JPH0272251A - Continuously variable transmission - Google Patents

Continuously variable transmission

Info

Publication number
JPH0272251A
JPH0272251A JP63221338A JP22133888A JPH0272251A JP H0272251 A JPH0272251 A JP H0272251A JP 63221338 A JP63221338 A JP 63221338A JP 22133888 A JP22133888 A JP 22133888A JP H0272251 A JPH0272251 A JP H0272251A
Authority
JP
Japan
Prior art keywords
gear
planetary gear
output shaft
output
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63221338A
Other languages
Japanese (ja)
Inventor
Takashi Takahashi
崇 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63221338A priority Critical patent/JPH0272251A/en
Publication of JPH0272251A publication Critical patent/JPH0272251A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the continuous speed change by a pure mechanical gear mechanism by permitting the turning moment to be offset by the meshing of an outer peripheral side gear with the internal gear of a both planetary gear mechanism for dividing the power of an input shaft and reversely setting the revolution direction of the both output shafts by connecting an electric motor for control with one and connecting the other output shaft with the sun gear of the third planetary gear mechanism and taking out the power onto one output shaft. CONSTITUTION:An input shaft 1 is connected with the input shafts 5 and 5' of the planetary gear mechanisms 20 and 20' through gears 3, 4, and 4', and the power is divided into two parts and inputted into sun gears 6 and 6'. Then, the gear 9 of a prime mover 11 for control is meshed with the gear 8 of the mechanism 20, and the torque is made equal, and then each number of revolution of the output shafts 13 and 13' is increased/decreased according to the number of revolution of internal gears 7 and 7'. Then, a gear 16 is fixed onto the shaft 13', and after a reversing machine 40 is interposed, a gear 21 is fixed onto the shaft 13, and meshed with a gear 18, and then a gear 22 receives a force in an equal quantity from the gears 16 and 17, and the turning moments of the shafts 13 and 13' are integrated and transmitted to the output shaft. Therefore, when the number of revolution of the prime mover 11 varies, the power of the input shaft 1 is speed-changed in continuous form for the output shaft 2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は歯車機構を使用した純機械的な構造の無段変速
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a continuously variable transmission having a purely mechanical structure using a gear mechanism.

〔従来技術〕[Prior art]

従来、無段変速装置は電気的や油圧的機構を利用したも
のを除けば、いずれも滑り摩擦を利用した摩擦伝動機構
からなっており、歯車機構を使用した純機械的構造のも
のは見当たらない。
Conventionally, all continuously variable transmissions have consisted of a friction transmission mechanism that uses sliding friction, with the exception of those that use electrical or hydraulic mechanisms, and there are no purely mechanical structures that use gear mechanisms. .

しかし、摩擦伝動機構を利用したものは、滑りを利用し
て無段変速をするため大動力に適用して効率的な運転を
することが困難であるという欠点があった。したがって
、もし確実な動力伝達を可能にする歯車機構を使用して
無段変速することができれば、効率の極めて高い運転を
可能にすることになる。したがって、このような装置が
業界において待望されていたが、いまだ実現されるに至
っていないのが実情である。
However, those that utilize a friction transmission mechanism have the disadvantage that it is difficult to apply them to large amounts of power and operate them efficiently because they utilize slippage to achieve continuously variable speed. Therefore, if it were possible to achieve continuously variable speed using a gear mechanism that enables reliable power transmission, extremely highly efficient operation would be possible. Therefore, although such a device has been long-awaited in the industry, the reality is that it has not yet been realized.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述のような要望に応え、純機械的な歯
車機構を使用した無段変速を可能にし、しかもこれを極
小容量の制御用原動機をもって可能にする無段変速装置
を提供することにある。
The purpose of the present invention is to meet the above-mentioned demands and provide a continuously variable transmission device that enables continuously variable transmission using a purely mechanical gear mechanism and that also enables this with an extremely small capacity control motor. It is in.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明の無段変速装置は、入力軸の
動力を同回転数ずつに二分して入力する二つの遊星歯車
機構を設け、両逆星歯車機構の内歯車をそれぞれ回動自
在にすると共に、これら内歯車の外周側に設けた歯車を
介して回転力を互いに打消し合うように連動連結する構
成にし、さらに前記内歯車の一方の外周側の歯車に制御
用原動機を連動連結させ、該制御用原動機により前記両
内歯車を互いに反対方向に駆動することにより、前記両
逆星歯車機構の出力軸にそれぞれ同一のトルクを発生さ
せると共に、等量の回転数だけ無段階に増減させる構成
にし、この二つの出力軸をいずれか一方に逆転機を介し
てその回転方向を反対にし、一方の出力軸を、内歯車を
回動自在にする第三の遊星歯車機構の太陽歯車に連結し
、他方の出力軸を別の歯車に連結すると共に、該歯車を
前記回動自在な内歯車の外周側に設けた歯車に噛合させ
る構成にし、前記第三の遊星歯車機構の1個の遊星歯車
から自転のみを公転には関係なく1本の出力軸に取り出
す構成にしたものである。
The continuously variable transmission of the present invention that achieves the above object is provided with two planetary gear mechanisms that divide the power of the input shaft into two halves with the same rotational speed and input the two, and the internal gears of both inverted planetary gear mechanisms can be freely rotated. At the same time, these internal gears are interlocked and connected through gears provided on the outer circumferential side so that the rotational forces cancel each other out, and furthermore, a control motor is interlocked and connected to the gear on the outer circumferential side of one of the internal gears. By driving both internal gears in opposite directions by the control prime mover, the same torque is generated on the output shafts of both inverted star gear mechanisms, and the number of rotations is increased or decreased steplessly by the same amount. The rotation direction of these two output shafts is reversed through a reversing machine, and one output shaft is connected to the sun gear of the third planetary gear mechanism that allows the internal gear to rotate freely. and the other output shaft is connected to another gear, and the gear is configured to mesh with a gear provided on the outer peripheral side of the rotatable internal gear, and one of the third planetary gear mechanisms The configuration is such that only the rotation is extracted from the planetary gear onto one output shaft, regardless of the revolution.

さらに具体的には第三の遊星歯車機構における1個の遊
星歯車の回転軸と、第三の遊星歯車機構の中心線に同心
に設けた1本の出力軸との間を、ユニバーサルジヨイン
ト等速ボールジヨイント等の自在継手を介して連結し、
前記1個の遊星歯車から自転のみを公転には関係なく前
記1本の出力軸に取り出す構成にするとよい。
More specifically, a universal joint etc. Connect via a universal joint such as a quick ball joint,
It is preferable to take out only the rotation from the one planetary gear to the one output shaft without regard to the revolution.

以下、図に示す本発明の一実施例を示す無段変速装置に
より具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete explanation will be given below using a continuously variable transmission device showing an embodiment of the present invention shown in the drawings.

第1図〜第3図は本発明の無段変速装置をスケルトンで
示す原理図であり、この図では説明を簡略にするため遊
星歯車機構の内歯車の内外に形成された歯車のピッチ円
を同一径と仮定して図示している。
Figures 1 to 3 are principle diagrams showing the continuously variable transmission of the present invention in skeleton form. In order to simplify the explanation, the pitch circles of the gears formed inside and outside of the internal gear of the planetary gear mechanism are shown in these figures. The illustration is made assuming that the diameters are the same.

これらの図において、1は入力軸、2は出力軸であり、
入力軸lにはエンジン、モータなどの原動機10が連結
される。この人力軸1の動力は二分されて対をなす二つ
の遊星歯車機構20.20°に伝達され、さらにこの実
施例ではこれら両逆星歯車機構20.20’ の出力を
第三の遊星歯車機構30で一つに合体させ、その合体し
た出力を出力軸2に取り出すようになっている。
In these figures, 1 is the input shaft, 2 is the output shaft,
A prime mover 10 such as an engine or a motor is connected to the input shaft l. The power of this human power shaft 1 is divided into two and transmitted to a pair of two planetary gear mechanisms 20.20', and in this embodiment, the output of both of these inverted planetary gear mechanisms 20.20' is transmitted to a third planetary gear mechanism. 30, and the combined output is taken out to the output shaft 2.

入力軸1は同歯数の歯車3と4,4゛を介して、それぞ
れ第一および第二の遊星歯車機構20220°の入力軸
5,5゛に連結され、回転数N0の動力を同方向かつ同
回転数N o 、N oずつの二つの動力に分離してそ
れぞれ太陽歯車6゜6°に入力するようになっている。
The input shaft 1 is connected to the input shafts 5 and 5 of the first and second planetary gear mechanisms 20220 and 20220, respectively, through gears 3 and 4 and 4, which have the same number of teeth, so that the power at the rotational speed N0 is transmitted in the same direction. The power is separated into two powers having the same rotational speed N o and N o and input to the sun gear 6° and 6°, respectively.

二つの遊星歯車機構20.20°は、いずれも中心軸を
中心としてそれらの内歯車7,7°を回転自在にすると
共に、それらの外周側に設けた歯車8゜8′を互いに噛
合させ、第2図のようにその噛合点Pにおいて両歯車の
回転力f、fを均衡させるようにしている。
The two planetary gear mechanisms 20 and 20 degrees each have their internal gears 7 and 7 degrees rotatable around the central axis, and gears 8 degrees and 8' provided on their outer circumferential sides mesh with each other. As shown in FIG. 2, the rotational forces f and f of both gears are balanced at the meshing point P.

このように均衡する両歯車のいずれか一方に、即ちこの
実施例では第一の遊星歯車機構20の内歯車7の外周側
歯車8に、制御用原動機11の出力軸に設けた歯車9が
噛合している。この制御用原動機11は二つの内歯車7
.7゛を互いに反対方向に回転させるが、上述したよう
に二つの内歯車7,7″の回転力は均衡しているため、
その駆動力ははパ歯等の摩擦力に等しい程度の極めて小
さなものである。このため制御用原動機11には、非常
に小容量の制御用電動モータとか、油圧モータなどを使
用すればよいようになっている。
A gear 9 provided on the output shaft of the control motor 11 meshes with either one of the gears balanced in this way, that is, in this embodiment, the outer gear 8 of the internal gear 7 of the first planetary gear mechanism 20. are doing. This control motor 11 has two internal gears 7.
.. 7'' are rotated in opposite directions, but as mentioned above, the rotational forces of the two internal gears 7 and 7'' are balanced, so
The driving force is extremely small and is equal to the frictional force of the pawl teeth. Therefore, as the control motor 11, it is sufficient to use a very small capacity control electric motor, hydraulic motor, or the like.

したがって、遊星歯車12.12’ のキャリヤに設け
た出力軸13.13’ のトルクが同一になるようにす
れば、上述のように内歯車7゜7゛の回転力が均衡する
ことによって、これら出力軸1’3.13′は、後述す
る通り内歯車7゜7゛の回転数に応じて、それぞれ等量
の回転数(α)だけプラス、マイナス増減された回転数
が出力されるようになる。
Therefore, if the torques of the output shafts 13.13' provided on the carriers of the planetary gears 12.12' are made equal, the rotational forces of the internal gears 7 and 7 are balanced as described above, so that these The output shaft 1'3, 13' outputs a rotational speed that is increased or decreased by the same amount of rotational speed (α), depending on the rotational speed of the internal gear 7゜7゛, as described later. Become.

次いで、上記二つの出力軸13.13’ の動力は、第
三の遊星歯車機構30を介して一つの出力軸2に合体す
るようになっている。
Next, the power of the two output shafts 13, 13' is combined into one output shaft 2 via the third planetary gear mechanism 30.

上記第三の遊星歯車機構30は、その中心軸を中心とし
て内歯車17が回転自在になっている。遊星歯車22は
1個だけが設けられ、これと対をなすようにバランスウ
ェイト19が設けられている。また、遊星歯車22の軸
22aは、一対のユニバーサルジヨイント、等速ボール
ジヨイントなどの自在継手23.23を介して1本の出
力軸2に連結されている。この出力軸2は遊星歯車機構
30の中心軸と同軸に設けられている。このような自在
継手による連結機構を利用して、遊星歯車機構30と同
心に配置した出力軸2に連結することにより、出力軸2
には遊星歯車22の自転だけが公転とは無関係に取り出
されることになる。
In the third planetary gear mechanism 30, the internal gear 17 is rotatable about its central axis. Only one planetary gear 22 is provided, and a balance weight 19 is provided to form a pair with this. Further, the shaft 22a of the planetary gear 22 is connected to one output shaft 2 via a pair of universal joints 23, 23 such as a universal joint or a constant velocity ball joint. This output shaft 2 is provided coaxially with the center axis of the planetary gear mechanism 30. The output shaft 2 can be connected to the output shaft 2 arranged concentrically with the planetary gear mechanism 30 by using such a connection mechanism using a universal joint.
In this case, only the rotation of the planetary gear 22 is taken out regardless of its revolution.

上述した二つの出力軸13.13°はこのような遊星歯
車機構30に対し、一方の出力軸13″の軸端に上記太
陽歯車16を固定するようにしている。また、他方の出
力軸13には逆転機40を介在させて、その回転方向を
反対方向にした上で、その軸端に太陽歯車16と同歯数
を有する別の歯車21を固定し、その歯車21を内歯車
17の外周側に設けた歯車18に噛合させるようにして
いる。このような連結によって、遊星歯車22は太陽歯
車16と内歯車17から等量で同方向の力を受けて、そ
の速度差だけ回転を発生する。即ち、この連結によって
二つの出力軸13.13’ の回転力が一つに統合され
、出力軸2へ伝達されることになる。
The above-mentioned two output shafts 13.13° are such that the sun gear 16 is fixed to the shaft end of one of the output shafts 13'' for such a planetary gear mechanism 30. A reversing machine 40 is interposed between the two gears to reverse the direction of rotation, and another gear 21 having the same number of teeth as the sun gear 16 is fixed to the shaft end of the gear 21. It meshes with the gear 18 provided on the outer circumferential side.With this kind of connection, the planetary gear 22 receives an equal amount of force in the same direction from the sun gear 16 and the internal gear 17, and rotates by the speed difference between them. That is, due to this connection, the rotational forces of the two output shafts 13, 13' are integrated into one and transmitted to the output shaft 2.

したがって、上述した無段変速装置において制御用原動
機11の回転数を変化させれば、入力軸1の動力は出力
軸2に対して無段階に変速され伝達されることになる。
Therefore, if the rotational speed of the control motor 11 is changed in the above-described continuously variable transmission, the power of the input shaft 1 is transmitted to the output shaft 2 while being variable in speed.

このとき二つの遊星歯車機構20,20°の出力軸13
.13のトルクは同一となり、かつ内歯車7,7゛の回
転力が均衡している。そのため、制御用原動機11の駆
動力は極めて僅少でよいことになる。
At this time, two planetary gear mechanisms 20, 20° output shaft 13
.. The torques of the internal gears 13 are the same, and the rotational forces of the internal gears 7 and 7' are balanced. Therefore, the driving force of the control motor 11 only needs to be extremely small.

次に、上記無段変速装置において制御用原動機11を所
定回転数で回転して無段変速するとき、上記制御用原動
機の回転数に比例する内歯車7,7゛の回転数α。と、
出力軸2の出力回転数N、との関係を計算の上から具体
的に説明する。
Next, when the control prime mover 11 is rotated at a predetermined number of rotations and continuously variable in the continuously variable transmission, the rotation speed α of the internal gears 7, 7' is proportional to the rotation speed of the control prime mover. and,
The relationship with the output rotation speed N of the output shaft 2 will be explained in detail from the calculation.

まず、二つの遊星歯車機構20.20’ の出力軸13
,13’ の回転数Na、Na”を求めると次の通りで
ある。但し、両逆星歯車機構2020’ の減速比を1
 / P 1110とする。
First, the output shaft 13 of the two planetary gear mechanisms 20 and 20'
, 13' are calculated as follows. However, if the reduction ratio of the double inverted star gear mechanism 2020' is 1
/ P 1110.

とおくと、上記■式、■式は次のようになる。Then, the above equations (■) and (■) become as follows.

Na=N−α Na’=N+α になる。Na=N-α Na’=N+α become.

次に、出力軸13.13°に固定された太陽歯車16.
歯車21がそれぞれ同じ大きさで半径がrであり、かつ
内歯車17の半径をRとすると、内歯車17の回転数は
(N−α)r/R1太陽歯車16の回転数は(N+α)
となる。
Next, the sun gear 16. fixed at the output shaft 13.13°.
If the gears 21 have the same size and radius r, and the radius of the internal gear 17 is R, then the rotation speed of the internal gear 17 is (N-α) r/R1 The rotation speed of the sun gear 16 is (N+α)
becomes.

また、太陽歯車16と内歯車17の回転方向が互いに同
方向となり、それぞれの接線力も相等しくなるので、こ
のときの遊星歯車22の自転数N、は、 π (R−r) −r いま、−例として、R:r=3:1として0式に代入す
れば、 NX =N/2+α   −−−−−−・−・・・−・
−・−■となる。また、αを(=)にすれば N X = N / 2−α   −・−−−−−−−
−・・・・・−−−−−−−−−−■となる。
Furthermore, since the rotation directions of the sun gear 16 and the internal gear 17 are the same, and their tangential forces are also equal, the rotation number N of the planetary gear 22 at this time is π (R-r) −r Now, - As an example, if you substitute R:r=3:1 into the formula 0, NX = N/2+α −−−−−−・−・・−・
−・−■. Also, if α is set to (=), N X = N / 2-α −・−−−−−−−
−・・・・・−−−−−−−−■ becomes.

すなわち、回転数NXは上記■弐よりαの函数となり、
したがって0式よりα。の函数となる。このことは、制
御用原動機11の回転数を制御すれば、出力軸2の回転
数N、を無段階に変速することができることを意味して
いる。また、このとき第三の遊星歯車機構の遊星歯車2
2に噛合している太陽歯車16と歯車21のトルクは相
等しくなる。また、第2図から、二つの内歯車7,7″
は噛合点Pにおいて、その歯車荷重を互いに反対方向に
して均衡するので、制御用原動機11の駆動力は歯等の
摩擦力に相当する程度の力でよく、入力軸1の動力に比
して極めて僅少なものとなる。
In other words, the rotation speed NX is a function of α from the above ■2,
Therefore, α from equation 0. is a function of This means that by controlling the rotation speed of the control motor 11, the rotation speed N of the output shaft 2 can be varied steplessly. Also, at this time, the planetary gear 2 of the third planetary gear mechanism
The torques of the sun gear 16 and the gear 21 meshing with the gear 2 become equal. Also, from Fig. 2, two internal gears 7, 7''
Since the gear loads are balanced in opposite directions at the meshing point P, the driving force of the control motor 11 only needs to be a force equivalent to the frictional force of the teeth, etc., and is less than the power of the input shaft 1. It will be extremely small.

いま、具体的な一例として、R: r=3 : l。Now, as a specific example, R: r=3: l.

Pmo= 4.  No = 150 Or、p、m、
であるとすると、コレラ上記■、■式に代入することに
より、次の通りとなる。
Pmo=4. No = 150 Or, p, m,
Assuming that, by substituting into the cholera equations (1) and (2) above, we get the following.

N−−x  1 5 0 0=3 7 5α=−×  
α。
N--x 1 5 0 0=3 7 5α=-×
α.

したがって、■弐より =187. 5+−α。Therefore, from ■2 =187. 5+-α.

となる。したがって、α。−〇のときは、NX−187
、5r、p、m、である。
becomes. Therefore, α. - If 〇, NX-187
, 5r, p, m.

また、α。の(+)の限界は出力軸13がOとなるとき
であるので、0式においてNa=0とおくと、 α。=173  ・No となるので、α。= 50 Or、p、m、である。
Also, α. The limit of (+) is when the output shaft 13 becomes O, so if we set Na=0 in the 0 equation, α. =173 ・No, so α. = 50 Or, p, m.

したがって、α。= 50 Or、p、m、のときは、
0式よりNX −562,5r、p、m、となる。
Therefore, α. = 50 When Or, p, m,
From formula 0, it becomes NX -562,5r, p, m.

即ち、上記無段変速装置において、制御用原動機11に
より、第一の遊星歯車機構20の内歯車7の回転数α。
That is, in the above-mentioned continuously variable transmission, the rotation speed α of the internal gear 7 of the first planetary gear mechanism 20 is controlled by the control motor 11.

を、0から正転500r、p。, forward rotation from 0 to 500 r, p.

m、まで無段階に変化させれば、出力軸2の出力回転数
NXを187. 5r、p、m、から562.5r、p
、m、までの範囲で無段階に変速することができること
になる。
If the output rotation speed NX of the output shaft 2 is changed steplessly up to 187. 5r, p, m, to 562.5r, p
This means that the speed can be changed steplessly in the range up to , m.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明の無段変速装置によれば、純機
械的な歯車機構を使用して効率的な無段階の変速を可能
にし、大動力へも適用可能にする。
As described above, the continuously variable transmission device of the present invention enables efficient stepless speed change using a purely mechanical gear mechanism, and is also applicable to large power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例からなる無段変速装置をスケル
トンで示す原理図、第2図は第1図のn−n矢視図、第
3図は第1図のm−m矢視図である。 1.5,5°・・・入力軸、2,13.13’ ・・・
出力軸、6.6’、16・・・太陽歯車、7,7°、1
7・・・内歯車、8,8°、9.18.21・・・歯車
、10・・・原動機、11・・・制御用原動機、20・
・・第一の遊星歯車機構、20“・・・第二の遊星歯車
機構、22・・・′fl星歯車、23・・・自在継手、
3o・・・第三の遊星歯車機構、40・・・逆転機。
Fig. 1 is a principle diagram showing a skeleton of a continuously variable transmission according to an embodiment of the present invention, Fig. 2 is a view taken along the nn arrow in Fig. 1, and Fig. 3 is a view taken along the mm arrow in Fig. 1. It is a diagram. 1.5, 5°...Input axis, 2,13.13'...
Output shaft, 6.6', 16...Sun gear, 7,7°, 1
7... Internal gear, 8,8°, 9.18.21... Gear, 10... Prime mover, 11... Control prime mover, 20.
...first planetary gear mechanism, 20"...second planetary gear mechanism, 22...'fl star gear, 23...universal joint,
3o...Third planetary gear mechanism, 40...Reversing machine.

Claims (2)

【特許請求の範囲】[Claims] (1)入力軸の動力を同回転数ずつに二分して入力する
二つの遊星歯車機構を設け、両遊星歯車機構の内歯車を
それぞれ回動自在にすると共に、これら内歯車の外周側
に設けた歯車を介して回転力を互いに打消し合うように
連動連結する構成にし、さらに前記内歯車の一方の外周
側の歯車に制御用原動機を連動連結させ、該制御用原動
機により前記両内歯車を互いに反対方向に駆動すること
により、前記両遊星歯車機構の出力軸にそれぞれ同一の
トルクを発生させると共に、等量の回転数だけ無段階に
増減させる構成にし、一方の出力軸を、内歯車を回動自
在にする第三の遊星歯車機構の太陽歯車に連結し、他方
の出力軸を別の歯車に連結すると共に、該歯車を前記回
動自在な内歯車の外周側に設けた歯車に噛合させる構成
にし、しかも両出力軸のいずれか一方に逆転機を介して
回転方向を反対にして、前記第三の遊星歯車機構の1個
の遊星歯車から自転のみを公転には関係なく1本の出力
軸に取り出す構成にしたことを特徴とする無段変速装置
(1) Two planetary gear mechanisms are provided that input the power of the input shaft by dividing it into two halves with the same rotational speed, and the internal gears of both planetary gear mechanisms are made rotatable, and the internal gears are provided on the outer periphery of these internal gears. The structure is such that the internal gears are interlocked and connected so that the rotational forces cancel each other out, and a control prime mover is interlocked with the gear on the outer circumferential side of one of the internal gears, and the control prime mover controls both the internal gears. By driving in opposite directions, the same torque is generated on the output shafts of both planetary gear mechanisms, and the number of rotations is increased or decreased steplessly by the same amount. The third output shaft is connected to a sun gear of a third planetary gear mechanism that is rotatable, and the other output shaft is connected to another gear, and the gear is meshed with a gear provided on the outer circumferential side of the rotatable internal gear. Moreover, the rotation direction is reversed through a reversing device on either of the two output shafts, so that only the rotation from one planetary gear of the third planetary gear mechanism is transmitted regardless of the revolution. A continuously variable transmission characterized by having a configuration in which the output is output to the output shaft.
(2)第三の遊星歯車機構における1個の遊星歯車の回
転軸と、第三の遊星歯車機構の中心線に同心に設けた1
本の出力軸との間を、ユニバーサルジョイント、等速ボ
ールジョイント等の自在継手を介して連結し、前記1個
の遊星歯車から自転のみを公転には関係なく前記1本の
出力軸に取り出す構成にした請求項1記載の無段変速装
置。
(2) 1 provided concentrically with the rotation axis of one planetary gear in the third planetary gear mechanism and the center line of the third planetary gear mechanism
A configuration in which the output shaft of the book is connected via a universal joint such as a universal joint or a constant velocity ball joint, and only rotation from the planetary gear is taken out to the single output shaft regardless of revolution. The continuously variable transmission according to claim 1.
JP63221338A 1988-09-06 1988-09-06 Continuously variable transmission Pending JPH0272251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221338A JPH0272251A (en) 1988-09-06 1988-09-06 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221338A JPH0272251A (en) 1988-09-06 1988-09-06 Continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH0272251A true JPH0272251A (en) 1990-03-12

Family

ID=16765241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221338A Pending JPH0272251A (en) 1988-09-06 1988-09-06 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH0272251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560202U (en) * 1992-01-20 1993-08-10 ヤンマー農機株式会社 Transmission in agricultural machinery
NL1016563C2 (en) * 2000-11-08 2002-05-14 Landbouwmechanisatiebedrijf Le Device for stageless regulation of speed involves first drive shaft connected with drive, preferably motor, and is provided with coupling unit
JP2017009060A (en) * 2015-06-23 2017-01-12 マテックス株式会社 Planetary gear device and stepless speed variator using planetary gear device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560202U (en) * 1992-01-20 1993-08-10 ヤンマー農機株式会社 Transmission in agricultural machinery
NL1016563C2 (en) * 2000-11-08 2002-05-14 Landbouwmechanisatiebedrijf Le Device for stageless regulation of speed involves first drive shaft connected with drive, preferably motor, and is provided with coupling unit
JP2017009060A (en) * 2015-06-23 2017-01-12 マテックス株式会社 Planetary gear device and stepless speed variator using planetary gear device

Similar Documents

Publication Publication Date Title
JP2687052B2 (en) Torque distribution mechanism of differential gear
US7303497B1 (en) Dual-input differential planetary gear transmission
JPS641694B2 (en)
JPH0238733A (en) Differential gear unit
JPS59164448A (en) Stepless transmission
JPS59110954A (en) Stepless speed change gear
US4762022A (en) Torque retaining and proportioning differential drive assembly
EP0003397B1 (en) Coaxial multi-range gear train for transmissions
JPS6250695B2 (en)
US5683324A (en) Toroidal continuous variable transmission for four-wheel drive automobiles
JPH0392656A (en) Continuously variable transmission
US3130606A (en) Infinitely variable speed gear type torque converter
GB2238090A (en) Power transmission system comprising two sets of epicyclic gears
US5456640A (en) Automatic transmission with torque-dividing gearing
JPH0272251A (en) Continuously variable transmission
US4615239A (en) Ship gear train arrangement
JP2002039324A (en) Hydromechanical transmission
JPH09210175A (en) Continuously variable transmission with gear ratio of infinity
JPH01153844A (en) Continuously variable gear device
JPH02190647A (en) Mechanical differential gear
JPH01216145A (en) Continuously variable transmission device
JPS6229271B2 (en)
JPH02129447A (en) Planetary gear type transmission for vehicle
JPH0297751A (en) Continuously variable transmission
CA1178091A (en) Continuously variable transmission unit