及びリベット張り出し性ともに劣り、比較例Na 2
−2は結晶粒度が大きく、曲げ性及びリベット張り出し
性が劣っている。また、比較例N04−2はAA508
2であって仕上焼鈍を施した例であり、曲げ性及びリベ
ット張出し性が劣ると共に、異方性が大きい。
Comparative Example Nu ] is a conventional material (AA5052), which is inferior in both bending properties and rivet extension properties, and Comparative Example Na 2
-2 has a large crystal grain size and is poor in bending properties and rivet extension properties. Moreover, comparative example N04-2 is AA508
This is an example of No. 2 in which finish annealing was performed, and the bendability and rivet extension property are poor, and the anisotropy is large.

【以下余白) 去11粗λ 実施例1で第1表の1Ja2及びNa 3に示した化学
成分(本発明範囲内)を有するAl合金の熱間圧延板に
ついて、冷間圧延にて1.00mm(A)、0.56 
mm+(B )及び0.33mm(C)とした後、CA
、 L焼鈍(条件:実施例1と同じ)を施し、その後冷
間圧延にて製品厚さ0.25mn+とした。上記A、B
及びCのそれぞれの中間焼鈍前の冷延率は75%、86
%、92%であり、中間焼鈍後の冷延率は75%、55
%、24%である。
[Left below is blank space] 11 Rough λ In Example 1, a hot rolled sheet of Al alloy having the chemical components shown in 1Ja2 and Na3 in Table 1 (within the scope of the present invention) was cold rolled to a thickness of 1.00 mm. (A), 0.56
After setting mm+(B) and 0.33mm(C), CA
, L annealing (conditions: the same as in Example 1) was performed, and then cold rolling was performed to give a product thickness of 0.25 mm+. A, B above
The cold rolling ratios before intermediate annealing of and C are 75% and 86
%, 92%, and the cold rolling rate after intermediate annealing is 75%, 55
%, 24%.

また、エンド材は塗装後成形加工されるため、実施例1
と同様、200℃X20分のベーキング処理を行ない、
塗装した場合と同じ条件とした。
In addition, since the end material is molded after painting, Example 1
Similarly, perform baking treatment at 200°C for 20 minutes,
The conditions were the same as when painting.

製品板厚0.25mmのもののベーキング処理後の材料
特性(機械的性質1曲げ性、リベット張り出し高さ及び
結晶粒度)を第4表に示す。なお、各特性の評価方法は
実施例1の場合と同様である。
Table 4 shows the material properties (mechanical properties 1: bendability, rivet protrusion height, and crystal grain size) of the product plate with a thickness of 0.25 mm after baking treatment. Note that the evaluation method for each characteristic is the same as in Example 1.

第4表中、Nα2−B及びNa 3−Bはそれぞれ実施
例1のNn 2−1、Nα3の結果であり、いずれも曲
げ性及びリベット張出し性に優れ、強度が適切である。
In Table 4, Nα2-B and Na 3-B are the results of Nn 2-1 and Nα3 of Example 1, respectively, and both have excellent bendability and rivet extension property, and appropriate strength.

しかし、比較例Na 2− A及びN113−Aは強度
が高すぎることによる加工性の低下を招き、Nα2−C
及びNα3−Cは強度が低く、レトルト処理時の内圧に
耐えられない場合があり、実用」二問題がある。
However, Comparative Examples Na2-A and N113-A had too high strength, leading to a decrease in workability, and Na2-C
and Nα3-C have low strength and may not be able to withstand the internal pressure during retort processing, which poses two practical problems.

(以下余白) (発明の効果) 以上詳述したように、本発明によれば、果汁、コーヒー
缶等の非炭酸缶用エンド材において、曲げ性及びリベッ
ト加工性を向上させることができるので、現有材におい
て問題とされる曲げ変形時の割れを極力小さくし、リベ
ット張り出し性を向上させ、更には適切な強度かえられ
るので、高強度薄肉化においても本発明材を用いること
により充分に対応できるものである。また、製造面(安
定性、コスト)でも優れている。
(The following is a blank space) (Effects of the Invention) As detailed above, according to the present invention, it is possible to improve the bendability and rivet workability of end materials for non-carbonated cans such as fruit juice and coffee cans. It minimizes cracking during bending deformation, which is a problem with existing materials, improves rivet extension properties, and also provides appropriate strength, so the use of the present invention material can adequately handle high-strength and thin-walled materials. It is something. It is also superior in terms of manufacturing (stability, cost).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)はそれぞれ180°密着曲げ試験
の要領を説明する図で、(a)はRD力方向直角に曲げ
た場合、(b)はRD力方向曲げた場合を示し、 第2図(a)〜(c)はそれぞれ第1〜第3工程からな
るリベット張り出し加工後の張り出し高さを示す説明図
である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
Figures 1 (a) and (b) are diagrams explaining the procedure of the 180° close bending test, respectively. (a) shows the case when the bending is perpendicular to the RD force direction, and (b) shows the case when the bending is performed in the RD force direction. , FIGS. 2(a) to 2(c) are explanatory diagrams showing the overhang height after the rivet overhang process consisting of the first to third steps, respectively. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下同じ)、Mg:3.0〜4.0%
を必須成分として含み、残部がAl及び不可避的不純物
からなることを特徴とする曲げ性及びリベット加工性に
優れた非炭酸缶エンド用Al合金板。
(1) In weight% (the same applies below), Mg: 3.0 to 4.0%
An Al alloy plate for non-carbonated can ends having excellent bendability and riveting property, characterized in that it contains as an essential component and the remainder consists of Al and unavoidable impurities.
(2)Mg:3.0〜4.0%を必須成分として含み、
更にSi≦0.30%、Fe≦0.40%、Cu≦0.
20%、Mn≦0.50%、Cr≦0.25%、Zn≦
0.30%、Zr≦0.15%及びTi≦0.20%の
うちの1種又は2種以上を含み、残部がAl及び不可避
的不純物からなることを特徴とする曲げ性及びリベット
加工性に優れた非炭酸缶エンド用Al合金板。
(2) Mg: Contains 3.0 to 4.0% as an essential component,
Furthermore, Si≦0.30%, Fe≦0.40%, Cu≦0.
20%, Mn≦0.50%, Cr≦0.25%, Zn≦
0.30%, Zr≦0.15%, and Ti≦0.20%, and the remainder is Al and unavoidable impurities. Al alloy plate for non-carbonated can ends with excellent properties.
(3)請求項1又は2に記載の化学成分を有するAl合
金の鋳塊を均質化熱処理した後、熱間圧延を行ない、更
に80%以上で冷間圧延した後、中間焼鈍を行なって、
その圧延板表面から見た結晶粒度を15μm以下にし、
更に該中間焼鈍後、圧延率が30〜70%で冷間圧延す
ることを特徴とする曲げ性及びリベット加工性に優れた
非炭酸缶エンド用Al合金板の製造方法。
(3) After homogenizing an ingot of an Al alloy having the chemical composition according to claim 1 or 2, hot rolling is performed, and after further cold rolling at 80% or more, intermediate annealing is performed,
The grain size as seen from the surface of the rolled plate is set to 15 μm or less,
A method for producing a non-carbonated aluminum alloy plate for can ends having excellent bendability and riveting property, which further comprises cold rolling at a rolling rate of 30 to 70% after the intermediate annealing.
JP22607288A 1988-09-09 1988-09-09 Al alloy sheet for uncarbonated beverage can end Pending JPH0273940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22607288A JPH0273940A (en) 1988-09-09 1988-09-09 Al alloy sheet for uncarbonated beverage can end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22607288A JPH0273940A (en) 1988-09-09 1988-09-09 Al alloy sheet for uncarbonated beverage can end

Publications (1)

Publication Number Publication Date
JPH0273940A true JPH0273940A (en) 1990-03-13

Family

ID=16839372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22607288A Pending JPH0273940A (en) 1988-09-09 1988-09-09 Al alloy sheet for uncarbonated beverage can end

Country Status (1)

Country Link
JP (1) JPH0273940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311308A (en) * 1992-05-01 1993-11-22 Kobe Steel Ltd Al alloy sheet for stay on tab type end for negative pressure can and its production
WO2015119021A1 (en) * 2014-02-06 2015-08-13 株式会社神戸製鋼所 Aluminum alloy sheet for can lid and production method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311308A (en) * 1992-05-01 1993-11-22 Kobe Steel Ltd Al alloy sheet for stay on tab type end for negative pressure can and its production
WO2015119021A1 (en) * 2014-02-06 2015-08-13 株式会社神戸製鋼所 Aluminum alloy sheet for can lid and production method therefor
JP2015147972A (en) * 2014-02-06 2015-08-20 株式会社神戸製鋼所 Aluminum alloy sheet for can lid and manufacturing method therefor
CN105960474A (en) * 2014-02-06 2016-09-21 株式会社神户制钢所 Aluminum alloy sheet for can lid and production method therefor
CN105960474B (en) * 2014-02-06 2018-06-22 株式会社神户制钢所 Cover aluminium alloy plate and its manufacturing method

Similar Documents

Publication Publication Date Title
EP0059812B1 (en) Method for producing an aluminium alloy forming sheet
JPH01301831A (en) Al alloy plate for stay-on tab and its manufacture
JP3998387B2 (en) Manufacturing method of aluminum alloy hard plate for can lid
JPS6339655B2 (en)
JPH09268341A (en) Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JP2783311B2 (en) Al alloy plate for negative pressure can stay tab type end with excellent openability and method of manufacturing the same
JPH0273940A (en) Al alloy sheet for uncarbonated beverage can end
JPH01127642A (en) Heat treatment type high strength aluminum alloy plate for drawing and its manufacture
JPH01123054A (en) Hard-baked-type high-strength can material and its production
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP3853103B2 (en) Method for producing aluminum alloy sheet with excellent openability
JP3248803B2 (en) Al alloy plate for full open end with excellent openability and method for producing the same
JP3411840B2 (en) Aluminum alloy plate for can end
JPH01119637A (en) Aluminum alloy material for can end
JPH09279281A (en) Aluminum alloy baking finished sheet for can top material excellent in corrosion resistance and its production
JPH04107237A (en) Al alloy sheet for can end excellent in corrosion resistance and its manufacture
JP2599450B2 (en) Manufacturing method of aluminum alloy plate for can end
JPH0293049A (en) Production of aluminum alloy sheet
JPS62207849A (en) Highly formable aluminum alloy sheet for packaging and its manufacture
AU2022240957A1 (en) Aluminium alloy sheet for closures and thermomechanical method for producing the same
JPS6310219B2 (en)
JPS63149348A (en) Aluminum alloy for wrapping and manufacture thereof
JPH0987790A (en) Aluminum alloy sheet for can lid and its production
JPH07126788A (en) Can-top material for stay-on-tab excellent in score crack resistance after secondary buckling and its manufacture
JPH03287749A (en) Production of aluminum alloy sheet reduced in strength anisotropy